-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathTheorem_transverse_and_propagation_solutions_report.tex
46 lines (46 loc) · 1.45 KB
/
Theorem_transverse_and_propagation_solutions_report.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
%
% Copyright © 2018 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
\maketheorem{Transverse and propagation field solutions.}{thm:transverseField:348}{
Given a field propagating along the z-axis (either forward or backwards), with angular frequency \( \omega \), represented by the real part of
\begin{equation*}
F(x, y, z, t) = F(x, y) e^{j \omega t \mp j k z},
\end{equation*}
where \( \BE = \BE_z + \BE_t, \BH = \BH_z + \BH_t \), and \( \BA_z = (\BA \cdot \Be_3) \Be_3, \BA \in \BE, \BH \), the multivector field components in the axial and transverse ``directions''
\( F = F_z + F_t \)
are given by
\begin{equation*}
\begin{aligned}
F_z &= \inv{2} \lr{ F + \Be_3 F \Be_3 } \\
F_t &= \inv{2} \lr{ F - \Be_3 F \Be_3 },
\end{aligned}
\end{equation*}
and related to each other by
\begin{equation*}
\begin{aligned}
F_t &= j \inv{ \frac{\omega}{c} \mp k \Be_3 } \spacegrad_t F_z \\
F_z &= j \inv{ \frac{\omega}{c} \mp k \Be_3 } \spacegrad_t F_t,
\end{aligned}
\end{equation*}
Written out explicitly, the transverse field component expands as
\begin{equation*}
\begin{aligned}
\BE_t &=
\frac{j}{{\frac{\omega}{c}}^2 - k^2}
\lr{
\pm k \spacegrad_t E_z
+ \frac{\omega \eta}{c} \Be_3 \cross \spacegrad_t H_z
}
\\
\eta \BH_t &=
\frac{j}{{\frac{\omega}{c}}^2 - k^2}
\lr{
\pm k \eta \spacegrad_t H_z
-
\frac{\omega}{c}
\Be_3 \cross \spacegrad_t E_z
}.
\end{aligned}
\end{equation*}
} % theorem