-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy path2dreciprocalMatrixCalculation.tex
73 lines (68 loc) · 1.98 KB
/
2dreciprocalMatrixCalculation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
%
% Copyright © 2016 Peeter Joot. All Rights Reserved.
% Licenced as described in the file LICENSE under the root directory of this GIT repository.
%
\index{reciprocal frame}
\makeproblem{Reciprocal frame for two dimensional subspace.}{problem:reciprocal:2dsubspaceRecip}{
Prove \cref{eqn:reciprocal_R2:120}.
Hint: Take dot products of \cref{eqn:reciprocal_R2:100} with \( \Bx_1, \Bx_2 \), group the resulting equations into matrix form (you'll find the same matrix
for both sets of unknowns), and then invert the matrix to find the solution.
} % problem
\makeanswer{problem:reciprocal:2dsubspaceRecip}{
Assuming the representation of \cref{eqn:reciprocal_R2:100}, the dot products are
\begin{equation}\label{eqn:2dreciprocalMatrixCalculation:200}
\begin{aligned}
1 &= \Bx_1 \cdot \Bx^1 = a \Bx_1^2 + b \Bx_1 \cdot \Bx_2 \\
0 &= \Bx_2 \cdot \Bx^1 = a \Bx_2 \cdot \Bx_1 + b \Bx_2^2 \\
0 &= \Bx_1 \cdot \Bx^2 = c \Bx_1^2 + d \Bx_1 \cdot \Bx_2 \\
1 &= \Bx_2 \cdot \Bx^2 = c \Bx_2 \cdot \Bx_1 + d \Bx_2^2.
\end{aligned}
\end{equation}
This can be written out as a pair of matrix equations
\begin{equation}\label{eqn:2dreciprocalMatrixCalculation:220}
\begin{aligned}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
&=
\begin{bmatrix}
\Bx_1^2 & \Bx_1 \cdot \Bx_2 \\
\Bx_2 \cdot \Bx_1 & \Bx_2^2 \\
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix} \\
\begin{bmatrix}
0 \\
1
\end{bmatrix}
&=
\begin{bmatrix}
\Bx_1^2 & \Bx_1 \cdot \Bx_2 \\
\Bx_2 \cdot \Bx_1 & \Bx_2^2 \\
\end{bmatrix}
\begin{bmatrix}
c \\
d
\end{bmatrix}.
\end{aligned}
\end{equation}
The matrix inverse is
\begin{equation}\label{eqn:2dreciprocalMatrixCalculation:240}
{
\begin{bmatrix}
\Bx_1^2 & \Bx_1 \cdot \Bx_2 \\
\Bx_2 \cdot \Bx_1 & \Bx_2^2 \\
\end{bmatrix}
}^{-1}
=
\inv{ \Bx_1^2 \Bx_2^2 - \lr{\Bx_1 \cdot \Bx_2}^2 }
\begin{bmatrix}
\Bx_2^2 & -\Bx_1 \cdot \Bx_2 \\
-\Bx_2 \cdot \Bx_1 & \Bx_1^2 \\
\end{bmatrix},
\end{equation}
and multiplying by the \( (1,0) \), and \( (0,1) \) vectors picks out the respective columns, giving \cref{eqn:reciprocal_R2:120}.
} % answer