-
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathWeightCalculator.py
57 lines (54 loc) · 2.23 KB
/
WeightCalculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import glob
from PIL import Image, ImageOps
from utils import IMAGE_SIZE
if __name__ == "__main__":
background_rate = 0
border_rate = 0
content_rate = 0
folder = "./dataset/training/segmentation_mask/"
images = glob.glob(f'{folder}*.png')
number_of_images = len(images)
print(f"Starting training data analysis for {number_of_images} images")
for filename in images:
print(f"Analysing image {filename}")
size = IMAGE_SIZE, IMAGE_SIZE
image = Image.open(filename)
pixels = image.load()
width, height = image.size
if height >= width:
delta_w = height - width
delta_h = 0
else:
delta_w = 0
delta_h = width - height
padding = (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))
image = ImageOps.expand(image, padding).resize(size, Image.NEAREST)
pixels = image.load()
width, height = image.size
number_of_pixels_per_image = width * height
background_counter = 0
border_counter = 0
content_counter = 0
for x in range(width):
for y in range(height):
rgba_info = pixels[x, y]
r_channel = rgba_info[0]
g_channel = rgba_info[1]
b_channel = rgba_info[2]
if r_channel == 255:
border_counter += 1
elif g_channel == 255:
content_counter += 1
elif b_channel == 255:
background_counter += 1
elif r_channel == 0 and g_channel == 0 and b_channel == 0:
background_counter += 1
else:
print("ERROR: INVALID PIXEL")
background_rate += background_counter / number_of_pixels_per_image
border_rate += border_counter / number_of_pixels_per_image
content_rate += content_counter / number_of_pixels_per_image
image.close()
print(f" - Percentage of background in files = {background_rate / number_of_images}")
print(f" - Percentage of border in files = {border_rate / number_of_images}")
print(f" - Percentage of content in files = {content_rate / number_of_images}")