-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhh_main_gpu.cu
233 lines (201 loc) · 9.35 KB
/
hh_main_gpu.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/*
* hh_main_gpu.cu
*
* Created on: 20 июля 2016 г.
* Author: Pavel Esir
*/
#include <cmath>
#include "hh_main_gpu.h"
#include <cstdio>
#define Cm_ 1.0 // inverse of membrane capacity, 1/pF
#define g_Na 120.0 // nS
#define g_K 36.0
#define g_L 0.3
#define E_K -77.0
#define E_Na 55.0
#define E_L -54.4
#define V_peak 25.0
#define NBlockSz 128
#define SBlockSz 512
__device__ float get_random(unsigned int *seed){
// Park-Miller generator
// return random number homogeneously distributed in interval [0:1)
unsigned long a = 16807;
unsigned long m = 2147483647;
unsigned long x = (unsigned long) *seed;
x = (a * x) % m;
*seed = (unsigned int) x;
return ((float) x)/m;
}
__device__
float hh_Vm(float V, float n_ch, float m_ch, float h_ch, float I, float h){
return (-g_K*(V - E_K)*n_ch*n_ch*n_ch*n_ch - g_Na*(V - E_Na)*m_ch*m_ch*m_ch*h_ch - g_L*(V - E_L) + I)*h*Cm_;
}
__device__
float hh_n_ch(float V, float n_ch, float h){
float temp = 1.0f - exp(-(V + 55.0f)*0.1f);
if (temp != 0.0f){
return (.01f*(1.0f - n_ch)*(V + 55.0f)/temp - 0.125f*n_ch*exp(-(V + 65.0f)*0.0125f))*h;
} else {
// printf("dividing to zero while calculating n! \n");
// to understand why it'so, calculate the limit for v/(1 - exp(v/10)) then v tend to 0
return (0.1f*(1.0f - n_ch)- 0.125f*n_ch*exp(-(V + 65.0f)*0.0125f))*h;
}
}
__device__
float hh_m_ch(float V, float m_ch, float h){
float temp = 1.0f - exp(-(V + 40.0f)*0.1f);
if (temp != 0.0f){
return (0.1f*(1.0f - m_ch)*(V + 40.0f)/temp - 4.0f*m_ch*exp(-(V + 65.0f)*0.055555556f))*h;
} else {
// printf("dividing to zero while calculating m! \n");
return ((1.0f - m_ch) - 4.0f*m_ch*exp(-(V + 65.0f)*0.055555556f))*h;
}
}
__device__
float hh_h_ch(float V, float h_ch, float h){
return (0.07f*(1.0f - h_ch)*exp(-(V + 65.0f)*0.05f) - h_ch/(1.0f + exp(-(V + 35.0f)*0.1f)))*h;
}
__global__
void integrate_synapses(unsigned int t, unsigned int Ncon, unsigned int Nneur, unsigned int *pre_nidx, unsigned int *post_nidx, float *weight,
float *y, unsigned int *delay, unsigned int *num_spike_syn, unsigned int *num_spike_neur, unsigned int *spike_time){
unsigned int s = blockIdx.x*blockDim.x + threadIdx.x;
if (s < Ncon){
// if we processed less spikes than presynaptic neuron generated
// we need to check whether the new spikes arrive at this moment of time
if (num_spike_syn[s] < num_spike_neur[pre_nidx[s]]){
if (spike_time[Nneur*num_spike_syn[s] + pre_nidx[s]] == t - delay[s]){
atomicAdd(&y[post_nidx[s]], weight[s]);
num_spike_syn[s]++;
}
}
}
}
__global__
void integrate_neurons(unsigned int t, unsigned int Nneur, float h, float *rate, unsigned int *psn_seed, unsigned int *psn_time,
float exp_psc, float exp_psc_half, float tau_cor, NeurVars nv, RecordVars rv,
unsigned int *num_spike_neur, unsigned int *spike_time, IncSpikes incSpikes){
unsigned int n = blockIdx.x*blockDim.x + threadIdx.x;
if (n < Nneur){
float I_syn_half = (nv.y[n]*h*0.5f + nv.Isyn[n])*exp_psc_half;
// if where is poisson impulse on neuron
while (psn_time[n] == t){
if (t > nv.cutoff_ns_tm) {
break;
}
nv.y[n] += nv.weight_p[n];
// after taking logarithm from uniformly distributed from 0 to 1
// random number we get exponentially distributed random number
// for Poisson process time interals between impulses are exponentially distributed
// sign of right part is negative hence here is "-="
psn_time[n] += (unsigned int) (-1000.0f*log(get_random(psn_seed + n))/(rate[n]*h));
}
while (incSpikes.numProcessed[n] < incSpikes.nums[n] && incSpikes.times[Nneur*incSpikes.numProcessed[n] + n] == t){
nv.y[n] += incSpikes.weights[Nneur*incSpikes.numProcessed[n] + n];
incSpikes.numProcessed[n] += 1;
}
float V_mem, n_channel, m_channel, h_channel;
float v1, v2, v3, v4;
float n1, n2, n3, n4;
float m1, m2, m3, m4;
float h1, h2, h3, h4;
float Inoise_;
float ns1, ns2, ns3, ns4;
float dNoise = 0.0f;
// float dNoise = sqrtf(2.0f*h*D[n])*curand_normal(&state[n]);
float Isyn_new = (nv.y[n]*h + nv.Isyn[n])*exp_psc;
V_mem = nv.V[n];
n_channel = nv.n[n];
m_channel = nv.m[n];
h_channel = nv.h[n];
Inoise_ = nv.Inoise[n];
v1 = hh_Vm(nv.V[n], nv.n[n], nv.m[n], nv.h[n], nv.Isyn[n] + nv.Inoise[n] + nv.Ie[n], h);
n1 = hh_n_ch(nv.V[n], nv.n[n], h);
m1 = hh_m_ch(nv.V[n], nv.m[n], h);
h1 = hh_h_ch(nv.V[n], nv.h[n], h);
ns1 = (-nv.Inoise[n]*h + dNoise)/tau_cor;
nv.V[n] = V_mem + v1/2.0f;
nv.n[n] = n_channel + n1/2.0f;
nv.m[n] = m_channel + m1/2.0f;
nv.h[n] = h_channel + h1/2.0f;
nv.Inoise[n] = Inoise_ + ns1/2.0f;
v2 = hh_Vm(nv.V[n], nv.n[n], nv.m[n], nv.h[n], I_syn_half + nv.Inoise[n] + nv.Ie[n], h);
// v2 = hh_Vm(nv.V[n], nv.n[n], nv.m[n], nv.h[n], (nv.Isyn[n] + Isyn_new)*0.5f + nv.Inoise[n] + nv.Ie[n], h);
n2 = hh_n_ch(nv.V[n], nv.n[n], h);
m2 = hh_m_ch(nv.V[n], nv.m[n], h);
h2 = hh_h_ch(nv.V[n], nv.h[n], h);
ns2 = (-nv.Inoise[n]*h + dNoise)/tau_cor;
nv.V[n] = V_mem + v2/2.0f;
nv.n[n] = n_channel + n2/2.0f;
nv.m[n] = m_channel + m2/2.0f;
nv.h[n] = h_channel + h2/2.0f;
nv.Inoise[n] = Inoise_ + ns2/2.0f;
v3 = hh_Vm(nv.V[n], nv.n[n], nv.m[n], nv.h[n], I_syn_half + nv.Inoise[n] + nv.Ie[n], h);
// v3 = hh_Vm(nv.V[n], nv.n[n], nv.m[n], nv.h[n], (nv.Isyn[n] + Isyn_new)*0.5f + nv.Inoise[n] + nv.Ie[n], h);
n3 = hh_n_ch(nv.V[n], nv.n[n], h);
m3 = hh_m_ch(nv.V[n], nv.m[n], h);
h3 = hh_h_ch(nv.V[n], nv.h[n], h);
ns3 = (-nv.Inoise[n]*h + dNoise)/tau_cor;
nv.V[n] = V_mem + v3;
nv.n[n] = n_channel + n3;
nv.m[n] = m_channel + m3;
nv.h[n] = h_channel + h3;
nv.Inoise[n] = Inoise_ + ns3;
nv.Isyn[n] = (nv.y[n]*h + nv.Isyn[n])*exp_psc;
nv.y[n] *= exp_psc;
v4 = hh_Vm(nv.V[n], nv.n[n], nv.m[n], nv.h[n], nv.Isyn[n] + nv.Inoise[n] + nv.Ie[n], h);
n4 = hh_n_ch(nv.V[n], nv.n[n], h);
m4 = hh_m_ch(nv.V[n], nv.m[n], h);
h4 = hh_h_ch(nv.V[n], nv.h[n], h);
ns4 = (-nv.Inoise[n]*h + dNoise)/tau_cor;
nv.V[n] = V_mem + (v1 + 2.0f*(v2 + v3) + v4)/6.0f;
nv.n[n] = n_channel + (n1 + 2.0f*(n2 + n3) + n4)/6.0f;
nv.m[n] = m_channel + (m1 + 2.0f*(m2 + m3) + m4)/6.0f;
nv.h[n] = h_channel + (h1 + 2.0f*(h2 + h3) + h4)/6.0f;
nv.Inoise[n] = Inoise_ + (ns1 + 2.0f*(ns2 + ns3) + ns4)/6.0f;
// checking if there's spike on neuron
if (nv.V[n] > V_peak && V_mem > nv.V[n] && nv.V_last[n] <= V_mem){
// second condition is necessary in the presence of noise
if (num_spike_neur[n] == 0 || t - spike_time[Nneur*(num_spike_neur[n] - 1) + n] > 5.0f/h){
spike_time[Nneur*num_spike_neur[n] + n] = t;
num_spike_neur[n]++;
}
}
nv.V_last[n] = V_mem;
if (t % rv.interval == 0){
rv.V[Nneur*t/rv.interval + n] = nv.V[n];
// rv.V[Nneur*t/rv.interval + n] = nv.Isyn[n];
}
}
}
__global__
void init_noise(unsigned int seed, unsigned int Nneur, float h, float *rate, unsigned int *psn_seed, unsigned int *psn_time){
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < Nneur){
psn_seed[i] = 100000*(seed + i + 1);
// psn_time[i] = 1 + (unsigned int) (-1000.0f*log(get_random(psn_seed + i))/(rate[i]*h));
psn_time[i] = (unsigned int) 200.0f/h + 1 + (unsigned int) (-1000.0f*log(get_random(psn_seed + i))/(rate[i]*h));
}
}
__global__
void fillFloatArr(unsigned int size, float *arr, float val){
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < size){
arr[i] = val;
}
}
void init_noise_gpu(unsigned int seed, unsigned int Nneur, float h, float *rate, unsigned int *psn_seed, unsigned int *psn_time){
init_noise<<<Nneur/NBlockSz + 1, NBlockSz>>>(seed, Nneur, h, rate, psn_seed, psn_time);
}
void fillFloatArr_gpu(unsigned int size, float *arr, float val){
fillFloatArr<<<(size + NBlockSz - 1)/NBlockSz, NBlockSz>>>(size, arr, val);
}
void integrate_neurons_gpu(unsigned int t, unsigned int Nneur, float h, float *rate, unsigned int *psn_seed, unsigned int *psn_time,
float exp_psc, float exp_psc_half, float tau_cor, NeurVars nv, RecordVars rv, unsigned int *num_spike_neur, unsigned int *spike_time, IncSpikes incSpikes){
integrate_neurons<<<(Nneur + NBlockSz - 1)/NBlockSz, NBlockSz>>>(t, Nneur, h, rate, psn_seed, psn_time, exp_psc, exp_psc_half, tau_cor, nv, rv,
num_spike_neur, spike_time, incSpikes);
}
void integrate_synapses_gpu(unsigned int t, unsigned int Ncon, unsigned int Nneur, unsigned int *pre_nidx, unsigned int *post_nidx, float *weight,
float *y, unsigned int *delay, unsigned int *num_spike_syn, unsigned int *num_spike_neur, unsigned int *spike_time){
integrate_synapses<<<(Ncon + SBlockSz - 1)/SBlockSz, SBlockSz>>>(t, Ncon, Nneur, pre_nidx, post_nidx, weight, y, delay, num_spike_syn, num_spike_neur, spike_time);
}