-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphotoboothapp.py
237 lines (175 loc) · 8.01 KB
/
photoboothapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# import the necessary packages
from __future__ import print_function
from facial_recog import FaceRecognizer
from PIL import Image
from PIL import ImageTk
import tkinter as tki
import threading
import datetime
import imutils
import time
import cv2
import os
class PhotoBoothApp:
def __init__(self, vs, outputPath):
# store the video stream object and output path, then initialize
# the most recently read frame, thread for reading frames, and
# the thread stop event
self.recognizer = FaceRecognizer()
self.vs = vs
self.outputPath = outputPath
self.frame = None
self.thread = None
self.stopEvent = None
# To bound and crop the detected face
self.subface_x = 0 # X position
self.subface_y = 0 # Y position
self.subface_h = 0 # Height
self.subface_w = 0 # Width
# Facial detector variables
self.detected_face_name = ''
self.access_status = False
self.distance = '0'
self.take_snapshot = False
# initialize the root window and image panel
self.root = tki.Tk()
self.panel = None
self.fontePadrao = ("Arial", 10)
self.nomeLabel = tki.Label(self.root, text="Nome", font=self.fontePadrao)
self.nomeLabel.pack()
self.nome = tki.Entry(self.root)
self.nome["width"] = 30
self.nome["font"] = self.fontePadrao
self.nome.pack()
# create a button, that when pressed, will take the current
# frame and save it to file
btn = tki.Button(self.root, text="Snapshot!", command=self.takeSnapshot)
btn.pack(side="bottom", fill="both", expand="yes", padx=10, pady=10)
# start a thread that constantly pools the video sensor for
# the most recently read frame
self.stopEvent = threading.Event()
self.thread = threading.Thread(target=self.videoLoop, args=())
self.thread.start()
self.thread_recog = threading.Thread(target=self.facial_recognition)
self.thread_recog.start()
# set a callback to handle when the window is closed
self.root.wm_title("PyImageSearch PhotoBooth")
self.root.wm_protocol("WM_DELETE_WINDOW", self.onClose)
def videoLoop(self):
size = 4
facedata = "/usr/local/opt/opencv/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml"
# We load the xml file
classifier = cv2.CascadeClassifier(facedata)
# DISCLAIMER:
# I'm not a GUI developer, nor do I even pretend to be. This
# try/except statement is a pretty ugly hack to get around
# a RunTime error that Tkinter throws due to threading
try:
# keep looping over frames until we are instructed to stop
while not self.stopEvent.is_set():
# grab the frame from the video stream and resize it to
# have a maximum width of 300 pixels
self.frame = self.vs.read()
self.frame = imutils.resize(self.frame, width=600)
self.frame = cv2.flip(self.frame, 1, 0) # Flip to act as a mirror
# Resize the image to speed up detection
mini = cv2.resize(self.frame, (int(self.frame.shape[1] / size), int(self.frame.shape[0] / size)))
faces = classifier.detectMultiScale(mini)
for f in faces:
bounds = [v * size for v in f]
self.update_subface_bounds(bounds)
cv2.rectangle(
self.frame,
(self.subface_x, self.subface_y),
(self.subface_x + self.subface_w, self.subface_y + self.subface_h),
(0, 255, 0),
thickness=4
)
if self.access_status:
access_status = 'Permitido'
access_color = (0, 255, 0)
else:
access_status = 'Negado'
access_color = (0, 0, 255)
x, y, h, w = self.subface_x, self.subface_y, self.subface_h, self.subface_w
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(self.frame, self.detected_face_name, (x, y - 45), font, 0.8, (0, 140, 255))
cv2.putText(self.frame, access_status, (x, y - 15), font, .8, access_color)
cv2.putText(self.frame, self.distance, (x, y + h + 22), font, .8, (0, 140, 255))
bounds = (self.subface_x, self.subface_y, self.subface_h, self.subface_w)
self.capture_face_frame(bounds)
# OpenCV represents images in BGR order; however PIL
# represents images in RGB order, so we need to swap
# the channels, then convert to PIL and ImageTk format
image = cv2.cvtColor(self.frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
image = ImageTk.PhotoImage(image)
# if the panel is not None, we need to initialize it
if self.panel is None:
self.panel = tki.Label(image=image)
self.panel.image = image
self.panel.pack(side="left", padx=10, pady=10)
# otherwise, simply update the panel
else:
self.panel.configure(image=image)
self.panel.image = image
except RuntimeError:
print("[INFO] caught a RuntimeError")
def facial_recognition(self):
while True:
time.sleep(.3)
if self.recognizer.database:
try:
access, min_dist, identity = self.recognizer.who_is_it("images/camera_0.jpg")
self.detected_face_name = identity.capitalize()
self.access_status = access
self.distance = f'dist: {min_dist}'
except TypeError as e:
print('Imagem não encontrada:', str(e))
def update_subface_bounds(self, bounds):
(x, y, w, h) = bounds
self.subface_w, self.subface_h = w + 70, h + 70
n_x, n_y = x - 45, y - 45
self.subface_x = n_x if n_x >= 0 else 0
self.subface_y = n_y if n_y >= 0 else 0
def capture_face_frame(self, bounds):
# Save just the rectangle faces in SubRecFaces
x, y, h, w = bounds
sub_face = self.frame[y: y + h, x: x + w]
dim = (96, 96)
sub_face = cv2.resize(sub_face, dim, interpolation=cv2.INTER_LINEAR)
face_file_img = './images/camera_0.jpg'
cv2.imwrite(face_file_img, sub_face)
def takeSnapshot(self):
# grab the current timestamp and use it to construct the
# output path
# ts = datetime.datetime.now()
# filename = "{}.jpg".format(ts.strftime("%Y-%m-%d_%H-%M-%S"))
name = self.nome.get()
filename = f'{name}.jpg'
if not filename:
print('Name field is empty.')
return
p = os.path.sep.join((self.outputPath, filename))
frame_copy = self.frame.copy()
# Save just the rectangle faces in sub_face
sub_face = frame_copy[
self.subface_y: self.subface_y + self.subface_h,
self.subface_x: self.subface_x + self.subface_w
]
dim = (96, 96)
sub_face = cv2.resize(sub_face, dim, interpolation=cv2.INTER_LINEAR)
# save the file
cv2.imwrite(p, sub_face)
print('Inserindo', name, p)
self.recognizer.insert_new_person(name, p)
print(f"[INFO] saved {filename}")
self.recognizer.database = self.recognizer.load_img_data()
print('Pessoas na base', [k for k in self.recognizer.database])
def onClose(self):
# set the stop event, cleanup the camera, and allow the rest of
# the quit process to continue
print("[INFO] closing...")
self.stopEvent.set()
self.vs.stop()
self.root.quit()