-
Notifications
You must be signed in to change notification settings - Fork 713
/
Copy pathfx-carry-trade.py
126 lines (101 loc) · 4.66 KB
/
fx-carry-trade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# region imports
from AlgorithmImports import *
# endregion
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = "Value"
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource(
"data.quantpedia.com/backtesting_data/futures/{0}.csv".format(
config.Symbol.Value
),
SubscriptionTransportMedium.RemoteFile,
FileFormat.Csv,
)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(";")
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data["back_adjusted"] = float(split[1])
data["spliced"] = float(split[2])
data.Value = float(split[1])
return data
# Custom fee model.
class CustomFeeModel:
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# region imports
from AlgorithmImports import *
# endregion
# https://quantpedia.com/strategies/fx-carry-trade/
#
# Create an investment universe consisting of several currencies (10-20). Go long three currencies with the highest central bank prime rates and
# go short three currencies with the lowest central bank prime rates. The cash not used as the margin is invested in overnight rates. The strategy
# is rebalanced monthly.
import data_tools
class ForexCarryTrade(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# Source: https://www.quandl.com/data/OECD-Organisation-for-Economic-Co-operation-and-Development
self.symbols = {
"CME_AD1": "OECD/KEI_IR3TIB01_AUS_ST_M", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1": "OECD/KEI_IR3TIB01_GBR_ST_M", # British Pound Futures, Continuous Contract #1
"CME_CD1": "OECD/KEI_IR3TIB01_CAN_ST_M", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1": "OECD/KEI_IR3TIB01_EA19_ST_M", # Euro FX Futures, Continuous Contract #1
"CME_JY1": "OECD/KEI_IR3TIB01_JPN_ST_M", # Japanese Yen Futures, Continuous Contract #1
"CME_MP1": "OECD/KEI_IR3TIB01_MEX_ST_M", # Mexican Peso Futures, Continuous Contract #1
"CME_NE1": "OECD/KEI_IR3TIB01_NZL_ST_M", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1": "SNB/ZIMOMA", # Swiss Franc Futures, Continuous Contract #1
}
for symbol, rate_symbol in self.symbols.items():
self.AddData(Quandl, rate_symbol, Resolution.Daily)
data = self.AddData(data_tools.QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(data_tools.CustomFeeModel())
data.SetLeverage(5)
self.recent_month = -1
def OnData(self, data):
rebalance_flag: bool = False
rate: dict[str, float] = {}
for symbol, int_rate in self.symbols.items():
# futures data is present in the algorithm
if symbol in data and data[symbol]:
if self.recent_month != self.Time.month:
rebalance_flag = True
self.recent_month = self.Time.month
# IR data is still coming in
if (
self.Securities[int_rate].GetLastData()
and (
self.Time.date()
- self.Securities[int_rate].GetLastData().Time.date()
).days
<= 31
):
rate[symbol] = self.Securities[int_rate].Price
if rebalance_flag:
long = []
short = []
if len(rate) >= 3:
# interbank rate sorting
sorted_by_rate = sorted(rate.items(), key=lambda x: x[1], reverse=True)
traded_count = 3
long = [x[0] for x in sorted_by_rate[:traded_count]]
short = [x[0] for x in sorted_by_rate[-traded_count:]]
# trade execution
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
self.SetHoldings(symbol, -1 / len(short))