-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
299 lines (273 loc) · 12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Created at 2020-02-06
# Filename:main.py
# Author:Wang Pan
# Purpose:
#
import argparse
import json
import logging
import os
import time
import traceback
import numpy as np
import pandas as pd
import torch.autograd
import torch.nn as nn
import torch.optim as optim
import yaml
from dateutil import tz
import DCRNNModel
import models
import utils
from DataLoader import DataLoader
# Logging unit init
def logging_module_init(logger_dir):
logger = logging.getLogger('info')
logger.setLevel(level=logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s')
file_handler = logging.FileHandler(logger_dir)
file_handler.setLevel(level=logging.INFO)
file_handler.setFormatter(formatter)
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
stream_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
return logger
# Main Handler
class Process_Handler():
def __init__(self, loader, logger, model_args, train_args):
use_cuda = torch.cuda.is_available()
if use_cuda:
logger.info('Using GPU...')
else:
logger.info('Using CPU...')
self.dev = ('cuda' if use_cuda else 'cpu')
self.loader = loader
self.logger = logger
self.det = model_args['model_details']
self.model = self.set_model(model_args['model_name'])
self.model = self.model.to(self.dev)
if 'scheduled_sampling' in model_args:
self.schedule_sampling = True
else:
self.schedule_sampling = False
self.train_args = train_args
self.batch_size = train_args['batch_size']
self.lr = train_args['learning_rate']
self.loss_fn = self.set_loss(train_args['loss_fn'])
self.set_optimizer(train_args['optimizer'])
if train_args['lr_scheduler']:
self.lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=self.optimizer,
milestones=train_args['lr_milestones'],
gamma=train_args['lr_decay_rate'])
self.max_grad_norm = train_args['max_grad_norm']
self.train_epochs = 0
self.batch_logger_time = 20
def set_optimizer(self, optimizer):
if optimizer == 'SGD':
self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr)
elif optimizer == 'Adam':
weight_decay = self.train_args['weight_decay']
self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=weight_decay, amsgrad=True,
eps=1.0e-3)
else:
raise AttributeError('No such optimizer')
def set_model(self, model_name):
if model_name == 'FNN':
return models.FNN(self.det['input_dim'], self.det['output_dim'], self.loader.seq_len, self.loader.horizon,
self.loader.num_nodes, self.det['hidden_dim'])
elif model_name == 'S2SGRU':
return models.S2SGRU(self.det['input_dim'], self.det['output_dim'], self.loader.seq_len,
self.loader.horizon,
self.loader.num_nodes, self.det['hidden_dim'], self.det['num_layers'])
elif model_name == 'DCRNN':
###########
self.graph = [self.loader.laplacian]
self.graph = [torch.tensor(i).to(self.dev) for i in self.graph]
return DCRNNModel.DCRNNModel(self.det['input_dim'], self.det['output_dim'], 12, 12,
207, self.det['hidden_dim'], self.det['num_layers'], self.graph,
self.det['order'])
else:
raise AttributeError('No Such Model!')
def set_loss(self, loss_name):
if loss_name == 'MSELoss':
return nn.MSELoss()
elif loss_name == 'L1Loss':
return nn.L1Loss()
elif loss_name == 'masked MSELoss':
return utils.masked_mse_torch(null_val=0.0)
elif loss_name == 'masked MAELoss':
return utils.masked_mae_torch(null_val=0.0)
elif loss_name == 'masked RMSELoss':
return utils.masked_rmse_torch(null_val=0.0)
else:
raise AttributeError('No Such Loss!')
def train(self):
self.model.train()
self.loader.set('train')
self.logger.info('Training...')
total_loss = 0
per_iter = 375
for i, (x, y) in enumerate(self.loader.get(self.batch_size)):
x = torch.from_numpy(x).float()
y = torch.from_numpy(y).float()
x = x.to(self.dev)
y = y.to(self.dev)
self.optimizer.zero_grad()
if self.schedule_sampling == True:
tf = utils.DCRNN_teaching_force_calculater(self.train_epochs * per_iter + i, self.det['teaching_tao'])
pred = self.model(x, y, tf)
else:
pred = self.model(x)
loss = self.loss_fn(self.loader.inverse_scale_data(pred), self.loader.inverse_scale_data(y))
loss.backward()
total_loss += loss.item()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
self.optimizer.step()
if (i + 1) % self.batch_logger_time == 0:
self.logger.info('Train Epoch {}: {}/{} Loss: {:.3f}'.format(
self.train_epochs + 1, i + 1, per_iter, loss))
if self.train_args['lr_scheduler']:
self.lr_scheduler.step()
self.logger.info('Training for current epoch Finished!')
self.train_epochs += 1
return total_loss / per_iter
def val(self):
"""
:return:
"""
self.logger.info('Validating')
self.model.eval()
self.loader.set('val')
total_pred = []
total_y = []
total_loss = []
with torch.no_grad():
for i, (x, y) in enumerate(self.loader.get(self.batch_size, shuffle=False)):
x = torch.from_numpy(x).float()
x = x.to(self.dev)
if self.schedule_sampling == True:
y = torch.from_numpy(y).float()
y = y.to(self.dev)
pred = self.model(x, y, teaching_force=0)
y = y.cpu().detach().numpy()
else:
pred = self.model(x)
y = self.loader.inverse_scale_data(y)
total_y.append(y)
pred = self.loader.inverse_scale_data(pred)
total_pred.append(pred.cpu().detach().numpy())
total_loss.append(utils.masked_mae_np(pred.cpu().detach().numpy(), y, null_val=0.0))
pred = np.concatenate(total_pred, axis=0)
y = np.concatenate(total_y, axis=0)
return utils.masked_mae_np(pred, y, null_val=0.0), np.mean(total_loss)
def test(self):
"""
:return:
"""
self.logger.info('Testing...')
self.model.eval()
self.loader.set('test')
total_pred = []
total_y = []
with torch.no_grad():
for i, (x, y) in enumerate(self.loader.get(self.batch_size, shuffle=False)):
x = torch.from_numpy(x).float()
x = x.to(self.dev)
if self.schedule_sampling == True:
y = torch.from_numpy(y).float()
y = y.to(self.dev)
pred = self.model(x, y, teaching_force=0)
y = y.cpu().detach().numpy()
else:
pred = self.model(x)
total_y.append(self.loader.inverse_scale_data(y))
pred = self.loader.inverse_scale_data(pred)
total_pred.append(pred.cpu().detach().numpy())
pred = np.concatenate(total_pred, axis=0)
y = np.concatenate(total_y, axis=0)
horizon_MAE = []
horizon_RMSE = []
for horizon in range(pred.shape[1]):
pred_i = pred[:, horizon, :, :]
y_i = y[:, horizon, :, :]
horizon_MAE.append(utils.masked_mae_np(pred_i, y_i, null_val=0.0))
horizon_RMSE.append(utils.masked_rmse_np(pred_i, y_i, null_val=0.0))
return horizon_MAE, horizon_RMSE
def save(self, filename):
torch.save({'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict()},
filename)
return filename
def load(self, filename):
ckp = torch.load(filename)
self.model.load_state_dict(ckp['model_state_dict'])
self.optimizer.load_state_dict(ckp['optimizer_state_dict'])
return filename
def main(args, status):
dir_args = args['dir']
data_args = args['data']
model_args = args['model']
train_args = args['train']
max_val = 100000
if status == 'Train':
model_dir = dir_args['base_dir'] + '/model_%s_%s' % (
model_args['model_name'], str(pd.datetime.now(tz=tz.gettz('Asia/Shanghai'))))
os.mkdir(model_dir)
dir_args['model_dir'] = model_dir
logger = logging_module_init(model_dir + '/info_train.log')
logger.info('\n NOW TRAINING WITH FOLLOWING PARAMETERS:'
'\n %s' % (json.dumps(args, indent=4)))
loader = DataLoader(data_args, logger)
try:
handler = Process_Handler(loader, logger, model_args, train_args)
for _ in range(train_args['epochs']):
start_time = time.time()
train_loss = handler.train()
logger.info('Current epoch train loss %.4f' % train_loss)
val_mae, mean_val_mae = handler.val()
model_file = model_dir + '/model_%s_epoch_%d_val_mae_%.4f' % (model_args['model_name'], _ + 1, val_mae)
end_time = time.time()
logger.info('Epoch [{}/{}] val_mae: {:.4f}, mean_val_mae: {:.4f} using time {:.1f}s'.format(
_ + 1, train_args['epochs'], val_mae, mean_val_mae, (end_time - start_time)))
if val_mae < max_val:
best_model_file = model_dir + '/current_best_%s_epoch_%d_val_mae_%.4f' % (
model_args['model_name'], _ + 1, val_mae)
dir_args['best_model_dir'] = best_model_file
with open(model_dir + '/config_test.yaml', 'w') as f:
yaml.dump(args, f)
handler.save(best_model_file)
max_val = val_mae
if (_ + 1) % 5 == 0:
MAE, RMSE = handler.test()
for i, each in enumerate(MAE):
logger.info(
"Horizon {:02d}, MAE: {:.2f}, RMSE: {:.2f}".format(
i + 1, MAE[i], RMSE[i])
)
except:
logger.error('\n' + traceback.format_exc())
if status == 'Test':
logger = logging_module_init(dir_args['model_dir'] + '/info_test.log')
loader = DataLoader(data_args, logger)
logger.info('\n NOW TESTING WITH MODELS TRAINING BY FOLLOWING PARAMETERS:'
'\n %s' % (json.dumps(args, indent=4)))
handler = Process_Handler(loader, logger, model_args, train_args)
best_model_file = dir_args['best_model_dir']
handler.load(best_model_file)
MAE, RMSE = handler.test()
for i, each in enumerate(MAE):
logger.info(
"Horizon {:02d}, MAE: {:.2f}, RMSE: {:.2f}".format(
i + 1, MAE[i], RMSE[i])
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--config', default='./configs/config_remote_train_DCRNN.yaml')
parser.add_argument('--status', default='Train')
args = parser.parse_args()
status = args.status
with open(args.config, 'r') as f:
model_args = yaml.load(f)
main(model_args, status)