-
Notifications
You must be signed in to change notification settings - Fork 0
/
ETF.py
520 lines (468 loc) · 19.5 KB
/
ETF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
from bs4 import BeautifulSoup as bs
import ast
import datetime
import html5lib
import numpy as np
import pandas as pd
import re
import urllib.request
import sys
import json
from jsonmerge import merge
"""
Fetch single ETF data.
Sources: etfdb.com, Etfdailynews.com and zacks.com.
"""
class ETF:
def __init__(self, ticker):
self.isValid = False
self.ticker = ticker.upper()
self.name = None
self.expense_ratio = None
self.aum = None
self.shares = None
self.index = None
self.asset_class = None
self.category = None
self.details = {}
self.dataframes = {}
url = 'http://etfdb.com/etf/' + self.ticker + "/"
try:
html = urllib.request.urlopen(url).read()
except urllib.error.HTTPError as e:
if (e.code == 404):
print(url + " not fund (404).")
sys.exit()
soup = bs(html, "html5lib")
# Name
try:
self.name = soup.findAll("h1")[0].find_all("span")[
1].get_text().strip()
except:
print("Error getting name for " + self.ticker)
# Expense Ratio
try:
raw = soup.findAll("span", text=re.compile(r'Expense Ratio'))[
0].findNext("span").get_text().strip()
self.expense_ratio = self.convert_percent(raw)
except:
print("Error getting Expense Ratio for " + self.ticker)
# AUM
try:
raw = soup.findAll("span", text=re.compile(r'AUM'))[
0].findNext("span").get_text().strip().replace(",", "")
self.aum = float(raw[1:-2])
mul = raw[-1]
if(mul == "B"):
self.aum = self.aum * 1000000000
elif(mul == "M"):
self.aum = self.aum * 1000000
except:
print("Error getting AUM for " + self.ticker)
# Shares
try:
raw = soup.findAll("span", text=re.compile(r'Shares:'))[
0].findNext("span").get_text().strip()
self.shares = float(raw[0:-2])
mul = raw[-1]
if(mul == "B"):
self.shares = int(
self.shares * 1000000000)
elif(mul == "M"):
self.shares = int(self.shares * 1000000)
except:
print("Error getting Shares for " + self.ticker)
# Underlying Index
try:
self.index = soup.findAll("span", text=re.compile(r'Tracks This Index:'))[
0].findNext("span").get_text()
except:
print("Error getting Underlying Index for " + self.ticker)
# ETFdb.com Report
try:
self.details['report'] = soup.find(
id="analyst-collapse").findNext("p").get_text()
except:
pass
# Category
try:
self.category = soup.findAll("span", text=re.compile(r'ETFdb.com Category:'))[
0].findNext("span").get_text().strip()
except:
print("Error getting Asset class for " + self.ticker)
# Asset Class
try:
self.asset_class = soup.findAll("span", text=re.compile(r'Asset Class:'))[
0].findNext("span").get_text().strip()
except:
print("Error getting Asset class for " + self.ticker)
# Region (General)
try:
self.details['region_general'] = soup.findAll("span", text=re.compile(r'Region \(General\):'))[
0].findNext("span").get_text().strip()
except:
pass
# Region (Specific)
try:
self.details['region_specific'] = soup.findAll("span", text=re.compile(r'Region \(Specific\):'))[
0].findNext("span").get_text().strip()
except:
pass
# Bond Type(s)
try:
self.details['bond_type'] = soup.findAll("span", text=re.compile(r'Bond Type\(s\):'))[
0].findNext("span").get_text().strip()
except:
pass
# Bond Duration
try:
self.details['bond_duration'] = soup.findAll("span", text=re.compile(r'Bond Duration:'))[
0].findNext("span").get_text().strip()
except:
pass
# Asset Class Size
try:
self.details['asset_class_size'] = soup.findAll("span", text=re.compile(r'Asset Class Size:'))[
0].findNext("span").get_text().strip()
except:
pass
# Asset Class Style
try:
self.details['asset_class_style'] = soup.findAll("span", text=re.compile(r'Asset Class Style:'))[
0].findNext("span").get_text().strip()
except:
pass
# Currency
try:
self.details['currency'] = soup.findAll("span", text=re.compile(r'Currency:'))[
0].findNext("span").get_text().strip()
except:
pass
# Commodity Type
try:
self.details['commodity_type'] = soup.findAll("span", text=re.compile(r'Commodity Type:'))[
0].findNext("span").get_text().strip()
except:
pass
# Commodity
try:
self.details['commodity'] = soup.findAll("span", text=re.compile(r'Commodity:'))[
0].findNext("span").get_text().strip()
except:
pass
# Commodity Exposure
try:
self.details['commodity_exposure'] = soup.findAll("span", text=re.compile(r'Commodity Exposure:'))[
0].findNext("span").get_text().strip()
except:
pass
# Sector (General)
try:
self.details['sector_general'] = soup.findAll("span", text=re.compile(r'Sector \(General\):'))[
0].findNext("span").get_text().strip()
except:
pass
# Sector (Specific)
try:
self.details['sector_specific'] = soup.findAll("span", text=re.compile(r'Sector \(Specific\):'))[
0].findNext("span").get_text().strip()
except:
pass
# Graphs
# Asset Allocation
try:
tbody = soup.findAll("h3", text=re.compile(
r'Asset Allocation'))[0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['asset_allocation'] = pd.read_html(table)[0]
self.dataframes['asset_allocation'].columns = [
'category', 'allocation']
self.dataframes['asset_allocation']['allocation'] = self.dataframes['asset_allocation'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Sector Breakdown | Bond Sector Breakdown
try:
tbody = soup.findAll("h3", text=re.compile(r'Sector Breakdown'))[
0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['sector_breakdown'] = pd.read_html(table)[0]
self.dataframes['sector_breakdown'].columns = [
'sector', 'allocation']
self.dataframes['sector_breakdown']['allocation'] = self.dataframes['sector_breakdown'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Bond Sector Breakdown
try:
tbody = soup.findAll("h3", text=re.compile(r'Bond Sector Breakdown'))[
0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['sector_breakdown'] = pd.read_html(table)[0]
self.dataframes['sector_breakdown'].columns = [
'sector', 'allocation']
self.dataframes['sector_breakdown']['allocation'] = self.dataframes['sector_breakdown'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Bond Detailed Sector Breakdown
try:
tbody = soup.findAll("h3", text=re.compile(
r'Bond Detailed Sector Breakdown'))[0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['bond_detailed_sector_breakdown'] = pd.read_html(table)[
0]
self.dataframes['bond_detailed_sector_breakdown'].columns = [
'sector', 'allocation']
self.dataframes['bond_detailed_sector_breakdown']['allocation'] = self.dataframes['bond_detailed_sector_breakdown'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Coupon Breakdown
try:
tbody = soup.findAll("h3", text=re.compile(
r'Coupon Breakdown'))[0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['coupon_breakdown'] = pd.read_html(table)[0]
self.dataframes['coupon_breakdown'].columns = [
'coupon', 'allocation']
self.dataframes['coupon_breakdown']['allocation'] = self.dataframes['coupon_breakdown'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Credit Quality
try:
tbody = soup.findAll("h3", text=re.compile(
r'Credit Quality'))[0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['credit_quality'] = pd.read_html(table)[0]
self.dataframes['credit_quality'].columns = [
'rank', 'allocation']
self.dataframes['credit_quality']['allocation'] = self.dataframes['credit_quality'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Maturity Breakdown
try:
tbody = soup.findAll("h3", text=re.compile(
r'Maturity Breakdown'))[0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['maturity_breakdown'] = pd.read_html(table)[0]
self.dataframes['maturity_breakdown'].columns = [
'maturity', 'allocation']
self.dataframes['maturity_breakdown']['allocation'] = self.dataframes['maturity_breakdown'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Market Cap Breakdown
try:
tbody = soup.findAll("h3", text=re.compile(
r'Market Cap Breakdown'))[0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['market_cap_breakdown'] = pd.read_html(table)[0]
self.dataframes['market_cap_breakdown'].columns = [
'cap', 'allocation']
self.dataframes['market_cap_breakdown']['allocation'] = self.dataframes['market_cap_breakdown'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Region Breakdown
try:
tbody = soup.findAll("h3", text=re.compile(
r'Region Breakdown'))[0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['region_breakdown'] = pd.read_html(
table)[0]
self.dataframes['region_breakdown'].columns = [
'ragion', 'allocation']
self.dataframes['region_breakdown']['allocation'] = self.dataframes['region_breakdown'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Market Tier Breakdown
try:
tbody = soup.findAll("h3", text=re.compile(
r'Market Tier Breakdown'))[0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['market_tier_breakdown'] = pd.read_html(
table)[0]
self.dataframes['market_tier_breakdown'].columns = [
'tier', 'allocation']
self.dataframes['market_tier_breakdown']['allocation'] = self.dataframes['market_tier_breakdown'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Country Breakdown
try:
tbody = soup.findAll("h3", text=re.compile(
r'Country Breakdown'))[0].findNext("table").tbody
table = "<table>" + \
str(tbody).lstrip(
"<tbody>").rstrip("</tbody>") + "</table>"
self.dataframes['country_breakdown'] = pd.read_html(
table)[0]
self.dataframes['country_breakdown'].columns = [
'country', 'allocation']
self.dataframes['country_breakdown']['allocation'] = self.dataframes['country_breakdown'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
# Holdings
try:
url = 'http://etfdailynews.com/tools/what-is-in-your-etf/?FundVariable=' + self.ticker
html = urllib.request.urlopen(
url).read().decode('cp1252').encode('utf-8')
soup = bs(html, "html5lib")
holdings_raw_table = soup.find(id="etfs-that-own")
if(holdings_raw_table != None):
holdings_tbody = holdings_raw_table.tbody
holdings_table = "<table>" + \
str(holdings_tbody).lstrip("<tbody>").rstrip(
"</tbody>") + "</table>"
self.dataframes['holdings'] = pd.read_html(holdings_table)[0]
self.dataframes['holdings'].columns = [
'ticker', 'name', 'allocation']
self.dataframes['holdings']['allocation'] = self.dataframes['holdings'].allocation.map(
lambda x: self.convert_percent(x))
except:
pass
if('holdings' is not self.details.keys()): # let's try with zacks.com
'''
Slower (since data is parsed from string) and less reliable data.
'''
try:
url = 'https://www.zacks.com/funds/etf/' + ticker + '/holding'
html = urllib.request.urlopen(url).read().decode('cp1252')
str_start, str_end = html.find(
'etf_holdings.formatted_data = [ [ '), html.find(' ] ];')
if str_start == -1 or str_end == -1:
# If Zacks does not have data for the given ETF
print("Could not fetch data for {}".format(ticker))
else:
list_str = "[[" + html[(str_start + 34):str_end] + "]]"
holdings_list = ast.literal_eval(list_str)
self.dataframes['holdings'] = pd.DataFrame(holdings_list).drop(
2, 1).drop(4, 1).drop(5, 1)
self.dataframes['holdings'].columns = [
'name', 'ticker', 'allocation']
self.dataframes['holdings']['allocation'] = self.dataframes['holdings'].allocation.map(
lambda x: self.zacks_clean_allocation(x))
self.dataframes['holdings']['name'] = self.dataframes['holdings'].name.map(
lambda x: self.zacks_clean_name(x))
self.dataframes['holdings']['ticker'] = self.dataframes['holdings'].ticker.map(
lambda x: self.zacks_clean_ticker(x))
except:
pass
self.isValid = True
def __getitem__(self, key):
if key in self.details.keys():
return self.details[key]
else:
return None
@staticmethod
def convert_percent(pct):
if type(pct) == float:
return pct / 100
return float(pct.rstrip('%')) / 100
@staticmethod
def zacks_clean_name(str_input):
if "<span" in str_input:
soup = bs(str_input, "lxml")
return soup.find('span')['onmouseover'].lstrip("tooltip.show('").rstrip(".');")
return str_input
@staticmethod
def zacks_clean_ticker(str_input):
soup = bs(str_input, "lxml")
return soup.find('a').text
@staticmethod
def zacks_clean_allocation(str_input):
if str_input == "NA":
return 0
return float(str_input) / 100
def getDetailsFields(self):
return list(self.details.keys())
def getTableFields(self):
return list(self.dataframes.keys())
def printSummary(self):
print()
print("Ticker {}".format(self.ticker))
print("Name {}".format(self.name))
print("Category {}".format(self.category))
print("Asset class {}".format(self.asset_class))
print("Expense ratio {}".format(
str(self.expense_ratio * 100) + '%'))
print("AUM {}".format(self.aum))
print("Shares {}".format(str(self.shares)))
print("NAV {0:.3f}$".format(
self.aum/self.shares))
print("Underlying Index {}".format(self.index))
if ("holdings" in self.dataframes.keys()):
print("Num. holdings {}".format(
str(self.dataframes['holdings'].shape[0])))
else:
print("Holdings NA")
print()
print("Details: {}".format(str(self.getDetailsFields())))
print("Tables: {}".format(str(self.getTableFields())))
print()
class JsonEncoder(json.JSONEncoder):
def default(self, obj):
if hasattr(obj, 'to_json'):
return obj.to_json(orient='records', force_ascii=False),
return json.JSONEncoder.default(self, obj)
def dataframesToDict(self):
dict_obj = {}
for key in self.dataframes.keys():
dict_obj[key] = self.dataframes[key].to_dict(orient='records')
return dict_obj
def toJson(self):
return json.dumps({
'ticker': self.ticker,
'name': self.name,
'category': self.category,
'asset_class': self.asset_class,
'expense_ratio': self.expense_ratio,
'aum': self.aum,
'shares': self.shares,
'index': self.index,
'details': self.details, 'tables': self.dataframes
}, cls=self.JsonEncoder)
def toDict(self):
return {
'ticker': self.ticker,
'name': self.name,
'category': self.category,
'asset_class': self.asset_class,
'expense_ratio': self.expense_ratio,
'aum': self.aum,
'shares': self.shares,
'index': self.index,
'details': self.details, 'tables': self.dataframesToDict()
}
if __name__ == "__main__":
if len(sys.argv) != 2:
print("Usage: python " + sys.argv[0] + " ticker")
sys.exit(1)
print("Downloading ETF details (" + sys.argv[1] + ")...")
etf = ETF(sys.argv[1])
etf.printSummary()