From 886582335a23eae4da436661191509c5a699c6ca Mon Sep 17 00:00:00 2001 From: Pablo San-Jose Date: Tue, 10 Dec 2024 19:02:02 +0100 Subject: [PATCH] add selector_fock for completeness --- src/docstrings.jl | 5 +++-- src/meanfield.jl | 10 +++++----- 2 files changed, 8 insertions(+), 7 deletions(-) diff --git a/src/docstrings.jl b/src/docstrings.jl index 9ee2e319..a542393a 100644 --- a/src/docstrings.jl +++ b/src/docstrings.jl @@ -2666,12 +2666,13 @@ where `U` is the onsite interaction. - `potential`: charge-charge potential to use for both Hartree and Fock. Can be a number or a function of position. Default: `1` - `hartree`: charge-charge potential `v_H` for the Hartree mean field. Can be a number or a function of position. Overrides `potential`. Default: `potential` - `fock`: charge-charge potential `v_F` for the Fock mean field. Can be a number, a function of position or `nothing`. In the latter case all Fock terms (even onsite) will be dropped. Default: `hartree` -- `onsite`: charge-charge onsite potential. Overrides both Hartree and Fock potentials for onsite interactions. Default: `hartree(0)` +- `onsite`: charge-charge onsite potential. Overrides both Hartree and Fock potentials for onsite interactions, unless `fock = nothing` (it then overrides only Hartree, see above). Default: `hartree(0)` - `charge`: a number (in single-orbital systems) or a matrix (in multi-orbital systems) representing the charge operator on each site. Default: `I` - `nambu::Bool`: specifies whether the model is defined in Nambu space. In such case, `charge` should also be in Nambu space, typically `SA[1 0; 0 -1]` or similar. Default: `false` - `namburotation::Bool`: if `nambu == true` and spinful systems, specifies whether the spinor basis is `[c↑, c↓, c↓⁺, -c↑⁺]` (`namburotation = true`) or `[c↑, c↓, c↑⁺, c↓⁺]` (`namburotation = false`). Default: `false` - `selector::NamedTuple`: a collection of `hopselector` directives that defines the pairs of sites (`pair_selection` above) that interact through the charge-charge potential. Default: `(; range = 0)` (i.e. only onsite) -- `selector_hartree::NamedTuple`: same as `selector`, but restricted to the Hartree interaction. Useful to do efficient Hartree-only simulations, by setting `fock = 0` and leaving `selector` at its `(; range =0)` default. Then, having a large range in `selector_hartree` will be cheap. Default: `selector`. +- `selector_hartree::NamedTuple`: same as `selector`, but restricted to the Hartree interactions. Useful e.g. to do efficient Hartree-only simulations: a long-range `selector_hartree` is cheap in periodic systems, as lattice periodicity is exploited to make the computational cost independent of the range. Default: `selector`. +- `selector_fock::NamedTuple`: same as `selector_hartree`, but for Fock interactions. Note that `selector_fock` increases the number of entries that need to be computed for the density matrix, so increasing the Fock range is typically not cheap. Default: `selector`. Any additional keywords `kw` are passed to the `densitymatrix` function used to compute the mean field, see above diff --git a/src/meanfield.jl b/src/meanfield.jl index de666312..808af7e4 100644 --- a/src/meanfield.jl +++ b/src/meanfield.jl @@ -26,7 +26,7 @@ struct ZeroField end function meanfield(g::GreenFunction{T,E}, args...; potential = Returns(1), hartree = potential, fock = hartree, onsite = missing, charge = I, nambu::Bool = false, namburotation = missing, - selector::NamedTuple = (; range = 0), selector_hartree = selector, kw...) where {T,E} + selector::NamedTuple = (; range = 0), selector_fock = selector, selector_hartree = selector, kw...) where {T,E} Vh = sanitize_potential(hartree) Vf = sanitize_potential(fock) @@ -40,13 +40,13 @@ function meanfield(g::GreenFunction{T,E}, args...; isempty(boundaries(g)) || argerror("meanfield does not currently support systems with boundaries") isfinite(U) || argerror("Onsite potential must be finite, consider setting `onsite`") - gs = g[sitepairs(; selector..., includeonsite = true)] + gs = g[sitepairs(; selector_fock..., includeonsite = true)] rho = densitymatrix(gs, args...; kw...) lat = lattice(hamiltonian(g)) # The sparse structure of hFock will be inherited by the evaluated mean field. Need onsite. - hFock = lat |> hopping((r, dr) -> iszero(dr) ? Uf : T(Vf(dr)); selector..., includeonsite = true) - hHartree = (Uf == U && Vh == Vf && selector == selector_hartree) ? hFock : + hFock = lat |> hopping((r, dr) -> iszero(dr) ? Uf : T(Vf(dr)); selector_fock..., includeonsite = true) + hHartree = (Uf == U && Vh == Vf && selector_fock == selector_hartree) ? hFock : lat |> hopping((r, dr) -> iszero(dr) ? U : T(Vh(dr)); selector_hartree..., includeonsite = true) # this drops zeros potHartree = T.(sum(unflat, harmonics(hHartree))) @@ -66,7 +66,7 @@ function meanfield(g::GreenFunction{T,E}, args...; encoder, decoder = nambu ? NambuEncoderDecoder(is_nambu_rotated´) : (identity, identity) S = typeof(encoder(zero(Q))) - output = call!_output(g[sitepairs(; selector..., includeonsite = true, kernel = Q)]) + output = call!_output(g[sitepairs(; selector_fock..., includeonsite = true, kernel = Q)]) sparse_enc = similar(output, S) output = CompressedOrbitalMatrix(sparse_enc; encoder, decoder, hermitian = true)