-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
executable file
·227 lines (178 loc) · 8.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import copy
import glob
import os
import time
import sys
import signal
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.sampler import BatchSampler, SubsetRandomSampler
from arguments import get_args
from envs import make_env
from vec_env import VecEnv
from kfac import KFACOptimizer
from model import CNNPolicy, MLPPolicy, A2TPolicy, ResnetPolicy
from storage import RolloutStorage
from visualize import visdom_plot
# from gif import make_gif
envs = None
args = get_args()
assert args.algo in ['a2c', 'acktr', 'a2t', 'resnet']
num_updates = int(args.num_frames) // args.num_steps // args.num_processes
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
try:
os.makedirs(args.log_dir)
except OSError:
files = glob.glob(os.path.join(args.log_dir, '*.log'))
for f in files:
os.remove(f)
def main():
print("###############################################################")
print("#################### VISDOOM LEARNER START ####################")
print("###############################################################")
os.environ['OMP_NUM_THREADS'] = '1'
if args.vis:
from visdom import Visdom
viz = Visdom()
win = None
global envs
envs = VecEnv([
make_env(i, args.config_path)
for i in range(args.num_processes)
], logging=True, log_dir=args.log_dir)
obs_shape = envs.observation_space_shape
obs_shape = (obs_shape[0] * args.num_stack, *obs_shape[1:])
if args.algo == 'a2c' or args.algo == 'acktr':
actor_critic = CNNPolicy(obs_shape[0], envs.action_space_shape)
elif args.algo == 'a2t':
source_models = []
files = glob.glob(os.path.join(args.source_models_path, '*.pt'))
for file in files:
print (file, 'loading model...')
source_models.append(torch.load(file))
actor_critic = A2TPolicy(obs_shape[0], envs.action_space_shape, source_models)
elif args.algo == 'resnet':
# args.num_stack = 3
actor_critic = ResnetPolicy(obs_shape[0], envs.action_space_shape)
action_shape = 1
if args.cuda:
actor_critic.cuda()
if args.algo == 'a2c' or args.algo == 'resnet':
optimizer = optim.RMSprop(actor_critic.parameters(), args.lr, eps=args.eps, alpha=args.alpha)
elif args.algo == 'a2t':
a2t_params = [p for p in actor_critic.parameters() if p.requires_grad]
optimizer = optim.RMSprop(a2t_params, args.lr, eps=args.eps, alpha=args.alpha)
elif args.algo == 'acktr':
optimizer = KFACOptimizer(actor_critic)
rollouts = RolloutStorage(args.num_steps, args.num_processes, obs_shape, envs.action_space_shape)
current_obs = torch.zeros(args.num_processes, *obs_shape)
def update_current_obs(obs):
shape_dim0 = envs.observation_space_shape[0]
obs = torch.from_numpy(obs).float()
if args.num_stack > 1:
current_obs[:, :-shape_dim0] = current_obs[:, shape_dim0:]
current_obs[:, -shape_dim0:] = obs
obs = envs.reset()
update_current_obs(obs)
rollouts.observations[0].copy_(current_obs)
# These variables are used to compute average rewards for all processes.
episode_rewards = torch.zeros([args.num_processes, 1])
final_rewards = torch.zeros([args.num_processes, 1])
if args.cuda:
current_obs = current_obs.cuda()
rollouts.cuda()
start = time.time()
for j in range(num_updates):
for step in range(args.num_steps):
# Sample actions
value, action = actor_critic.act(Variable(rollouts.observations[step], volatile=True))
cpu_actions = action.data.squeeze(1).cpu().numpy()
# Obser reward and next obs
obs, reward, done, info = envs.step(cpu_actions)
# print ('Actions:', cpu_actions, 'Rewards:', reward)
reward = torch.from_numpy(np.expand_dims(np.stack(reward), 1)).float()
episode_rewards += reward
# If done then clean the history of observations.
masks = torch.FloatTensor([[0.0] if done_ else [1.0] for done_ in done])
final_rewards *= masks
final_rewards += (1 - masks) * episode_rewards
episode_rewards *= masks
if args.cuda:
masks = masks.cuda()
if current_obs.dim() == 4:
current_obs *= masks.unsqueeze(2).unsqueeze(2)
else:
current_obs *= masks
update_current_obs(obs)
rollouts.insert(step, current_obs, action.data, value.data, reward, masks)
next_value = actor_critic(Variable(rollouts.observations[-1], volatile=True))[0].data
if hasattr(actor_critic, 'obs_filter'):
actor_critic.obs_filter.update(rollouts.observations[:-1].view(-1, *obs_shape))
rollouts.compute_returns(next_value, args.use_gae, args.gamma, args.tau)
if args.algo in ['a2c', 'acktr', 'a2t', 'resnet']:
values, action_log_probs, dist_entropy = actor_critic.evaluate_actions(Variable(rollouts.observations[:-1].view(-1, *obs_shape)), Variable(rollouts.actions.view(-1, action_shape)))
values = values.view(args.num_steps, args.num_processes, 1)
action_log_probs = action_log_probs.view(args.num_steps, args.num_processes, 1)
advantages = Variable(rollouts.returns[:-1]) - values
value_loss = advantages.pow(2).mean()
action_loss = -(Variable(advantages.data) * action_log_probs).mean()
if args.algo == 'acktr' and optimizer.steps % optimizer.Ts == 0:
# Sampled fisher, see Martens 2014
actor_critic.zero_grad()
pg_fisher_loss = -action_log_probs.mean()
value_noise = Variable(torch.randn(values.size()))
if args.cuda:
value_noise = value_noise.cuda()
sample_values = values + value_noise
vf_fisher_loss = -(values - Variable(sample_values.data)).pow(2).mean()
fisher_loss = pg_fisher_loss + vf_fisher_loss
optimizer.acc_stats = True
fisher_loss.backward(retain_graph=True)
optimizer.acc_stats = False
optimizer.zero_grad()
(value_loss * args.value_loss_coef + action_loss - dist_entropy * args.entropy_coef).backward()
if args.algo == 'a2c' or args.algo == 'resnet':
nn.utils.clip_grad_norm(actor_critic.parameters(), args.max_grad_norm)
elif args.algo == 'a2t':
nn.utils.clip_grad_norm(a2t_params, args.max_grad_norm)
optimizer.step()
rollouts.observations[0].copy_(rollouts.observations[-1])
if j % args.save_interval == 0 and args.save_dir != "":
save_path = os.path.join(args.save_dir, args.algo)
try:
os.makedirs(save_path)
except OSError:
pass
# A really ugly way to save a model to CPU
save_model = actor_critic
if args.cuda:
save_model = copy.deepcopy(actor_critic).cpu()
torch.save(save_model, os.path.join(save_path, args.env_name + ".pt"))
if j % args.log_interval == 0:
envs.log()
end = time.time()
total_num_steps = (j + 1) * args.num_processes * args.num_steps
print("Updates {}, num timesteps {}, FPS {}, mean/median reward {:.1f}/{:.1f}, min/max reward {:.1f}/{:.1f}, entropy {:.5f}, value loss {:.5f}, policy loss {:.5f}".
format(j, total_num_steps,
int(total_num_steps / (end - start)),
final_rewards.mean(),
final_rewards.median(),
final_rewards.min(),
final_rewards.max(), -dist_entropy.data[0],
value_loss.data[0], action_loss.data[0]))
if args.vis and j % args.vis_interval == 0:
try:
# Sometimes monitor doesn't properly flush the outputs
win = visdom_plot(viz, win, args.log_dir, 'VizDoom', args.algo)
except IOError:
pass
envs.close()
time.sleep(5)
if __name__ == "__main__":
main()