-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathPCA_Algorithm_Guide.m
155 lines (101 loc) · 4.94 KB
/
PCA_Algorithm_Guide.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
%%------------- Principal Component Analysis for Dimensionality Reduction
data = readtable('Datasets\Wine.csv');
%--------Preprocess
sum(ismissing(data)); % Count of missing values in columns
% Feature Scaling with Standardization
stand_var1 = (data.Var1 - mean(data.Var1))/std(data.Var1);
data.Var1 = stand_var1;
stand_var2 = (data.Var2 - mean(data.Var2))/std(data.Var2);
data.Var2 = stand_var2;
stand_var3 = (data.Var3 - mean(data.Var3))/std(data.Var3);
data.Var3 = stand_var3;
stand_var4 = (data.Var4 - mean(data.Var4))/std(data.Var4);
data.Var4 = stand_var4;
stand_var5 = (data.Var5 - mean(data.Var5))/std(data.Var5);
data.Var5 = stand_var5;
stand_var6 = (data.Var6 - mean(data.Var6))/std(data.Var6);
data.Var6 = stand_var6;
stand_var7 = (data.Var7 - mean(data.Var7))/std(data.Var7);
data.Var7 = stand_var7;
stand_var8 = (data.Var8 - mean(data.Var8))/std(data.Var8);
data.Var8 = stand_var8;
stand_var9 = (data.Var9 - mean(data.Var9))/std(data.Var9);
data.Var9 = stand_var9;
stand_var10 = (data.Var10 - mean(data.Var10))/std(data.Var10);
data.Var10 = stand_var10;
stand_var11 = (data.Var11 - mean(data.Var11))/std(data.Var11);
data.Var11 = stand_var11;
stand_var12 = (data.Var12 - mean(data.Var12))/std(data.Var12);
data.Var12 = stand_var12;
stand_var13 = (data.Var13 - mean(data.Var13))/std(data.Var13);
data.Var13 = stand_var13;
%-----------Dimensionality Reduction with PCA
%Store labels in a variable then remove from table
class_labels = data.Var14;
data = data(:,1:end-1);
% PCA accepts only matrix and array form.
data = table2array(data);
[coeff, score, latent, tsquared, explained, mu ] = pca(data);
% explained: percentage of varience presented in dataset, high explained
% valued component explains more varience of dataset and can be selected.
% Select higher two explained values as principal components
PC1 = score(:,1);
PC2 = score(:,2);
data=table(PC1,PC2,class_labels);
% Classifying Data
classification_model = fitcdiscr(data,'class_labels');
%-----------Divide data into training and testing sets
cv = cvpartition(classification_model.NumObservations,'HoldOut', 0.2); %Built-in function for partitioning
cross_validated_model = crossval(classification_model, 'cvpartition', cv); %Use training set only to built model
%-----------Make predictions for the testing set
Predictions = predict(cross_validated_model.Trained{1}, data(test(cv),1:end-1));
%-----------Analyzing the predictions
Results = confusionmat(cross_validated_model.Y(test(cv)),Predictions);
%-----------Showing Results in Graphical View
% Training Results
labels = unique(data.class_labels);
classifier_name = 'K-Nearest Neigbor (Training Results)';
% please mention your classifier name here
PC1_range = min(data.PC1(training(cv)))-1:0.01:max(data.PC1(training(cv)))+1;
PC2_range = min(data.PC2(training(cv)))-1:0.01:max(data.PC2(training(cv)))+1;
[xx1, xx2] = meshgrid(PC1_range,PC2_range);
XGrid = [xx1(:) xx2(:)];
predictions_meshgrid = predict(cross_validated_model.Trained{1},XGrid);
gscatter(xx1(:), xx2(:), predictions_meshgrid,'rgb');
hold on
training_data = data(training(cv),:);
Y1 = ismember(training_data.class_labels,labels(1));
Y2 = ismember(training_data.class_labels,labels(2));
Y3 = ismember(training_data.class_labels,labels(3));
scatter(training_data.PC1(Y1),training_data.PC2(Y1), 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'red');
scatter(training_data.PC1(Y2),training_data.PC2(Y2) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'green');
scatter(training_data.PC1(Y3),training_data.PC2(Y3) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'blue');
xlabel('PC 1');
ylabel('PC 2');
title(classifier_name);
legend off, axis tight
legend({'1', '2', '3'},'Location',[0.45,0.01,0.45,0.05],'Orientation','Horizontal','FontSize',14);
% Test Results
labels = unique(data.class_labels);
classifier_name = 'K-Nearest Neigbor (Testing Results)';
% please mention your classifier name here
PC1_range = min(data.PC1(training(cv)))-1:0.01:max(data.PC1(training(cv)))+1;
PC2_range = min(data.PC2(training(cv)))-1:0.01:max(data.PC2(training(cv)))+1;
[xx1, xx2] = meshgrid(PC1_range,PC2_range);
XGrid = [xx1(:) xx2(:)];
predictions_meshgrid = predict(cross_validated_model.Trained{1},XGrid);
figure
gscatter(xx1(:), xx2(:), predictions_meshgrid,'rgb');
hold on
testing_data = data(test(cv),:);
Y1 = ismember(testing_data.class_labels,labels(1));
Y2 = ismember(testing_data.class_labels,labels(2));
Y3 = ismember(testing_data.class_labels,labels(3));
scatter(testing_data.PC1(Y1),testing_data.PC2(Y1), 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'red');
scatter(testing_data.PC1(Y2),testing_data.PC2(Y2) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'green');
scatter(testing_data.PC1(Y3),testing_data.PC2(Y3) , 'o' , 'MarkerEdgeColor', 'black', 'MarkerFaceColor', 'blue');
xlabel('PC 1');
ylabel('PC 2');
title(classifier_name);
legend off, axis tight
legend({'1', '2', '3'},'Location',[0.45,0.01,0.45,0.05],'Orientation','Horizontal');