-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArabidopsis.panEDTA.R
244 lines (222 loc) · 10.8 KB
/
Arabidopsis.panEDTA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
## PopTEvo R code for pan-genome TE analyses
## Shujun Ou ([email protected])
## 09/26/2022
#update.packages()
library(tidyr)
library(ggplot2)
library(wesanderson)
library(scales)
library(reshape2)
library(plyr)
library(grid)
library(gridExtra)
library(lattice)
#install.packages("devtools")
#devtools::install_github("thomasp85/patchwork")
library(patchwork)
library(devtools)
#install_github("vqv/ggbiplot")
library(ggbiplot)
library(RColorBrewer)
library(vioplot)
library(ggridges)
library("stringr")
library(dplyr) # require dplyr 1.0.5 or lower by ggtree
library(ggsignif)
library(MKinfer)
#devtools::install_github("solatar/ggbrace")
library(ggbrace)
library(ggtext)
library(ggforce)
if (!require(coin)) {
install.packages("coin")
}
if (!require(multcompView)) {
install.packages("multcompView")
}
if (!require(devtools)) install.packages("devtools")
devtools::install_github("gaospecial/ggVennDiagram")
require(rcompanion)
library("ggVennDiagram")
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
library(rvcheck)
datadir = "/Users/oushujun/My Drive/study/Maize research/NAM/TE/panArabidopsis/"
setwd(datadir)
########################
#### basic settings ####
########################
TE_colors = c('gray', rev(brewer.pal(11,'RdYlBu')[1:5]),
brewer.pal(11,'RdYlBu')[6],
rev(brewer.pal(11,'RdBu')[7:10]))
show_col(TE_colors)
TE_colors2 = c("LTR/Copia"="#D1E5F0", "LTR/Ty3"="#92C5DE", "LTR/unknown"="#4393C3",
"LINE/L1"="#2166AC", "LINE/RTE"="#2166AC", "LINE/unknown"="#2166AC",
"DNA/Helitron"="#FFFFBF", "TIR/Tc1_Mariner"="#A50026", "TIR/Mutator"="#D73027",
"TIR/PIF_Harbinger"="#F46D43", "TIR/CACTA"="#FDAE61", "TIR/hAT"="#FEE090",
"centromeric_repeat"="gray", "rDNA_spacer"="gray", "subtelomere"="gray",
"knob"="gray", "low_complexity"="gray")
show_col(TE_colors2)
TE_colors3 = c("LTR/Copia"="#92C5DE", "LTR/Ty3"="#92C5DE", "LTR/unknown"="#92C5DE",
"LINE/L1"="#2166AC", "LINE/RTE"="#2166AC", "LINE/unknown"="#2166AC", "LINE"="#2166AC",
"DNA/Helitron"="#D73027", "TIR/Tc1_Mariner"="#FDAE61", "TIR/Mutator"="#FDAE61",
"TIR/PIF_Harbinger"="#FDAE61", "TIR/CACTA"="#FDAE61", "TIR/hAT"="#FDAE61",
"centromeric_repeat"="gray", "rDNA_spacer"="gray", "subtelomere"="gray",
"knob"="gray", "low_complexity"="gray")
show_col(TE_colors3)
rename_supfam = list("Gypsy_LTR_retrotransposon"="LTR/Ty3",
"LTR/Gypsy"="LTR/Ty3",
"LTR/CRM"="LTR/Ty3",
'Gypsy'="LTR/Ty3",
"Copia_LTR_retrotransposon"="LTR/Copia",
'Copia'="LTR/Copia",
"LTR_retrotransposon"="LTR/unknown",
"LTR/Retrovirus"="LTR/unknown",
"LTR/mixture"="LTR/unknown",
"LTR/Bel-Pao"="LTR/unknown",
"LTR_unknown"="LTR/unknown",
"helitron"="DNA/Helitron",
"Helitron/unknown"="DNA/Helitron",
"PIF_Harbinger_TIR_transposon"="TIR/PIF_Harbinger",
"MITE/DTH"="TIR/PIF_Harbinger",
"DNA/DTH"="TIR/PIF_Harbinger",
"PIF_Harbinger"="TIR/PIF_Harbinger",
"hAT_TIR_transposon"="TIR/hAT",
"DNA/DTA"="TIR/hAT",
"MITE/DTA"="TIR/hAT",
'hAT'="TIR/hAT",
"Mutator_TIR_transposon"="TIR/Mutator",
"TIR/MuDR_Mutator"="TIR/Mutator",
"DNA/DTM"="TIR/Mutator",
"MITE/DTM"="TIR/Mutator",
"Mutator"="TIR/Mutator",
"CACTA_TIR_transposon"="TIR/CACTA",
"TIR/EnSpm_CACTA"="TIR/CACTA",
"CACTA"="TIR/CACTA",
"DNA/DTC"="TIR/CACTA",
"MITE/DTC"="TIR/CACTA",
"Tc1_Mariner_TIR_transposon"="TIR/Tc1_Mariner",
"MITE/DTT"="TIR/Tc1_Mariner",
"DNA/DTT"="TIR/Tc1_Mariner",
"Tc1_Mariner"="TIR/Tc1_Mariner",
"TIR/Sola1"="TIR/unknown",
"TIR/Sola2"="TIR/unknown",
"TIR/Merlin"="TIR/unknown",
"TIR/Kolobok"="TIR/unknown",
"TIR/Novosib"="TIR/unknown",
"L1_LINE_retrotransposon"="LINE/L1",
"RTE_LINE_retrotransposon"="LINE/RTE",
"LINE_element"="LINE/unknown",
"Maverick/unknown"='unknown',
"Penelope/unknown"='unknown',
"mixture/mixture"='unknown',
"DIRS/unknown"='unknown',
"pararetrovirus/unknown"='unknown',
"CentC"="centromeric_repeat",
"rDNA_intergenic_spacer_element"="rDNA/spacer",
"subtelomere"="subtelomere",
"knob"="knob",
"low_complexity"="low_complexity",
'tRNA_SINE_retrotransposon'='SINE/tRNA')
####################################
#### Genome-level TE size stats ####
####################################
# import species
genome_info = read.csv('ncbi_dataset.50.csv')
genome_info$Assembly.Accession = sub('\\.[0-9]+', '', genome_info$Assembly.Accession)
LAI = read.table('Arabidopsis.panEDTA.LAI', header = F)
names(LAI) = c('genome', 'start', 'size', 'intact', 'total', 'rawLAI', 'LAI')
## percent TE in assembly
repeats = read.table('Arabidopsis.panEDTA.TE.anno.pcnt.txt', header=T, fill = T)
repeats$Ty3 = repeats$Gypsy #convert supfam name
# remove % and convert to numeric; remove _pcnt string in genome names
repeats[,-1] = apply(repeats[,-1], 2, function(x){as.numeric(sub("%", "", x, fixed=TRUE))})
repeats$Genome = sub("_pcnt", "", repeats$Genome, fixed=TRUE)
str(repeats)
# add more categories
repeats$DNA = repeats$helitron + repeats$CACTA + repeats$Mutator + repeats$PIF_Harbinger +
repeats$Tc1_Mariner + repeats$hAT + repeats$DNA_transposon
repeats$nonLTR = repeats$L1_LINE + repeats$LINE_element + repeats$SINE_element + repeats$tRNA_SINE
repeats$LTR = repeats$Copia + repeats$Ty3 + repeats$LTR_unknown
repeats$nonTE = repeats$satellite_DNA + repeats$low_complexity + repeats$repeat_region
# gather plotting variables and change the variable plotting order
repeats_final = subset(repeats, !is.na(Total)) %>%
gather(variable, value, hAT, CACTA, PIF_Harbinger, Mutator, Tc1_Mariner,
helitron, nonLTR, Copia, Ty3, LTR_unknown, nonTE)
repeats_final$variable = as.factor(repeats_final$variable) #convert to character to factor
repeats_final$variable = factor(repeats_final$variable,
levels = c("nonTE", "hAT", "CACTA", "PIF_Harbinger", "Mutator",
"Tc1_Mariner", "helitron", "nonLTR",
"LTR_unknown", "Ty3", "Copia"))
repeats_final$species = as.factor(genome_info$Organism.Name[match(repeats_final$Genome, genome_info$Assembly.Accession)])
# reorder plotting order
repeats_final$Genome = factor(repeats_final$Genome, levels = genome_info$Assembly.Accession)
repeats_final$LAI = LAI$LAI[match(repeats_final$Genome, LAI$genome)]
repeats_pcnt_plot = repeats_final %>%
ggplot() +
geom_bar(aes(x = Genome, y = value, fill = variable), stat = "identity",colour="black") +
geom_point(aes(x = Genome, y = LAI)) +
scale_fill_manual(values=TE_colors) +
scale_y_continuous(breaks = seq(0, 35, by = 5),
sec.axis = sec_axis(~ ., name="LTR Assembly Index", breaks = seq(0, 35, by = 5))) +
geom_point(aes(y = -1, x = Genome, shape = species), size = 2) +
scale_shape_manual(values=0:nlevels(repeats_final$Genome)) +
labs(x =" ", y = "Repeat content (%)",size=12, face="bold") +
theme(axis.title.y = element_text(size=12, face="bold"),
axis.text.y = element_text(size=12),
axis.text.x = element_text(size=10, angle=35, vjust=1, hjust=0.95),
legend.text = element_text(size=12),
legend.title=element_blank()) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
legend.position="top", legend.box="vertical",
legend.margin=margin(), legend.text = element_text(size=10),
plot.margin = margin(10, 10, 10, 25))
repeats_pcnt_plot
## total TE bp in assembly
repeats_bp = read.table('Arabidopsis.panEDTA.TE.anno.bp.txt', header=T, fill = T)
repeats_bp$Genome = sub("_bp", "", repeats_bp$Genome, fixed=TRUE)
repeats_bp = repeats_bp[!names(repeats_bp) %in% c('centromeric_repeat', 'knob', 'low_complexity', 'rDNA_spacer',
'satellite_DNA', 'repeat_region', 'subtelomere', 'Total')]
repeats_bp$TE = rowSums(repeats_bp[,-1])
## total intact TE bp in assembly
intact = read.table('Arabidopsis.panEDTA.TE.intact.sum.txt', header=T)
intact$intact = intact$LTR + intact$TIR + intact$Helitron
intact$fragmented = repeats_bp$TE - intact$intact
intact$total = intact$intact + intact$fragmented
str(intact)
intact$Genome
rm(repeats_bp)
#summarize intact and fragmented percentage
intact_pcntTE = data.frame(intact[,-1]*100/(intact$total), Genome=intact$Genome) #intact/TE, frag/TE
summary(intact_pcntTE$intact)
summary(intact_pcntTE$fragmented)
std <- function(x) sd(x)/sqrt(length(x)) #standard error
sd(intact_pcntTE$intact)
sd(intact_pcntTE$fragmented)
std(intact_pcntTE$intact)
std(intact_pcntTE$fragmented)
# plot the %intact and %homo in %TE
intact_pcntTE_final = intact_pcntTE %>% gather(variable, value, intact, fragmented)
intact_pcntTE_final$variable = as.factor(intact_pcntTE_final$variable) #convert to character to factor
intact_pcntTE_final$variable = factor(intact_pcntTE_final$variable,
levels = c("intact", "fragmented"))
# plot the %intact and %frag to the total TE size
intact_pcntTE_plot = intact_pcntTE_final %>%
ggplot(aes(x = Genome, y = value, fill = variable)) +
geom_bar(stat = "identity", color="black") +
scale_fill_manual(values=c("#92C5DE", "gray")) +
labs(x =" ", y = "TE length (%)",size=12, face="bold") +
theme(axis.title.y = element_text(size=12, face="bold"),
axis.text.y = element_text(size=12),
axis.text.x = element_text(size=10, angle=35, vjust=1, hjust=0.95),
legend.text = element_text(size=12),
legend.title=element_blank()) +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black")) +
theme(legend.position="top")
intact_pcntTE_plot
## Plot Figure to file
pdf("Suppl Figure x.pdf", width=11,height=8,pointsize=12, paper='special')
repeats_pcnt_plot
dev.off()