diff --git a/openvino_xai/methods/black_box/aise.py b/openvino_xai/methods/black_box/aise.py index cc5cb6be..480d2766 100644 --- a/openvino_xai/methods/black_box/aise.py +++ b/openvino_xai/methods/black_box/aise.py @@ -6,9 +6,9 @@ from abc import ABC, abstractmethod from typing import Callable, Dict, List, Mapping, Tuple - import numpy as np import openvino.runtime as ov +from openvino.runtime.utils.data_helpers.wrappers import OVDict from scipy.optimize import Bounds, direct from openvino_xai.common.parameters import Task @@ -280,7 +280,7 @@ class AISEDetection(AISEBase): AISE for detection models. postprocess_fn expected to return three containers: boxes (format: [x1, y1, x2, y2]), scores, labels. Without batch dim. - + :param model: OpenVINO model. :type model: ov.Model :param postprocess_fn: Post-processing function that extract scores from IR model output. diff --git a/tests/unit/methods/black_box/test_black_box_method.py b/tests/unit/methods/black_box/test_black_box_method.py index 3b354219..e7747f11 100644 --- a/tests/unit/methods/black_box/test_black_box_method.py +++ b/tests/unit/methods/black_box/test_black_box_method.py @@ -58,6 +58,7 @@ def postprocess_det_fn(x) -> np.ndarray: # return x["boxes"][:, :4], x["boxes"][:, 4], x["labels"] return x["boxes"][0][:, :4], x["boxes"][0][:, 4], x["labels"][0] + class TestAISEClassification(InputSampling): @pytest.mark.parametrize("target_indices", [[0], [0, 1]]) def test_run(self, target_indices, fxt_data_root: Path):