diff --git a/src/frontends/pytorch/src/op/index_put_.cpp b/src/frontends/pytorch/src/op/index_put_.cpp index 1b5725a8a95bb3..4591862d8f04c1 100644 --- a/src/frontends/pytorch/src/op/index_put_.cpp +++ b/src/frontends/pytorch/src/op/index_put_.cpp @@ -10,7 +10,7 @@ namespace frontend { namespace pytorch { namespace op { -OutputVector translate_index_put_(const NodeContext& context) { +OutputVector translate_index_put(const NodeContext& context) { // Pass as PtFrameworkNode to register as `inplace_op`. Conversion to OV operators is done as transformation. auto node = std::make_shared(context.get_decoder(), context.inputs()); return {context.mark_node(node)}; diff --git a/src/frontends/pytorch/src/op/log.cpp b/src/frontends/pytorch/src/op/log.cpp index e932538c86520e..dbda6329deeb4f 100644 --- a/src/frontends/pytorch/src/op/log.cpp +++ b/src/frontends/pytorch/src/op/log.cpp @@ -77,7 +77,7 @@ OutputVector translate_log10(const NodeContext& context) { }; OutputVector translate_logsumexp(const NodeContext& context) { - num_inputs_check(context, 1, 2); + num_inputs_check(context, 1, 3); auto input = context.get_input(0); ov::Output dim; if (!context.input_is_none(1)) { @@ -85,8 +85,12 @@ OutputVector translate_logsumexp(const NodeContext& context) { } else { dim = context.mark_node(get_axes_range(context, 0)); } + bool keepdim = false; + if (!context.input_is_none(2)) { + keepdim = context.const_input(2); + } auto exp = context.mark_node(std::make_shared(input)); - auto sum = context.mark_node(std::make_shared(exp, dim, false)); + auto sum = context.mark_node(std::make_shared(exp, dim, keepdim)); auto log = context.mark_node(std::make_shared(sum)); return {log}; }; diff --git a/src/frontends/pytorch/src/op_table.cpp b/src/frontends/pytorch/src/op_table.cpp index fe4e84bd47d45e..6f8ac1b77fa406 100644 --- a/src/frontends/pytorch/src/op_table.cpp +++ b/src/frontends/pytorch/src/op_table.cpp @@ -112,7 +112,7 @@ OP_CONVERTER(translate_index); OP_CONVERTER(translate_index_add); OP_CONVERTER(translate_index_copy_); OP_CONVERTER(translate_index_fill_); -OP_CONVERTER(translate_index_put_); +OP_CONVERTER(translate_index_put); OP_CONVERTER(translate_index_select); OP_CONVERTER(translate_instance_norm); OP_CONVERTER(translate_int); @@ -457,6 +457,7 @@ const std::unordered_map get_supported_ops_ts() { {"aten::empty", op::translate_empty}, {"aten::empty_like", op::translate_empty_like}, {"aten::eq", op::translate_1to1_match_2_inputs_align_types}, + {"aten::equal", op::translate_1to1_match_2_inputs_align_types}, {"aten::erf", op::translate_erf}, {"aten::erfc", op::translate_erfc}, {"aten::exp", op::optional_out, 1>}, @@ -500,7 +501,7 @@ const std::unordered_map get_supported_ops_ts() { // aten::index - Supported in limited set of patterns {"aten::index_copy_", op::inplace_op}, {"aten::index_fill_", op::inplace_op}, - {"aten::index_put_", op::inplace_op}, + {"aten::index_put", op::translate_index_put}, {"aten::index_add", op::translate_index_add}, {"aten::index_select", op::translate_index_select}, {"aten::instance_norm", op::translate_instance_norm}, @@ -543,6 +544,7 @@ const std::unordered_map get_supported_ops_ts() { {"aten::log2_", op::inplace_op}, {"aten::log10", op::optional_out}, {"aten::log10_", op::inplace_op}, + {"aten::logsumexp", op::translate_logsumexp}, {"aten::lstm", op::translate_lstm}, {"aten::lt", op::translate_1to1_match_2_inputs_align_types}, {"aten::masked_fill", op::translate_masked_fill}, @@ -705,6 +707,7 @@ const std::unordered_map get_supported_ops_ts() { {"ov_ext::embedding", op::translate_embedding_ext}, {"ov_ext::conv1d", op::translate_conv1d_ext}, {"ov_ext::linear", op::translate_linear}, + {"prim::abs", op::translate_1to1_match_1_inputs}, {"prim::Constant", op::translate_constant}, {"prim::device", op::translate_constant}, // prim::DictConstruct - Supported in limited set of patterns diff --git a/tests/layer_tests/pytorch_tests/test_logsumexp.py b/tests/layer_tests/pytorch_tests/test_logsumexp.py new file mode 100644 index 00000000000000..806e3b80540d5a --- /dev/null +++ b/tests/layer_tests/pytorch_tests/test_logsumexp.py @@ -0,0 +1,34 @@ +# Copyright (C) 2018-2025 Intel Corporation +# SPDX-License-Identifier: Apache-2.0 + +import numpy as np +import pytest +import torch + +from pytorch_layer_test_class import PytorchLayerTest + + +class aten_logsumexp(torch.nn.Module): + def __init__(self, dim, keepdim) -> None: + super().__init__() + self.dim = dim + self.keepdim = keepdim + + def forward(self, input_tensor): + return torch.logsumexp(input_tensor, dim=self.dim, keepdim=self.keepdim) + + +class TestLogsumexp(PytorchLayerTest): + def _prepare_input(self): + return (np.random.randn(2, 5, 9, 7),) + + @pytest.mark.parametrize("dim", [ + 0, 1, 2, 3, -1, -2, -3, -4 + ]) + @pytest.mark.parametrize("keepdim", [True, False]) + @pytest.mark.nightly + @pytest.mark.precommit + @pytest.mark.precommit_fx_backend + def test_logsumexp(self, dim, keepdim, ie_device, precision, ir_version): + self._test(aten_logsumexp(dim, keepdim), None, "aten::logsumexp", + ie_device, precision, ir_version) diff --git a/tests/layer_tests/pytorch_tests/test_unary_ops.py b/tests/layer_tests/pytorch_tests/test_unary_ops.py index 9807343080043c..584a80fe4ce254 100644 --- a/tests/layer_tests/pytorch_tests/test_unary_ops.py +++ b/tests/layer_tests/pytorch_tests/test_unary_ops.py @@ -75,7 +75,7 @@ class unary_op_net(torch.nn.Module): def __init__(self, op, dtype): - super(unary_op_net, self).__init__() + super().__init__() self.dtype = dtype self.op = op @@ -87,7 +87,7 @@ def forward(self, x): class unary_op_out_net(torch.nn.Module): def __init__(self, op, dtype): - super(unary_op_out_net, self).__init__() + super().__init__() self.dtype = dtype self.op = op @@ -101,7 +101,7 @@ def forward(self, x): class unary_func_op_inplace_net(torch.nn.Module): def __init__(self, op, dtype): - super(unary_func_op_inplace_net, self).__init__() + super().__init__() self.dtype = dtype self.op = op @@ -111,6 +111,17 @@ def forward(self, x): return y, x1 +class prim_abs_net(torch.nn.Module): + def __init__(self, dtype): + super().__init__() + self.dtype = dtype + + def forward(self, x): + x1 = x.to(self.dtype) + y = abs(x1) + return y, x1 + + class TestUnaryOp(PytorchLayerTest): def _prepare_input(self): # random number in range [1, 11) @@ -265,3 +276,13 @@ def test_unary_func_op_inplace(self, op_type, dtype, ie_device, precision, ir_ve self.dtype = dtype self._test(unary_func_op_inplace_net(OPS[op_type], dtype), None, op_type + "_", ie_device, precision, ir_version) + + @pytest.mark.nightly + @pytest.mark.precommit + @pytest.mark.precommit_torch_export + @pytest.mark.precommit_fx_backend + @pytest.mark.parametrize("dtype", [torch.float32, torch.float64, torch.int8, torch.uint8, torch.int32, torch.int64]) + def test_prim_abs(self, dtype, ie_device, precision, ir_version): + self.dtype = dtype + self._test(prim_abs_net(dtype), None, "prim::abs", + ie_device, precision, ir_version)