From 0d918dcebb02111194b8ec1dc43a055913a4141e Mon Sep 17 00:00:00 2001 From: Vatsala Shanubhag Date: Mon, 25 Nov 2024 20:24:23 +0530 Subject: [PATCH] [ONNX] Added SimplifiedLayerNormalization from com.microsoft domain (#27318) Details: Microsoft Contrib Operator "SimplifiedLayerNormalization" for ONNX RT Tickets: N/A --- .../simplified_layer_normalization.cpp | 77 +++++++++++++++++++ .../simplified_layer_normalization.prototxt | 69 +++++++++++++++++ ...plified_layer_normalization_2x2x8.prototxt | 75 ++++++++++++++++++ ...implified_layer_normalization_3x8.prototxt | 69 +++++++++++++++++ .../tests/onnx_import_com_microsoft.in.cpp | 39 ++++++++++ 5 files changed, 329 insertions(+) create mode 100644 src/frontends/onnx/frontend/src/op/com.microsoft/simplified_layer_normalization.cpp create mode 100644 src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization.prototxt create mode 100644 src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization_2x2x8.prototxt create mode 100644 src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization_3x8.prototxt diff --git a/src/frontends/onnx/frontend/src/op/com.microsoft/simplified_layer_normalization.cpp b/src/frontends/onnx/frontend/src/op/com.microsoft/simplified_layer_normalization.cpp new file mode 100644 index 00000000000000..005769d2ae13cb --- /dev/null +++ b/src/frontends/onnx/frontend/src/op/com.microsoft/simplified_layer_normalization.cpp @@ -0,0 +1,77 @@ +// Copyright (C) 2018-2024 Intel Corporation +// SPDX-License-Identifier: Apache-2.0 +// + +#include "core/operator_set.hpp" +#include "exceptions.hpp" +#include "openvino/frontend/exception.hpp" +#include "openvino/op/add.hpp" +#include "openvino/op/convert.hpp" +#include "openvino/op/divide.hpp" +#include "openvino/op/multiply.hpp" +#include "openvino/op/range.hpp" +#include "openvino/op/reduce_mean.hpp" +#include "openvino/op/shape_of.hpp" +#include "openvino/op/sqrt.hpp" +#include "utils/common.hpp" + +using namespace ov::op; +using ::ONNX_NAMESPACE::TensorProto_DataType; + +namespace ov { +namespace frontend { +namespace onnx { +namespace com_microsoft { +namespace opset_1 { + +ov::OutputVector simplified_layer_normalization(const ov::frontend::onnx::Node& node) { + common::default_op_checks(node, 2); + + const auto inputs = node.get_ov_inputs(); + auto X = inputs[0]; + const auto scale = inputs[1]; + + CHECK_VALID_NODE(node, + X.get_element_type() == scale.get_element_type(), + "X and scale must be of same type, got :", + X.get_element_type(), + scale.get_element_type()); + + float epsilon = node.get_attribute_value("epsilon", 1e-5f); + int64_t axis = node.get_attribute_value("axis", -1); + int64_t default_stash_type = static_cast(TensorProto_DataType::TensorProto_DataType_FLOAT); + int64_t stash_type_i = node.get_attribute_value("stash_type", default_stash_type); + element::Type stash_type = common::get_ov_element_type(stash_type_i); + + auto rank = std::make_shared(X); + auto axes = std::make_shared(v0::Constant::create(element::i64, {}, {axis}), + (axis < 0 ? v0::Constant::create(element::i64, {}, {0})->output(0) : rank), + v0::Constant::create(element::i64, {}, {1}), + element::i64); + + bool needs_type_casting = stash_type != X.get_element_type(); + if (needs_type_casting) { + X = std::make_shared(X, stash_type); + } + + auto squared_X = std::make_shared(X, X); // X^2 + auto mean = std::make_shared(squared_X, axes, true); // mean = (1/N) * Σ(j=1 to N) X_j^2 + auto rms_value = + std::make_shared(std::make_shared(mean, v0::Constant::create(stash_type, {}, {epsilon}))); + auto inv_std_var = std::make_shared(v0::Constant::create(stash_type, {}, {1.0}), rms_value); + auto normalized = std::make_shared(X, inv_std_var); // X / RMS(X) + + auto scaled = std::make_shared(normalized, scale); // (X / RMS(X)) * scale + + return ov::OutputVector{scaled, inv_std_var}; +} + +ONNX_OP("SimplifiedLayerNormalization", + OPSET_SINCE(1), + com_microsoft::opset_1::simplified_layer_normalization, + MICROSOFT_DOMAIN); +} // namespace opset_1 +} // namespace com_microsoft +} // namespace onnx +} // namespace frontend +} // namespace ov diff --git a/src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization.prototxt b/src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization.prototxt new file mode 100644 index 00000000000000..e63c0196ea87de --- /dev/null +++ b/src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization.prototxt @@ -0,0 +1,69 @@ +ir_version: 3 +producer_name: "OpenVINO ONNX Frontend" +graph { + node { + input: "X" + input: "scale" + output: "simplified_layer_norm" + name: "test_simplified_layer_norm" + op_type: "SimplifiedLayerNormalization" + attribute { + name: "epsilon" + f: 1e-05 + type: FLOAT + } + attribute { + name: "axis" + i: -1 + type: INT + } + attribute { + name: "stash_type" + i: 1 + type: INT + } + domain: "com.microsoft" + } + initializer { + dims: 8 + data_type: 1 + name: "scale" + raw_data: "\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f" + } + input { + name: "X" + type { + tensor_type { + elem_type: 1 + shape { + dim { + dim_value: 2 + } + dim { + dim_value: 8 + } + } + } + } + } + output { + name: "simplified_layer_norm" + type { + tensor_type { + elem_type: 1 + shape { + dim { + dim_value: 2 + } + dim { + dim_value: 8 + } + } + } + } + } +} +opset_import { + domain: "com.microsoft" + version: 1 +} diff --git a/src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization_2x2x8.prototxt b/src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization_2x2x8.prototxt new file mode 100644 index 00000000000000..56c99e03a3fca9 --- /dev/null +++ b/src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization_2x2x8.prototxt @@ -0,0 +1,75 @@ +ir_version: 3 +producer_name: "OpenVINO ONNX Frontend" +graph { + node { + input: "X" + input: "scale" + output: "simplified_layer_norm" + name: "test_simplified_layer_norm" + op_type: "SimplifiedLayerNormalization" + attribute { + name: "epsilon" + f: 1e-05 + type: FLOAT + } + attribute { + name: "axis" + i: -1 + type: INT + } + attribute { + name: "stash_type" + i: 1 + type: INT + } + domain: "com.microsoft" + } + initializer { + dims: 8 + data_type: 1 + name: "scale" + raw_data: "\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f" + } + input { + name: "X" + type { + tensor_type { + elem_type: 1 + shape { + dim { + dim_value: 2 + } + dim { + dim_value: 2 + } + dim { + dim_value: 8 + } + } + } + } + } + output { + name: "simplified_layer_norm" + type { + tensor_type { + elem_type: 1 + shape { + dim { + dim_value: 2 + } + dim { + dim_value: 2 + } + dim { + dim_value: 8 + } + } + } + } + } +} +opset_import { + domain: "com.microsoft" + version: 1 +} diff --git a/src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization_3x8.prototxt b/src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization_3x8.prototxt new file mode 100644 index 00000000000000..ff7f58e3a381e2 --- /dev/null +++ b/src/frontends/onnx/tests/models/com.microsoft/simplified_layer_normalization_3x8.prototxt @@ -0,0 +1,69 @@ +ir_version: 3 +producer_name: "OpenVINO ONNX Frontend" +graph { + node { + input: "X" + input: "scale" + output: "simplified_layer_norm" + name: "test_simplified_layer_norm" + op_type: "SimplifiedLayerNormalization" + attribute { + name: "epsilon" + f: 1e-05 + type: FLOAT + } + attribute { + name: "axis" + i: -1 + type: INT + } + attribute { + name: "stash_type" + i: 1 + type: INT + } + domain: "com.microsoft" + } + initializer { + dims: 8 + data_type: 1 + name: "scale" + raw_data: "\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f\x00\x00\x80\x3f" + } + input { + name: "X" + type { + tensor_type { + elem_type: 1 + shape { + dim { + dim_value: 3 + } + dim { + dim_value: 8 + } + } + } + } + } + output { + name: "simplified_layer_norm" + type { + tensor_type { + elem_type: 1 + shape { + dim { + dim_value: 3 + } + dim { + dim_value: 8 + } + } + } + } + } +} +opset_import { + domain: "com.microsoft" + version: 1 +} diff --git a/src/frontends/onnx/tests/onnx_import_com_microsoft.in.cpp b/src/frontends/onnx/tests/onnx_import_com_microsoft.in.cpp index 900fc025d8d9ab..cdaa7c392c6798 100644 --- a/src/frontends/onnx/tests/onnx_import_com_microsoft.in.cpp +++ b/src/frontends/onnx/tests/onnx_import_com_microsoft.in.cpp @@ -1356,3 +1356,42 @@ OPENVINO_TEST(${BACKEND_NAME}, onnx_com_microsoft_quickgelu) { test_case.run(); } } + +OPENVINO_TEST(${BACKEND_NAME}, onnx_com_microsoft_simplified_layer_normalization_2x2x8) { + const auto model = convert_model("com.microsoft/simplified_layer_normalization_2x2x8.onnx"); + auto test_case = ov::test::TestCase(model, s_device); + + const std::vector X{1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, + 12.f, 13.f, 14.f, 15.f, 16.f, 17.f, 18.f, 19.f, 20.f, 21.f, 22.f, + 23.f, 24.f, 25.f, 26.f, 27.f, 28.f, 29.f, 30.f, 31.f, 32.f}; + + test_case.add_input(Shape{2, 2, 8}, X); + + test_case.add_expected_output( + Shape{2, 2, 8}, + {0.19802947f, 0.39605895f, 0.59408844f, 0.7921179f, 0.9901474f, 1.1881769f, 1.3862064f, 1.5842358f, + 0.7082005f, 0.78688943f, 0.8655784f, 0.94426733f, 1.0229563f, 1.1016452f, 1.1803342f, 1.2590232f, + 0.8241365f, 0.8726151f, 0.9210937f, 0.96957237f, 1.0180509f, 1.0665295f, 1.1150082f, 1.1634868f, + 0.87437177f, 0.90934664f, 0.9443215f, 0.9792964f, 1.0142713f, 1.0492461f, 1.084221f, 1.1191958f}); + + test_case.run(); +} + +OPENVINO_TEST(${BACKEND_NAME}, onnx_com_microsoft_simplified_layer_normalization_3x8) { + const auto model = convert_model("com.microsoft/simplified_layer_normalization_3x8.onnx"); + auto test_case = ov::test::TestCase(model, s_device); + + const std::vector X{0.198f, 0.396f, 0.594f, 0.792f, 0.990f, 1.188f, 1.386f, 1.584f, + 0.708f, 0.786f, 0.865f, 0.944f, 1.023f, 1.102f, 1.180f, 1.259f, + 0.824f, 0.873f, 0.921f, 0.970f, 1.018f, 1.067f, 1.115f, 1.163f}; + + test_case.add_input(Shape{3, 8}, X); + + test_case.add_expected_output( + Shape{3, 8}, + {0.19802852f, 0.39605704f, 0.5940855f, 0.7921141f, 0.9901426f, 1.188171f, 1.3861997f, 1.5842282f, + 0.70813656f, 0.7861516f, 0.86516684f, 0.94418204f, 1.0231973f, 1.1022125f, 1.1802275f, 1.2592428f, + 0.82395196f, 0.8729491f, 0.9209463f, 0.96994346f, 1.0179406f, 1.0669378f, 1.114935f, 1.1629322f}); + + test_case.run(); +}