Skip to content

Latest commit

 

History

History
244 lines (189 loc) · 9.86 KB

mediapipe.md

File metadata and controls

244 lines (189 loc) · 9.86 KB

Integration with mediapipe {#ovms_docs_mediapipe}

@sphinxdirective

.. toctree:: :maxdepth: 1 :hidden:

@endsphinxdirective

Introduction

MediaPipe is an open-source framework for building pipelines to perform inference over arbitrary sensory data. Using MediaPipe in the OpenVINO Model Server enables user to define a powerful graph from a lot of ready calculators/nodes that come with the MediaPipe which support all the needed features for running a stable graph like e.g. flow limiter node. User can also run the graph in a server or run it inside application host. Here can be found more information about MediaPipe framework

This guide gives information about:

Node Types

"Each calculator is a node of a graph. The bulk of graph execution happens inside its calculators. OpenVINO Model Server has its own calculators but can also use newly developed calculators or reuse the existing calculators defined in the original mediapipe repository."

For more details you can visit mediapipe concept description - Calculators Concept Page or OpenVINO Model Server specific calculators implementation - Ovms Calculators Concept Page

Graph proto files

Graph proto files are used to define a graph. Example content of proto file with graph containing OpenVINO inference nodes:


input_stream: "in1"
input_stream: "in2"
output_stream: "out"
node {
  calculator: "OpenVINOModelServerSessionCalculator"
  output_side_packet: "SESSION:dummy"
  node_options: {
    [type.googleapis.com / mediapipe.OpenVINOModelServerSessionCalculatorOptions]: {
      servable_name: "dummy"
      servable_version: "1"
    }
  }
}
node {
  calculator: "OpenVINOModelServerSessionCalculator"
  output_side_packet: "SESSION:add"
  node_options: {
    [type.googleapis.com / mediapipe.OpenVINOModelServerSessionCalculatorOptions]: {
      servable_name: "add"
      servable_version: "1"
    }
  }
}
node {
  calculator: "OpenVINOInferenceCalculator"
  input_side_packet: "SESSION:dummy"
  input_stream: "DUMMY_IN:in1"
  output_stream: "DUMMY_OUT:dummy_output"
  node_options: {
    [type.googleapis.com / mediapipe.OpenVINOInferenceCalculatorOptions]: {
        tag_to_input_tensor_names {
          key: "DUMMY_IN"
          value: "b"
        }
        tag_to_output_tensor_names {
          key: "DUMMY_OUT"
          value: "a"
        }
    }
  }
}
node {
  calculator: "OpenVINOInferenceCalculator"
  input_side_packet: "SESSION:add"
  input_stream: "ADD_INPUT1:dummy_output"
  input_stream: "ADD_INPUT2:in2"
  output_stream: "SUM:out"
  node_options: {
    [type.googleapis.com / mediapipe.OpenVINOInferenceCalculatorOptions]: {
        tag_to_input_tensor_names {
          key: "ADD_INPUT1"
          value: "input1"
        }
        tag_to_input_tensor_names {
          key: "ADD_INPUT2"
          value: "input2"
        }
        tag_to_output_tensor_names {
          key: "SUM"
          value: "sum"
        }
    }
  }
}

Here can be found more information about MediaPipe graphs proto

Supported input/output packet types

OpenVINO Model Server does support processing several packet types at the inputs and outputs of the graph. Following table lists supported tag and packet types based on pbtxt configuration file line:

pbtxt line input/output tag packet type stream name
input_stream: "a" input none ov::Tensor a
input_stream: "IMAGE:a" input IMAGE mediapipe::ImageFrame a
output_stream: "OVTENSOR:b" output OVTENSOR ov::Tensor b
input_stream: "REQUEST:req" input REQUEST KServe inference::ModelInferRequest req
output_stream: "RESPONSE:res" output RESPONSE KServe inference::ModelInferResponse res

In case of missing tag OpenVINO Model Server assumes that the packet type is `ov::Tensor'. For list of supported packet types and tags of OpenVINOInferenceCalculator check documentation of OpenVINO Model Server calculators.

With KServe gRPC API you are also able to push side input packets into graph. In this case created side packet type is the same as KServe parameter type (string, int64 or boolean).

Image inputs requires image pixel data inside raw_input_contents that can be converted to MediaPipe ImageFrame format. For now, those kind of inputs only accepts three-dimensional data in HWC layout. Datatypes supported for Image format:

Datatype Allowed number of channels
FP16 1,3,4
FP32 1,2
UINT8 1,3,4
INT8 1,3,4
UINT16 1,3,4
INT16 1,3,4

Check the documentation on handling tags inside OpenVINO Model Server calculators.

Review also an example in object detection demo

Configuration files

MediaPipe servables configuration is to be placed in the same json file like the models config file. While models are defined in section model_config_list, graphs are configured in the mediapipe_config_list section.

Basic graph section template is depicted below:


{
    "model_config_list": [...],
    "mediapipe_config_list": [
        {
            "name":"mediaDummy",
            "base_path":"/mediapipe/graphs/",
            "graph_path":"graphdummyadapterfull.pbtxt",
            "subconfig":"subconfig_dummy.json"
    }
    ]
}

Basic subconfig:


{
    "model_config_list": [
        {"config": {
                "name": "dummy",
                "base_path": "/models/dummy",
                "shape": "(1, 10)"
            }
        }
    ]
}


Nodes in the MediaPipe graphs can reference both to the models configured in model_config_list section and in subconfig.

MediaPipe configuration options explained

Option Type Description Required
"name" string Graph identifier related to name field specified in gRPC/REST request Yes
"base_path" string Path to the which graph definition and subconfig files paths are relative. May be absolute or relative to the main config path. Default value is "(main config path)(name)" No
"graph_path" string Path to the graph proto file. May be absolute or relative to the base_path. Default value is "(base_path)\graph.pbtxt". File have to exist. No
"subconfig" string Path to the subconfig file. May be absolute or relative to the base_path. Default value is "(base_path)\subconfig.json". Missing file does not result in error. No

Subconfig file may only contain model_config_list section - in the same format as in models config file.

Using MediaPipe

MediaPipe graphs can use the same KServe Inference API as the models. There are exactly the same calls for running the predictions. The request format must match the pipeline definition inputs.

Graphs can be queried for their state using the calls GetModelStatus and REST Model Status

MediaPipe Graphs Examples

Image classification

Multi model

Current limitations

  • MediaPipe graphs are supported only for gRPC KServe API.

  • KServe ModelMetadata call response contains only input and output names. In the response shapes will be empty and datatypes will be "INVALID".

  • Binary inputs are not supported for MediaPipe graphs.

  • Updates in subconfig files and mediapipe graph files do not trigger model server config reloads. The reload of the full config, including subconfig and graphs, can be initiated by an updated in the main config json file or using the REST API config/reload endpoint.

Adding your own mediapipe calculator to OpenVINO Model Server

MediaPipe graphs can include only the calculators built-in the model server during the image build. If you want to add your own mediapipe calculator to OpenVINO Model Server functionality you need to add it as a dependency and rebuild the OpenVINO Model Server binary.

If you have it in external repository, you need to add the http_archive() definition or git_repository() definition to the bazel WORKSPACE file. Then you need to add the calculator target as a bazel dependency to the src/BUILD file. This should be done for:

cc_library(
 name = "ovms_lib",
...

in the conditions:default section of the deps property:

  deps = [
         "//:ovms_dependencies",
        "//src/kfserving_api:kfserving_api_cpp",
        ] + select({
            "//conditions:default": [
                "//src:ovmscalculatoroptions_cc_proto", # ovmscalculatoroptions_proto - just mediapipe stuff with mediapipe_proto_library adding nonvisible target
                "@mediapipe_calculators//:mediapipe_calculators",
                 "@your_repository//:yourpathtocalculator/your_calculator

Make sure the REGISTER_CALCULATOR(your_calculator); macro is present in the calculator file that you have added.