-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsystem-setup.py
197 lines (172 loc) · 6.11 KB
/
system-setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import itertools
from pathlib import Path
from typing import TypedDict
import click
import loos
import numpy
import openmm
from openmm import app, unit
from proteinbenchmark import (
ProteinBenchmarkSystem,
benchmark_targets,
force_fields,
read_xml,
write_xml,
)
class NativeContactDict(TypedDict):
index_i: int
index_j: int
native_distance: unit.Quantity
def get_native_contacts(
native_topology_path: str,
native_contacts_file: str,
selection_string: str = "!hydrogen",
sequence_cutoff: int = 3,
distance_cutoff: unit.Quantity = 0.45 * unit.nanometer,
):
distance_cutoff = distance_cutoff.value_in_unit(unit.nanometer)
# Set up native topology
pdb = app.PDBFile(native_topology_path)
topology = pdb.topology
positions = pdb.positions.value_in_unit(unit.nanometer)
# Set up periodic distance function
box_vectors = topology.getPeriodicBoxVectors().value_in_unit(unit.nanometer)
periodic_distance = app.internal.compiled.periodicDistance(box_vectors)
# Select atoms that can contribute to native contacts
_hydrogen = app.element.hydrogen
contact_atoms = [
atom
for atom in topology.atoms()
if atom.residue.chain.id == "A" and atom.element != _hydrogen
]
# Loop over pairs of atoms that can contribute to native contacts
native_contacts = list()
with open(native_contacts_file, "w") as out_file:
out_file.write(
"# Chain_i Resid_i Name_i Chain_j Resid_j Name_j Native_distance\n"
)
for atom_i, atom_j in itertools.combinations(contact_atoms, 2):
# Skip pairs close in primary sequence
sequence_distance = numpy.abs(
int(atom_i.residue.id) - int(atom_j.residue.id)
)
if sequence_distance <= sequence_cutoff:
continue
# Skip pairs far in space
native_distance = periodic_distance(
positions[atom_i.index], positions[atom_j.index]
)
if native_distance > distance_cutoff:
continue
# Write chain, resid, and name of both atoms and their distance
out_file.write(
f"{atom_i.residue.chain.id:1s} {atom_i.residue.id:5s} "
f"{atom_i.name:4s} {atom_j.residue.chain.id:1s} "
f"{atom_j.residue.id:5s} {atom_j.name:4s} "
f"{native_distance:12.8f}\n"
)
# Record OpenMM system indices of both atoms and their distance
native_contacts.append(
{
"index_i": atom_i.index,
"index_j": atom_j.index,
"native_distance": native_distance * unit.nanometer,
}
)
return native_contacts
@click.command()
@click.option(
"-f",
"--force-field",
type=click.STRING,
default="null-0.0.3-pair-opc3",
show_default=True,
help="Name of force field used to sample the trajectory.",
)
@click.option(
"-o",
"--output_directory",
type=click.STRING,
default="results",
show_default=True,
help="Directory path to write umbrella sampling output.",
)
@click.option(
"-t",
"--target",
type=click.STRING,
default="gb3",
show_default=True,
help="Name of benchmark target.",
)
def main(
force_field,
output_directory,
target,
):
# Set up system parameters
force_field_dict = force_fields[force_field]
force_field_file = force_field_dict["force_field_file"]
water_model = force_field_dict["water_model"]
water_model_file = force_field_dict["water_model_file"]
target_parameters = benchmark_targets[target]
benchmark_system = ProteinBenchmarkSystem(
output_directory,
target,
target_parameters,
force_field,
water_model,
force_field_file,
water_model_file=water_model_file,
)
# Build coordinates, solvate, parametrize, and minimize energy
benchmark_system.setup()
# Get native contacts from solvated PDB so that heavy atoms have the same
# coords as the initial PDB but atom indices match the parametrized system
native_topology_path = str(
Path(
benchmark_system.setup_dir,
f"{target}-{force_field}-solvated.pdb",
)
)
native_contacts_file = str(
Path(
benchmark_system.setup_dir,
f"{target}-{force_field}-native-contacts.dat",
)
)
native_contacts = get_native_contacts(native_topology_path, native_contacts_file)
# Set up fraction of native contacts as a collective variable
# Q = 1/N sum_i 1 / (1 + exp(a * (r_i - b * r_0,i)))
# Q = 1/N sum_i (1 - tanh(a/2 * (r_i - b * r_0,i))) / 2
smoothing_parameter = 50.0 / unit.nanometer
contact_width = 1.8
fraction_native_contacts = openmm.CustomBondForce("Z * (1 - tanh(a * (r - r0)))")
fraction_native_contacts.addGlobalParameter("Z", 0.5 / len(native_contacts))
fraction_native_contacts.addGlobalParameter("a", smoothing_parameter / 2)
fraction_native_contacts.addPerBondParameter("r0")
fraction_native_contacts.setUsesPeriodicBoundaryConditions(True)
for contact in native_contacts:
fraction_native_contacts.addBond(
contact["index_i"],
contact["index_j"],
[contact_width * contact["native_distance"]],
)
# Set up umbrella restraint force
umbrella_energy_constant = 5000.0 * unit.kilocalorie_per_mole
umbrella_force = openmm.CustomCVForce("k * (Q - Q0)^2")
umbrella_force.addGlobalParameter("k", umbrella_energy_constant)
umbrella_force.addGlobalParameter("Q0", 1.0)
umbrella_force.addCollectiveVariable("Q", fraction_native_contacts)
# Load OpenMM system, add umbrella force, and save a copy
umbrella_system_path = str(
Path(
benchmark_system.setup_dir,
f"{target}-{force_field}-umbrella-openmm-system.xml",
)
)
openmm_system = read_xml(benchmark_system.parametrized_system)
openmm_system.addForce(umbrella_force)
write_xml(umbrella_system_path, openmm_system)
if __name__ == "__main__":
main()