diff --git a/tests/test_models/test_task_modules/test_assigners/test_batch_atss_assigner.py b/tests/test_models/test_task_modules/test_assigners/test_batch_atss_assigner.py index 4199501a9..a01e4fce3 100644 --- a/tests/test_models/test_task_modules/test_assigners/test_batch_atss_assigner.py +++ b/tests/test_models/test_task_modules/test_assigners/test_batch_atss_assigner.py @@ -82,8 +82,8 @@ def test_batch_atss_assigner_with_empty_gt(self): [20., -4., 36., 12.], ]).unsqueeze(0).repeat(batch_size, 21, 1) - gt_bboxes = torch.empty(batch_size, 2, 4) - gt_labels = torch.empty(batch_size, 2, 1) + gt_bboxes = torch.zeros(batch_size, 0, 4) + gt_labels = torch.zeros(batch_size, 0, 1) batch_assign_result = batch_atss_assigner.forward( pred_bboxes, priors, num_level_bboxes, gt_labels, gt_bboxes, @@ -101,7 +101,7 @@ def test_batch_atss_assigner_with_empty_gt(self): torch.Size([batch_size, 84, num_classes])) self.assertEqual(fg_mask_pre_prior.shape, torch.Size([batch_size, 84])) - def test_batch_atss_assigner_with_empty_boxes(self): + def test_batch_atss_assigner_with_empty_boxs(self): """Test corner case where a network might predict no boxes.""" num_classes = 2 batch_size = 2 @@ -109,7 +109,7 @@ def test_batch_atss_assigner_with_empty_boxes(self): topk=3, iou_calculator=dict(type='mmdet.BboxOverlaps2D'), num_classes=num_classes) - priors = torch.empty(84, 4) + priors = torch.zeros(84, 4) gt_bboxes = torch.FloatTensor([ [0, 0, 60, 93], [229, 0, 532, 157], @@ -152,12 +152,12 @@ def test_batch_atss_assigner_with_empty_boxes_and_gt(self): topk=3, iou_calculator=dict(type='mmdet.BboxOverlaps2D'), num_classes=num_classes) - priors = torch.empty(84, 4) - gt_bboxes = torch.empty(batch_size, 2, 4) - gt_labels = torch.empty(batch_size, 2, 1) + priors = torch.zeros(84, 4) + gt_bboxes = torch.zeros(batch_size, 0, 4) + gt_labels = torch.zeros(batch_size, 0, 1) num_level_bboxes = [64, 16, 4] - pad_bbox_flag = torch.empty(batch_size, 2, 1) - pred_bboxes = torch.empty(batch_size, 84, 4) + pad_bbox_flag = torch.zeros(batch_size, 0, 1) + pred_bboxes = torch.zeros(batch_size, 0, 4) batch_assign_result = batch_atss_assigner.forward( pred_bboxes, priors, num_level_bboxes, gt_labels, gt_bboxes,