-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
Copy pathmetafile.yml
120 lines (117 loc) · 4.2 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
Models:
- Name: mask-rcnn_swin-s-p4-w7_fpn_amp-ms-crop-3x_coco
In Collection: Mask R-CNN
Config: configs/swin/mask-rcnn_swin-s-p4-w7_fpn_amp-ms-crop-3x_coco.py
Metadata:
Training Memory (GB): 11.9
Epochs: 36
Training Data: COCO
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Swin Transformer
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 48.2
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 43.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/swin/mask_rcnn_swin-s-p4-w7_fpn_fp16_ms-crop-3x_coco/mask_rcnn_swin-s-p4-w7_fpn_fp16_ms-crop-3x_coco_20210903_104808-b92c91f1.pth
Paper:
URL: https://arxiv.org/abs/2107.08430
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
README: configs/swin/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465
Version: v2.16.0
- Name: mask-rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco
In Collection: Mask R-CNN
Config: configs/swin/mask-rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py
Metadata:
Training Memory (GB): 10.2
Epochs: 36
Training Data: COCO
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Swin Transformer
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 46.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 41.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/swin/mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco/mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco_20210906_131725-bacf6f7b.pth
Paper:
URL: https://arxiv.org/abs/2107.08430
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
README: configs/swin/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465
Version: v2.16.0
- Name: mask-rcnn_swin-t-p4-w7_fpn_1x_coco
In Collection: Mask R-CNN
Config: configs/swin/mask-rcnn_swin-t-p4-w7_fpn_1x_coco.py
Metadata:
Training Memory (GB): 7.6
Epochs: 12
Training Data: COCO
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Swin Transformer
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.7
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 39.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/swin/mask_rcnn_swin-t-p4-w7_fpn_1x_coco/mask_rcnn_swin-t-p4-w7_fpn_1x_coco_20210902_120937-9d6b7cfa.pth
Paper:
URL: https://arxiv.org/abs/2107.08430
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
README: configs/swin/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465
Version: v2.16.0
- Name: mask-rcnn_swin-t-p4-w7_fpn_amp-ms-crop-3x_coco
In Collection: Mask R-CNN
Config: configs/swin/mask-rcnn_swin-t-p4-w7_fpn_amp-ms-crop-3x_coco.py
Metadata:
Training Memory (GB): 7.8
Epochs: 36
Training Data: COCO
Training Techniques:
- AdamW
Training Resources: 8x V100 GPUs
Architecture:
- Swin Transformer
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 46.0
- Task: Instance Segmentation
Dataset: COCO
Metrics:
mask AP: 41.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/swin/mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco/mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco_20210908_165006-90a4008c.pth
Paper:
URL: https://arxiv.org/abs/2107.08430
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
README: configs/swin/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.16.0/mmdet/models/backbones/swin.py#L465
Version: v2.16.0