-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
wgangp_GN_1xb64-160kiters_celeba-cropped-128x128.py
72 lines (62 loc) · 1.98 KB
/
wgangp_GN_1xb64-160kiters_celeba-cropped-128x128.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
_base_ = [
'../_base_/datasets/unconditional_imgs_128x128.py',
'../_base_/gen_default_runtime.py',
]
# MODEL
loss_config = dict(gp_norm_mode='HWC', gp_loss_weight=10)
model = dict(
type='WGANGP',
data_preprocessor=dict(type='DataPreprocessor'),
generator=dict(type='WGANGPGenerator', noise_size=128, out_scale=128),
discriminator=dict(
type='WGANGPDiscriminator',
in_channel=3,
in_scale=128,
conv_module_cfg=dict(
conv_cfg=None,
kernel_size=3,
stride=1,
padding=1,
bias=True,
act_cfg=dict(type='LeakyReLU', negative_slope=0.2),
norm_cfg=dict(type='GN'),
order=('conv', 'norm', 'act'))),
discriminator_steps=5,
loss_config=loss_config)
# `batch_size` and `data_root` need to be set.
batch_size = 64
data_root = './data/celeba-cropped/cropped_images_aligned_png/'
train_dataloader = dict(
batch_size=batch_size, dataset=dict(data_root=data_root))
val_dataloader = dict(batch_size=batch_size, dataset=dict(data_root=data_root))
test_dataloader = dict(
batch_size=batch_size, dataset=dict(data_root=data_root))
train_cfg = dict(max_iters=160000)
optim_wrapper = dict(
generator=dict(optimizer=dict(type='Adam', lr=0.0001, betas=(0.5, 0.9))),
discriminator=dict(
optimizer=dict(type='Adam', lr=0.0001, betas=(0.5, 0.9))))
# VIS_HOOK
custom_hooks = [
dict(
type='VisualizationHook',
interval=5000,
fixed_input=True,
vis_kwargs_list=dict(type='GAN', name='fake_img'))
]
# METRICS
metrics = [
dict(
type='MS_SSIM', prefix='ms-ssim', fake_nums=10000,
sample_model='orig'),
dict(
type='SWD',
prefix='swd',
fake_nums=16384,
sample_model='orig',
image_shape=(3, 128, 128))
]
# save multi best checkpoints
default_hooks = dict(checkpoint=dict(save_best='swd/avg'))
val_evaluator = dict(metrics=metrics)
test_evaluator = dict(metrics=metrics)