Basic instructions for using the OOI M2M Web Services. See ipython notebooks for examples using python's requests module.
- Create a user account on ooinet.oceanobservatories.org or use the CILogon button with an academic or Google account.
- Log in
- Navigate to the drop down menu screen in the top-right corner menu
- Click on the "User Profile" element of the drop down.
- Copy and save the following data from the user profile: API Username and API Token. The API Username is similar to “OOIAPI-QTULEV9STCAS55”. The API Token is similar to “YXP2Q2W4SOP”.
requests.get('https://ooinet.oceanobservatories.org/api/m2m/...', auth=(API USERNAME, API TOKEN))
curl –k https://API USERNAME:API [email protected]/api/m2m/...
http --auth API USERNAME:API TOKEN https://ooinet.oceanobservatories.org/api/m2m/...
- create a python virtual environment and start the notebook from inside
conda create -n m2m_demo python=2.7 anaconda
source activate m2m_demo
pip install xarray==0.9.0
pip install netcdf-python
pip install thredds-crawler
jupyter notebook
source deactivate
(The latest xarray
gives an error, seems a known issue which was fixed in future versions, but for now downgrading to 0.9.0 pydata/xarray#1775)
- Data Team QC Database http://ooi.visualocean.net
- Data Portal https://ooinet.oceanobservatories.org
- Sampling Strategy http://oceanobservatories.org/observation-and-sampling-approach
- Data Product Specifications http://oceanobservatories.org/technical-data-package
- Data Product Algorithms https://github.com/oceanobservatories/ion-functions/tree/master/ion_functions/data
- Command line toolbox for large scale requests https://github.com/kerfoot/uframe-m2m
- Toolbox to plot data realtime https://github.com/ooi-data-review/ooi-realtime-plotting