- Connect to TAU vpn: https://computing.tau.ac.il/helpdesk/remote-access/communication/vpn
- Connect to the login server (used to submit jobs to the worker nodes) Start with:
ssh <user-name>@c-002.cs.tau.ac.il
And enter your password.
- Navigate to your course folder
cd /home/joberant/NLP_2324b/<user-name>
Initialize the conda environment:
bash
conda activate llm2vec
And start working!
Submit a job
sbatch mntp.slurm
Examine all jobs for user
sacct -u <user-name>
Check status of queue
squeue --job -u <user-name>
Just on first time
- Create cache folders (Just on first time)
mkdir cache
mkdir llm2vec
mkdir cache/hf_cache
mkdir cache/transformers_cache
mkdir cache/hf_dataset_cache
mkdir cache/torch_cache
- Install Anaconda and create a virtual environment
wget repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh
This will download a script called Anaconda3-2020.11-Linux-x86_64.sh
.
Now run it, and press enter
until you need to accept the license by typing "yes"
sh Anaconda3-2020.11-Linux-x86_64.sh
Do not user the default location, instead:
/home/joberant/NLP_2324b/<user-name>/anaconda3
After (the long) installation, when you're asked:
Do you wish the installer to initialize Anaconda3 by running conda init?
just enter yes
.
- Create virtual environment
First, use
bash
to activate the base virtual environment:
bash
And create a new virtual environment:
conda create -n llm2vec python=3.9
And now you can activate it using:
conda activate llm2vec
conda install pip
- Copy the project into slurm
The general command to copy files is:
rsync -vrah <path-on-local-machine> <user-name>@c-002.cs.tau.ac.il:<path-on-slurm> --stats --progress
Now, lets copy the entire project excluding our virtual env. Make sure you run this command on your local machine from the projects' base directory.
On Windows:
scp -r experiments llm2vec nlp_course scripts test_configs train_configs .env README.md setup.cfg setup.py <user-name>@c-002.cs.tau.ac.il:/home/joberant/NLP_2324b/<user-name>/llm2vec
On Mac:
rsync -vrah experiments llm2vec nlp_course scripts test_configs train_configs .env README.md setup.cfg setup.py <user-name>@c-002.cs.tau.ac.il:/home/joberant/NLP_2324b/<user-name>/llm2vec --stats --progress
- install required packages First make sure you're using the created virtual environment (llm2vec). If not:
bash
conda activate llm2vec
Navigate to the llm2vec
folder and run:
./scripts/install.sh