Note: ReScript support is currently available in
2.0.0-beta.0
or later.Please install it with
npm install -g @ocsigen/ts2ocaml@beta
.
Generates binding for ReScript.
ts2ocaml
is a powerful tool, but there are so many options and also some caverts.
Therefore, we first provide a walkthrough to use this tool for your project.
The documentation for the ts2ocaml
command and its options comes after the walkthrough, starting with the Usage setion.
ts2ocaml
targets ReScript v11 or later.
Also, ts2ocaml
depends on ReScript's new standard library Core
.
You may need to add @rescript/core
to your project dependencies (dependencies
in package.json
and bs-dependencies
in rescript.json
).
Please see ReScript's official documentation for details.
Every code generated by
ts2ocaml
explicitly opensRescriptCore
, so you don't have to set"bsc-flags": [ "-open RescriptCore" ]in your
rescript.json
.
ReScript has a rich standard library to use JS and DOM APIs and ts2ocaml
makes use of it as much as possible. In addition to that, ts2ocaml
uses a small standard library to handle some TypeScript-specific concepts:
intf<'tags>
type, which is used for tag-based subtyping.- TypeScript-specific primitive types, such as
any
,never
,unknown
, etc. - Utility types for handling TypeScript's union types and intersection types.
Run ts2ocaml res --create-stdlib
to generate ts2ocaml.res
. You can safely add it to your project, and even modify it for your needs.
ts2ocaml
has many options, so there is an option --preset
to set multiple options at once which is commonly used together.
--preset=minimal
- A preset to minimize the output.
- Intended for library authors, who will modify the output and build a binding library upon it.
- It generates the simplest binding.
- However, it lacks subtyping and it will not compile if the package depends on another package.
--preset=safe
- A preset to generate a code which just compiles and works.
- Suited for generating bindings for relatively small packages, which involve less inheritance and slightly depend on other packages.
- e.g.
yargs
, which has a minimal dependency and does not make use ofextends
so much.
- e.g.
--preset=full
- A preset to generate a code with more type safety and more support for package dependency.
- Suited for generating bindings for large packages, which have many
extends
and/or heavily depend on another package.- e.g. React component packages, which almost certainly inherits many interfaces from React.
--preset
doesn't override options you explicitly set.
See --preset
for the options which will be set by each preset.
Hint: if a package
foo
depends only onbar
andbar
depends on many other packages, it's safe to use--preset=safe
tofoo
and--preset=full
tobar
, but not vice versa.
Once you figure out which preset (and some additional options if any) to use, you are now ready to run ts2ocaml
.
ts2ocaml res --preset full --output-dir src node_modules/typescript/lib/typescript.d.ts
A binding (typescript.res
and typescript.resi
in this example) will be generated in the src
directory.
The binding has an Export
module which corresponds to the package's default export (export default ..
or export = ..
in TypeScript).
Define a module alias to "import" the package:
module Ts = Typescript.Export
Now you can use the binding through the module alias:
let source = "let x: string = 'hello, world!'"
let result = Ts.transpileModule(
~input=source,
~transpileOptions=Ts.TranspileOptions.make(
~compilerOptions=Ts.CompilerOptions.make(~\"module"=CommonJS),
),
)
Console.log(result->Ts.TranspileOutput.get_outputText)
Here we describe the coding conventions and file name conventions used by ts2ocaml
to ensure that multiple bindings work together without problem. If you are not interested, you can skip to the Usage setion.
To work with multiple files and packages, ts2ocaml
has some conventions around the name of the generated OCaml source codes.
- If not known,
ts2ocaml
computes the JS module name of the input.d.ts
file by heuristics. ts2ocaml
converts the JS module name to a ReScript module name by the followings:- Removes
@
at the top of the module name - Replaces
/
with__
- Replaces any other signs (such as
-
) to_
- Removes
ts2ocaml
uses the ReScript module name as the output file name.
- If the filename is equal to
types
ortypings
ofpackage.json
, thents2ocaml
will use the package name itself.- input:
node_modules/typescript/lib/typescript.d.ts
package.json
:"typings": "./lib/typescript.d.ts",
getJsModuleName
:typescript
- output file:
typescript.res
- input:
- If the filename is present in
exports
ofpackage.json
, thents2ocaml
will combine the package name and the exported module name.- input:
node_modules/@angular/common/http/http.d.ts
package.json
:"exports": { .., "./http": { "types": "./http/http.d.ts", .. }, .. }
getJsModuleName
:@angualr/common/http
- output file:
angular__common__http.res
- input:
- Otherwise,
ts2ocaml
uses a heuristic module name: it will combine the package name and the filename.index.d.ts
is handled specially.- input:
node_modules/cassandra-driver/lib/auth/index.d.ts
getJsModuleName
:cassandra-driver/auth
- output file:
cassandra_driver__auth.res
- if
package.json
is not present, the package name is also inferred heuristically from the filename.
- input:
import
of another package fromnode_modules
will be converted to anopen
statement or a module alias.- The ReScript module name of the imported package is computed by the step 2 of the above.
// node_modules/@types/react/index.d.ts
import * as CSS from "csstype";
import { Interaction as SchedulerInteraction } from "scheduler/tracing";
// react.res
/* import * as CSS from 'csstype'; */
module CSS = Csstype.Export
/* import { Interaction as SchedulerInteraction } from 'scheduler/tracing'; */
module SchedulerInteraction = Scheduler__tracing.Export.Interaction
import
of relative path will be converted to anopen
statement or a module alias.- The OCaml module name of the imported file will also be inferred by heuristics.
// node_modules/cassandra-driver/index.d.ts
import { auth } from "./lib/auth";
// cassandra_driver.res
module Auth = Cassandra_driver__auth.Export.Auth
// node_modules/cassandra-driver/lib/mapping/index.d.ts
import { Client } from "../../";
// cassandra_driver__mapping.res
module Client = Cassandra_driver.Export.Client
- Indirect
import
using identifiers is not yet be supported.
import { types } from "./lib/types";
import Uuid = types.Uuid; // we should be able to convert this to `module Uuid = Type.Uuid`, but not yet
- Direct
export
of an external module will not be supported.
export { someFunction } from "./lib/functions"; // this is VERY hard to do in OCaml!
ts2ocaml
will create a module named Export
to represent the exported definitions.
- If an export assignment
export = Something
is used, theExport
module will be an alias to theSomething
module.
/* export = Something */
module Export = Something
- If ES6 exports
export interface Foo
orexport { Bar }
are used, theExport
module will contain the exported modules.
module Export = {
/* export interface Foo */
module Foo = Foo
/* export { Bar } */
module Bar = Bar
/* export { Baz as Buzz } */
module Buzz = Baz
}
This is why you are advised to use the generated bindings with the following:
/* This is analogous to `import * as TypeScript from "typescript";` */
module TypeScript = Typescript.Export
TypeScript makes use of generic parameter defaults, where you can make a type parameter optional with a default type, which is not supported by ReScript. As such, ts2ocaml
emits additional type aliases when it encounters such type parameters.
For example, assume we have node_modules/foo/index.d.ts
and node_modules/bar/index.d.ts
as the following:
// foo/index.d.ts
declare namespace foo {
interface A<T> { ... }
interface B<T = any> { ... }
}
export = foo;
// bar/index.d.ts
import * as Foo from "foo";
declare function useA(a: Foo.A<T>): void;
declare function useB(b: Foo.B<T>): void;
declare function useBDefault(b: Foo.B): void;
Then the outputs will look like this:
/* foo.res */
module Foo = {
module A = {
type t<'T> = intf<[#A(T)]>
...
}
module B = {
type t<'T> = intf<#B(T)>
type t0 = t<any>
...
}
}
/* export = foo; */
module Export = Foo
/* bar.res */
/* import * as Foo from "foo"; */
module Foo = Foo.Export
@module("bar") @val external useA: (Foo.A.t<'T>) => unit = "useA"
@module("bar") @val external useB: (Foo.B.t<'T>) => unit = "useB"
@module("bar") @val external useBDefault: (Foo.B.t0) => unit = "useBDefault"
$ ts2ocaml res [options] <inputs..>
See also the common options.
Specify the preset to use.
--preset=minimal
- It sets `--simplify=all``.
--preset=safe
- It sets
--subtyping=cast-function
. - It also sets all the options
--preset=minimal
sets.
- It sets
--preset=full
- It sets
--inherit-with-tags=full
and--subtyping=tag
. - It also sets all the options
--preset=safe
sets.
- It sets
If set, ts2ocaml
will create ts2ocaml.res
.
The directory to place the generated bindings. If not set, it will be the current directory.
If set, ts2ocaml
will not generate interface files (.resi
).
Override the JS module type. If not set, it is inferred from the input.
--module=es
: Treats the input as an ES module.--module=cjs
: Treats the input as a CommonJS module.--module=none
: Treats the input as a global definition.
Override the JS module name used in the @module
attribute.
If not set, it is inferred from package.json
.
Treat number types as int
. If not set, float
will be used.
See also the detailed docs about modeling TypeScript's subtyping in OCaml.
Turn on subtyping features.
You can use --subtyping=foo,bar
to turn on multiple features. Also, use --subtyping=off
to explicitly disable subtyping features.
Use intf<'tags>
for class and interface types, which simulates nominal subtyping by putting to 'tags
the class names as a polymorphic variant.
For example, assume we have the following input:
interface A {
methA(a: number): number;
}
interface B extends A {
methB(a: number, b: number): number;
}
interface C extends B {
methC(a: number, b: number, c: number): number;
}
When this feature is used, the resulting binding will look like:
module A = {
type t = intf<[ #A ]>
@send external methA: (t, ~a:float) => float = "methA"
external castFrom: (intf<[> #A ]>) => t = "%identity"
}
module B = {
type t = intf<[ #A | #B ]>
@send external methB: (t, ~a:float, ~b:float) => float = "methB"
external castFrom: (intf<[> #B ]>) => t = "%identity"
}
module C = {
type t = intf<[ #A | #B | #C ]>
@send external methC: (t, ~a:float, ~b:float, ~c:float) => float = "methC"
external castFrom: (intf<[> #C ]>) => t = "%identity"
}
So if we have a let x : C.t
, you can directly cast it to A.t
by writing x :> A.t
.
Alternatively, you can also write A.castFrom(x)
, which uses a generic cast function castFrom
.
let c : C.t = ...
let a1 : A.t = c :> A.t
let a2 : A.t = A.castFrom(c)
Add cast
functions to cast types around.
For example, assume we have the following input:
interface A {
methA(a: number): number;
}
interface B extends A {
methB(a: number, b: number): number;
}
interface C extends B {
methC(a: number, b: number, c: number): number;
}
When this feature is used, the resulting binding will look like:
module A = {
type t
@send external methA: (t, ~a:float) => float = "methA"
}
module B = {
type t
@send external methB: (t, ~a:float, ~b:float) => float = "methB"
external castToA: (t) => A.t = "%identity"
}
module C = {
type t
@send external methC: (t, ~a:float, ~b:float, ~c:float) => float = "methC"
external castToB: (t) => B.t = "%identity"
}
So if we have a let x : C.t
, you can cast it to A.t
by writing B.castToA(C.castToB(x))
.
let c : C.t = ...
let a : A.t = x->C.castToB->B.castToA
This feature is less powerful than tag
, but it has some use cases tag
doesn't cover.
tag
doesn't support diamond inheritance, whilecast-function
does.- When
--inherit-with-tags
is not used,tag
doesn't support casting a type to other from a different package, whilecast-function
does.
Note: This options requires
--subtyping=tag
. If thetag
feature is not specified, it will fail with an error.
Use TypeName.tags
type names to inherit types from other packages.
--inherit-with-tags=full
(default)- It generates
tags
types in the module, and tries to usetags
type to inherit a type if it is unknown (e.g. from another package).
- It generates
--inherit-with-tags=provide
- It only generates
tags
types in the module.
- It only generates
--inherit-with-tags=consume
- It only tries to use
tags
type if the inherited type is unknown.
- It only tries to use
--inherit-with-tags=off
- It disables any usage of
tags
types.
- It disables any usage of
For example, assume we have node_modules/foo/index.d.ts
and node_modules/bar/index.d.ts
as the following:
// foo/index.d.ts
declare namespace foo {
interface A { ... }
}
export = foo;
// bar/index.d.ts
import * as Foo from 'foo';
declare namespace bar {
interface B extends A { ... }
}
export = bar;
Then the outputs will look like depending on the option you set:
/* foo.res */
module Foo = {
module A = {
type t = intf<[ #A ]>
/* this will be generated if `full` or `provide` is set */
type tags = [ #A ]
/* this will be generated regardless of the option */
type this<'tags> = intf<'tags> constraint 'tags = [> #A ]
external castFrom: (this<'tags>) => t = "%identity"
...
}
}
/* export = foo; */
module Export = Foo
/* bar.res */
/* import * as Foo from "foo"; */
module Foo = Foo.Export
module Bar = {
module B = {
/* if `full` or `consume` is set, this will be generated */
type t = intf<[ #B | Foo.A.tags ]>
/* otherwise, this will be generated */
type t = intf<[ #B ]>
/* if `full` is set, this will be generated */
type tags = [ #B | Foo.A.tags ]
/* else if `provide` is set, this will be generated */
type tags = [ #B ]
/* this will be generated regardless of the option */
type this<'tags> = intf<'tags> constraint 'tags = [> #B ]
external castFrom: (this<'tags>) => t = "%identity"
...
}
}
/* export = bar; */
module Export = Bar
If provide
or full
is used for foo.d.ts
and consume
or full
is used for bar.d.ts
,
you will be able to safely cast B.t
to A.t
, although they come from different packages.
module Foo = Foo.Export
module Bar = Bar.Export
let bar : Bar.B.t = ...
let foo1 : Foo.A.t = bar :> Foo.A.t
let foo2 : Foo.A.t = Foo.A.castFrom(bar)
Otherwise, you can't safely cast B.t
to A.t
. To do it, you will have to
- set
--subtyping=cast-function
to obtaincastToA: (B.t) => A.t
, or - manually add
#A
to the definition ofB.t
(andB.tags
if you choose to provide).
Turn on simplification features.
You can use --simplify=foo,bar
to turn on multiple features. Also, --simplify=all
enables all the features and --simplify=off
explicitly disables simplification features.
Simplifies a value definition of an interface type with the same name (case sensitive) to a module.
Assume we have the following input:
interface Foo = {
someMethod(value: number): void;
}
declare var Foo: Foo;
If this option is set, the output will be:
module Foo = {
@module("package") @val @scope("Foo") external someMethod: float => unit = "someMethod"
}
/* usage */
Foo.someMethod(42.0)
Otherwise, the output will be:
module Foo = {
type t
@send external someMethod: (t, float) => unit = "someMethod"
}
@module("package") @val external foo: Foo.t = "Foo"
/* usage */
foo->Foo.someMethod(42.0)
A notable example is the Math
object in ES5 (https://github.com/microsoft/TypeScript/blob/main/lib/lib.es5.d.ts).
Simplifies so-called constructor pattern.
Assume we have the following input:
interface Foo = {
someMethod(value: number): void;
}
interface FooConstructor {
new(name: string) : Foo;
staticMethod(): number;
}
declare var Foo: FooConstructor;
If this option is set, the output will be:
module Foo = {
type t
@send external someMethod: (t, float) => unit = "someMethod"
@module("package") @new external create: (string) => t = "Foo"
@module("package") @scope("Foo") @val external staticMethod: () => float = "staticMethod"
}
/* usage */
let x = Foo.create("foo")
let num = Foo.staticMethod()
x->Foo.someMethod(num)
Otherwise, the output will be:
module Foo = {
type t
@send external someMethod: (t, float) => unit = "someMethod"
}
module FooConstructor = {
type t
@get external create: Newable.t1<string, Foo.t> = "Foo"
@send external staticMethod: (t, ()) => float = "staticMethod"
}
@module("package") @val external foo: FooConstructor.t = "Foo"
/* usage */
let x = foo->FooConstructor.create->Newable.apply1("foo")
let num = foo->FooConstructor.staticMethod()
x->Foo.someMethod(num)
A notable example is the ArrayConstructor
type in ES5 (https://github.com/microsoft/TypeScript/blob/main/lib/lib.es5.d.ts).
Simplifies a value definition of an anonymous interface type to a module.
Assume we have the following input:
declare var Foo: {
someMethod(value: number): void;
};
If this option is set, the output will be:
module Foo = {
@module("package") @val external someMethod: (float) => unit = "someMethod"
}
/* usage */
Foo.someMethod(42.0)
Otherwise, the output will be:
module AnonymousInterface = {
type t
@send external someMethod: (t, float) => unit = "someMethod"
}
@module("package") @val external foo: AnonymousInterface.t = "Foo"
/* usage */
foo->AnonymousInterface.someMethod(42.0)
A notable example is the Document
variable in DOM (https://github.com/microsoft/TypeScript/blob/main/lib/lib.dom.d.ts).
Note:
immediate-instance
andimmediate-constructor
will override this feature if the name of the value definition is the same as the corresponding interface.
Defines additional module with a suffix Static
for a value definition of some interface type.
Assume we have the following input:
interface Foo = {
someMethod(value: number): void;
}
declare var foo: Foo;
If this option is set, the output will be:
module Foo = {
type t
@send external someMethod: (t, float) => unit = "someMethod"
}
module FooStatic = {
@module("package") @scope("Foo") @val external someMethod: float => unit = "someMethod"
}
@module("package") @val external foo: Foo.t = "Foo"
/* usage */
FooStatic.someMethod(42.0)
foo->Foo.someMethod(42.0) // "instance call" is also available
Otherwise, the output will be:
module Foo = {
type t
@send external someMethod: (t, float) => unit = "someMethod"
}
@module("package") @val external foo: Foo.t = "Foo"
/* usage */
foo->Foo.someMethod(42.0)
A notable example is the document
variable in DOM (https://github.com/microsoft/TypeScript/blob/main/lib/lib.dom.d.ts).
Try to use more readable names instead of AnonymousInterface{N}
.
- If the anonymous interface is an argument of a function, the name of the argument will be used.
- If the anonymous interface is the type of a field or the return type of a function, the name of the field/function will be used.
TypeScript code often has mutually recursive definitions. ReScript support defining recursive types by type rec
, but there are some cases where type rec
is not enough. As such, ts2ocaml
emits a special recursive module named Types
that contains all the types used in the file. You can use the --no-types-module
option to disable this.
Warning: This option is intended for library authors who want a minimalistic output. It will generate a broken code if an input file contains mutually recursive types. A manual modification would be needed!
Also, you wouldn't need this unless you're using the
--no-resi
option, as theTypes
module is hidden by the.resi
file and won't show up in the editor autocompletion.
Warning: These features are experimental and may be subject to change.
Emit additional variant type for tagged union.
Assume we have the following input:
interface Foo {
kind: "foo";
...
}
interface Bar {
kind: "bar";
...
}
type FooBar = Foo | Bar;
Normally, ts2ocaml
would generate the following code:
module Foo = {
type t
@get external get_kind: (t) => string = "kind"
...
}
module Bar = {
type t
@get external get_kind: (t) => string = "kind"
...
}
module FooBar = {
type t = Union.t2<Foo.t, Bar.t>
}
With this option, ts2ocaml
will generate an additional type FooBar.cases
and additional functions FooBar.box
and FooBar.unbox
:
module FooBar = {
type t = Union.t2<Foo.t, Bar.t>
@tag("kind") type cases =
| @as("foo") Foo (Foo.t)
| @as("bar") Bar (Bar.t)
let box: (t) => cases = ...
let unbox: (cases) => t = ...
}
Now you can match over the tagged union type by box
ing it first:
let x : FooBar.t = ...
switch x->FooBar.box {
| Foo(foo) => ...
| Bar(bar) => ...
}