-
Notifications
You must be signed in to change notification settings - Fork 0
/
llama_patch.py
209 lines (166 loc) · 9.13 KB
/
llama_patch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from typing import List, Optional, Tuple
import torch
from torch import nn
import torch.nn.functional as F
import math
import warnings
import transformers
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb, repeat_kv
try:
from flash_attn.modules.mha import FlashSelfAttention
except Exception:
raise ModuleNotFoundError(
"Please install FlashAttention first, e.g., with pip install flash-attn --no-build-isolation, Learn more at https://github.com/Dao-AILab/flash-attention#installation-and-features"
)
def compute_flash_attention(flash_attn, q, k, v, attention_mask=None, head_mask=None):
# q, k, v: [bs, seq_len, num_attention_heads, attn_head_size]
# attention_mask (float): [bs, seq_len]
batch_size, max_len = q.size(0), q.size(1)
qkv = torch.stack([q, k, v], dim=2)
dtype_in = qkv.dtype
if dtype_in == torch.float32:
qkv = qkv.to(torch.float16) # need to truncate in case input is fp32
cu_seqlens, max_seqlen = None, None
if attention_mask is None:
out = flash_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
else:
# Limitation: non-contiguous attention mask will not be handled correctly
# model will be able to pay attention between the first and last non-masked token, i.e. left- and right-side padding is supported.
csums = (attention_mask >= 0).cumsum(dim=1)
ends = csums.argmax(dim=1) + 1
starts = ends - csums.max(dim=1).values
seqlens = ends - starts
qkv = torch.cat([qkv[i, starts[i] : ends[i]] for i in range(batch_size)], dim=0)
zero = torch.zeros_like(seqlens[:1]) # torch.tensor([0]) with correct dtype and device
cu_seqlens = torch.cat([zero, seqlens.cumsum(dim=0)], dim=0).to(torch.int32)
max_seqlen = seqlens.max().item()
out = flash_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
# out: [num_unmasked_tokens, num_attention_heads, attn_head_size]
seqs = [out[start:end] for start, end in zip(cu_seqlens[:-1], cu_seqlens[1:])]
# stack and pad sequences together
padded_seqs = [
F.pad(seqs[i], (0, 0) * (seqs[i].dim() - 1) + (starts[i], max_len - ends[i]), value=0.0)
for i in range(batch_size)
]
out = torch.stack(padded_seqs)
if out.dtype != dtype_in:
out = out.to(dtype_in)
return out
# AND https://github.com/LAION-AI/Open-Assistant/blob/04fa9a24b2a58c8885b8aa6a2eb02b18de6b4961/model/model_training/models/patching_llama.py
def llama_forward_with_flash_attn(
self: LlamaAttention,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if not hasattr(self, 'att_fn'):
self.att_fn = FlashSelfAttention(causal=True)
flash_attn = self.att_fn
if output_attentions:
warnings.warn("Output attentions is not supported for patched `LlamaAttention`, returning `None` instead.")
if self.config.pretraining_tp > 1:
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
if (
query_states.shape == key_states.shape
): # and (attention_mask is None or attention_mask[:, 0, -1, 0].min() >= 0):
if attention_mask is not None:
attention_mask = attention_mask[:, 0, -1]
flash_attn.train(self.training)
out_dtype = value_states.dtype
q, k, v = (
query_states.transpose(1, 2),
key_states.transpose(1, 2),
value_states.transpose(1, 2),
)
attn_output = compute_flash_attention(flash_attn, q, k, v, attention_mask)
attn_output = attn_output.transpose(1, 2).to(out_dtype)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
else:
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
# Disable the transformation of the attention mask in LlamaModel as the flash attention
# requires the attention mask to be the same as the key_padding_mask
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
# [bsz, seq_len]
return attention_mask
def replace_attn_with_flash_attn():
cuda_major, cuda_minor = torch.cuda.get_device_capability()
if cuda_major < 8:
print(
"Flash attention is only supported on Ampere or Hopper GPU during training due to head dim > 64 backward."
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
)
# transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
# _prepare_decoder_attention_mask
# )
transformers.models.llama.modeling_llama.LlamaAttention.old_forward = transformers.models.llama.modeling_llama.LlamaAttention.forward
transformers.models.llama.modeling_llama.LlamaAttention.forward = llama_forward_with_flash_attn
def unplace_flash_attn_with_attn():
import importlib
import transformers
print("Reloading llama model, unpatching flash attention")
importlib.reload(transformers.models.llama.modeling_llama)