Skip to content

Latest commit

 

History

History
28 lines (24 loc) · 1.27 KB

README.md

File metadata and controls

28 lines (24 loc) · 1.27 KB

Numerai Model Prediction Docker Environment

Local testing of pickle models

You can run a local pickle model via

docker run -i --rm -v "$PWD:$PWD" ghcr.io/numerai/numerai_predict_py_3_10:stable --model $PWD/model.pkl

Presigned S3 URLs

Presigned GET and POST urls are used to ensure that only the specified model is downloaded during execution and that model prediction uploads from other models are not accessed or tampered with.

The --model arg is designed to accept a pre-signed S3 GET URL generated via boto3

params = dict(Bucket='numerai-pickled-user-models',
              Key='5a5a8da7-05a4-41bf-9c2b-7f61bab5b89b/model-Kc5pT9r85SRD.pkl')
presigned_model_url = s3_client.generate_presigned_url("get_object", params, ExpiresIn=600)

The --post_url and --post_data args are designed to accept a pre-signed S3 POST URL + urlencoded data dictionary generated via boto3

presigned_post = s3_client.generate_presigned_post(Bucket='numerai-pickled-user-models-live-output',
                                                   Key='5a5a8da7-05a4-41bf-9c2b-7f61bab5b89b/live_predictions-b7446fc4cc7e.csv',
                                                   ExpiresIn=600)
post_url = presigned_post['url']
post_data = urllib.parse.urlencode(presigned_post['fields'])