forked from ShigekiKarita/espnet-semi-supervised
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.sh
executable file
·354 lines (300 loc) · 11.3 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#!/bin/bash
. ./path.sh
. ./cmd.sh
sup_data_ratio=1.0
# general configuration
init=""
backend=pytorch
stage=0 # start from 0 if you need to start from data preparation
gpu=-1 # use 0 when using GPU on slurm/grid engine, otherwise -1
debugmode=1
dumpdir=dump # directory to dump full features
N=0 # number of minibatches to be used (mainly for debugging). "0" uses all minibatches.
verbose=0 # verbose option
# feature configuration
do_delta=false # true when using CNN
# network archtecture
# encoder related
etype=blstmp # encoder architecture type
elayers=6
eunits=320
eprojs=320
subsample=1_2_2_1_1 # skip every n frame from input to nth layers
# decoder related
dlayers=1
dunits=300
# attention related
atype=location
aconv_chans=10
aconv_filts=100
use_batchnorm=False
# loss
unsupervised_loss=mmd
sup_loss_ratio=0.5
st_ratio=0.5
# speech/text unsupervised loss ratio
mtlalpha=0.5
paired_hidden=False
# minibatch related
batchsize=30
maxlen_in=800 # if input length > maxlen_in, batchsize is automatically reduced
maxlen_out=150 # if output length > maxlen_out, batchsize is automatically reduced
# optimization related
opt=adadelta
epochs=15
lr=1.0
weight_decay=0.0
# decoding parameter
beam_size=20
penalty=0.1
maxlenratio=0.0
minlenratio=0.0
ctc_weight=0.3
recog_model=acc.best # set a model to be used for decoding: 'acc.best' or 'loss.best'
# data
# wsj0=/export/corpora5/LDC/LDC93S6B
# wsj1=/export/corpora5/LDC/LDC94S13B
wsj0=/nfs/kswork/kishin/karita/datasets/LDC93S6A
wsj1=/nfs/kswork/kishin/karita/datasets/LDC94S13A
# exp tag
tag="" # tag for managing experiments.
train_set=train_si84
unpaired_set=train_si284
. utils/parse_options.sh || exit 1;
. ./path.sh
. ./cmd.sh
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
train_dev=test_dev93
recog_set="test_dev93 test_eval92"
if [ ${stage} -le 0 ]; then
### Task dependent. You have to make data the following preparation part by yourself.
### But you can utilize Kaldi recipes in most cases
echo "stage 0: Data preparation"
local/wsj_data_prep.sh ${wsj0}/??-{?,??}.? ${wsj1}/??-{?,??}.?
./shell/wsj_format_data_with_si84.sh
fi
feat_tr_dir=${dumpdir}/${train_set}/delta${do_delta}; mkdir -p ${feat_tr_dir}
feat_us_dir=${dumpdir}/${unpaired_set}/delta${do_delta}; mkdir -p ${feat_us_dir}
feat_dt_dir=${dumpdir}/${train_dev}/delta${do_delta}; mkdir -p ${feat_dt_dir}
if [ ${stage} -le 1 ]; then
### Task dependent. You have to design training and dev sets by yourself.
### But you can utilize Kaldi recipes in most cases
echo "stage 1: Feature Generation"
fbankdir=fbank
# Generate the fbank features; by default 80-dimensional fbanks with pitch on each frame
for x in ${train_set} ${unpaired_set} ${recog_set} ; do
steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 10 data/${x} exp/make_fbank/${x} ${fbankdir}
done
# compute global CMVN
compute-cmvn-stats scp:data/${unpaired_set}/feats.scp data/${unpaired_set}/cmvn.ark
# dump features for training
dump.sh --cmd "$train_cmd" --nj 32 --do_delta $do_delta \
data/${train_set}/feats.scp data/${unpaired_set}/cmvn.ark exp/dump_feats/train ${feat_tr_dir}
dump.sh --cmd "$train_cmd" --nj 32 --do_delta $do_delta \
data/${unpaired_set}/feats.scp data/${unpaired_set}/cmvn.ark exp/dump_feats/train ${feat_us_dir}
dump.sh --cmd "$train_cmd" --nj 4 --do_delta $do_delta \
data/${train_dev}/feats.scp data/${unpaired_set}/cmvn.ark exp/dump_feats/dev ${feat_dt_dir}
fi
dict=data/lang_1char/${unpaired_set}_units.txt
nlsyms=data/lang_1char/non_lang_syms.txt
echo "dictionary: ${dict}"
if [ ${stage} -le 2 ]; then
### Task dependent. You have to check non-linguistic symbols used in the corpus.
echo "stage 2: Dictionary and Json Data Preparation"
mkdir -p data/lang_1char/
echo "make a non-linguistic symbol list"
cut -f 2- data/${unpaired_set}/text | tr " " "\n" | sort | uniq | grep "<" > ${nlsyms}
cat ${nlsyms}
echo "make a dictionary"
echo "<unk> 1" > ${dict} # <unk> must be 1, 0 will be used for "blank" in CTC
text2token.py -s 1 -n 1 -l ${nlsyms} data/${unpaired_set}/text | cut -f 2- -d" " | tr " " "\n" \
| sort | uniq | grep -v -e '^\s*$' | awk '{print $0 " " NR+1}' >> ${dict}
wc -l ${dict}
echo "make json files"
data2json.sh --feat ${feat_tr_dir}/feats.scp --nlsyms ${nlsyms} \
data/${train_set} ${dict} > ${feat_tr_dir}/data.json
data2json.sh --feat ${feat_us_dir}/feats.scp --nlsyms ${nlsyms} \
data/${unpaired_set} ${dict} > ${feat_us_dir}/data.json
data2json.sh --feat ${feat_dt_dir}/feats.scp --nlsyms ${nlsyms} \
data/${train_dev} ${dict} > ${feat_dt_dir}/data.json
fi
if [ -z ${tag} ]; then
expdir=exp/semi_data${sup_data_ratio}_${unsupervised_loss}_loss${sup_loss_ratio}_${train_set}_${etype}_e${elayers}_subsample${subsample}_unit${eunits}_proj${eprojs}_d${dlayers}_unit${dunits}_${atype}_aconvc${aconv_chans}_aconvf${aconv_filts}_mtlalpha${mtlalpha}_${opt}_lr${lr}_wd_${weight_decay}_bs${batchsize}_mli${maxlen_in}_mlo${maxlen_out}_epochs${epochs}
if ${do_delta}; then
expdir=${expdir}_delta
fi
else
expdir=exp/${train_set}_${tag}
fi
mkdir -p ${expdir}
init_train_script=asr_train_loop_th.py
retrain_script=retrain_loop_th.py
decode_script=unsupervised_recog_th.py
if [ ${stage} -le 3 ]; then
echo "stage 3: Network Init-Training"
${cuda_cmd} ${expdir}/init_train.log \
${init_train_script} \
--gpu ${gpu} \
--outdir ${expdir}/init_results \
--debugmode ${debugmode} \
--dict ${dict} \
--debugdir ${expdir} \
--minibatches ${N} \
--verbose ${verbose} \
--train-feat scp:${feat_tr_dir}/feats.scp \
--valid-feat scp:${feat_dt_dir}/feats.scp \
--train-label ${feat_tr_dir}/data.json \
--valid-label ${feat_dt_dir}/data.json \
--etype ${etype} \
--elayers ${elayers} \
--eunits ${eunits} \
--eprojs ${eprojs} \
--subsample ${subsample} \
--dlayers ${dlayers} \
--dunits ${dunits} \
--atype ${atype} \
--aconv-chans ${aconv_chans} \
--aconv-filts ${aconv_filts} \
--mtlalpha ${mtlalpha} \
--batch-size ${batchsize} \
--maxlen-in ${maxlen_in} \
--maxlen-out ${maxlen_out} \
--opt ${opt} \
--supervised-data-ratio ${sup_data_ratio} \
--epochs ${epochs}
fi
if [ -z $init ]; then
init=${expdir}/init_results/model.${recog_model}
fi
if [ ${stage} -le 4 ]; then
echo "stage 4: Network Re-Training"
${cuda_cmd} ${expdir}/train.log \
${retrain_script} \
--init-model ${init} \
--gpu ${gpu} \
--outdir ${expdir}/results \
--debugmode ${debugmode} \
--dict ${dict} \
--debugdir ${expdir} \
--minibatches ${N} \
--verbose ${verbose} \
--train-feat scp:${feat_tr_dir}/feats.scp \
--valid-feat scp:${feat_dt_dir}/feats.scp \
--unsupervised-feat scp:${feat_us_dir}/feats.scp \
--train-label ${feat_tr_dir}/data.json \
--valid-label ${feat_dt_dir}/data.json \
--unsupervised-json ${feat_us_dir}/data.json \
--etype ${etype} \
--elayers ${elayers} \
--eunits ${eunits} \
--eprojs ${eprojs} \
--subsample ${subsample} \
--dlayers ${dlayers} \
--dunits ${dunits} \
--atype ${atype} \
--aconv-chans ${aconv_chans} \
--aconv-filts ${aconv_filts} \
--mtlalpha ${mtlalpha} \
--batch-size ${batchsize} \
--maxlen-in ${maxlen_in} \
--maxlen-out ${maxlen_out} \
--opt ${opt} \
--lr ${lr} \
--weight-decay ${weight_decay} \
--unsupervised-loss ${unsupervised_loss} \
--supervised-loss-ratio ${sup_loss_ratio} \
--supervised-data-ratio ${sup_data_ratio} \
--speech-text-ratio ${st_ratio} \
--use-batchnorm ${use_batchnorm} \
--epochs ${epochs}
fi
if [ ${stage} -le 5 ]; then
echo "stage 5: Decoding retrained model"
nj=32
for rtask in ${recog_set}; do
(
decode_dir=decode_${rtask}_beam${beam_size}_e${recog_model}_p${penalty}_len${minlenratio}-${maxlenratio}_ctcw${ctc_weight}
# split data
data=data/${rtask}
sdata=${data}/split${nj}utt;
if [ ! -d $sdata ]; then
split_data.sh --per-utt ${data} ${nj};
fi
# feature extraction
feats="ark,s,cs:apply-cmvn --norm-vars=true data/train_si284/cmvn.ark scp:${sdata}/JOB/feats.scp ark:- |"
if ${do_delta}; then
feats="$feats add-deltas ark:- ark:- |"
fi
if [ ! -e ${data}/data.json ]; then
# make json labels for recognition
data2json.sh --nlsyms ${nlsyms} ${data} ${dict} > ${data}/data.json
fi
#### use CPU for decoding
gpu=-1
${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log \
${decode_script} \
--gpu ${gpu} \
--recog-feat "$feats" \
--recog-label ${data}/data.json \
--result-label ${expdir}/${decode_dir}/data.JOB.json \
--model ${expdir}/results/model.${recog_model} \
--model-conf ${expdir}/results/model.conf \
--beam-size ${beam_size} \
--penalty ${penalty} \
--maxlenratio ${maxlenratio} \
--minlenratio ${minlenratio} \
--ctc-weight ${ctc_weight} &
wait
score_sclite.sh --wer true --nlsyms ${nlsyms} ${expdir}/${decode_dir} ${dict}
) &
done
wait
echo "Finished"
fi
if [ ${stage} -le 6 ]; then
echo "stage 6: Decoding init model"
nj=32
for rtask in ${recog_set}; do
(
decode_dir=init_decode_${rtask}_beam${beam_size}_e${recog_model}_p${penalty}_len${minlenratio}-${maxlenratio}_ctcw${ctc_weight}
# split data
data=data/${rtask}
sdata=${data}/split${nj}utt;
if [ ! -d $sdata ]; then
split_data.sh --per-utt ${data} ${nj};
fi
# feature extraction
feats="ark,s,cs:apply-cmvn --norm-vars=true data/train_si284/cmvn.ark scp:${sdata}/JOB/feats.scp ark:- |"
if ${do_delta}; then
feats="$feats add-deltas ark:- ark:- |"
fi
if [ ! -e ${data}/data.json ]; then
# make json labels for recognition
data2json.sh --nlsyms ${nlsyms} ${data} ${dict} > ${data}/data.json
fi
#### use CPU for decoding
gpu=-1
${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log \
asr_recog_th.py \
--gpu ${gpu} \
--recog-feat "$feats" \
--recog-label ${data}/data.json \
--result-label ${expdir}/${decode_dir}/data.JOB.json \
--model ${expdir}/init_results/model.${recog_model} \
--model-conf ${expdir}/init_results/model.conf \
--beam-size ${beam_size} \
--penalty ${penalty} \
--maxlenratio ${maxlenratio} \
--minlenratio ${minlenratio} \
--ctc-weight ${ctc_weight} &
wait
score_sclite.sh --wer true --nlsyms ${nlsyms} ${expdir}/${decode_dir} ${dict}
) &
done
wait
echo "Finished"
fi