-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_model.py
162 lines (117 loc) · 6.39 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python3
from keras.layers import Input
from keras.models import load_model
from keras.losses import mean_squared_error
from keras.optimizers import Adam, SGD
from keras.regularizers import L1L2
from keras import backend as K
import models
import train
import pretrain
import data_utils
import numpy as np
import tensorflow as tf
import os
import pandas
import sys
import shutil
import argparse
import configparser
def get_argparser():
parser = argparse.ArgumentParser(description="em-gan-hotknife")
parser.add_argument('-c','--config', type=str, help="path to a .cfg or .ini with run parameters and specifications", required=True)
return parser
def str2bool(v, var=None):
if v.lower() in ('true', 't', 'yes', 'y', '1'):
return True
elif v.lower() in ('false', 'f', 'no', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected%s!' % ('for variable %s' % var if var else ''))
def handle_pretrain(global_args, pretrain_args):
architecture_specs = models.ARCHITECTURES["generator"][pretrain_args["generator_architecture"]]
generator_constructor_args = {arg[14:]:pretrain_args[arg] for arg in pretrain_args if arg[:14]=="generator_arg_"}
print(f"Detected {len(generator_constructor_args)} arguments for the generator constructor")
generator = architecture_specs[0](**generator_constructor_args) #invoke constructor with provided args
generator_optimizer = Adam(lr=float(pretrain_args["generator_learning_rate"])) ## TODO do this based on cfg
num_epochs = int(pretrain_args["num_epochs"])
num_minibatch = int(pretrain_args["num_minibatch"])
minibatch_size = int(pretrain_args["minibatch_size"])
input_shape = architecture_specs[1]
output_shape = architecture_specs[2]
base_save_dir = os.path.join(global_args["run_output"],"pretrain")
os.makedirs(base_save_dir)
valid_data_generator = data_utils.valid_data_generator_n5(global_args["valid_container"], global_args["valid_dataset"], input_shape, minibatch_size)
pretrain.pretrain(generator=generator, generator_optimizer=generator_optimizer, epochs=num_epochs,
minibatch_size=minibatch_size, num_minibatch=num_minibatch, input_shape=input_shape, output_shape=output_shape,
valid_generator=valid_data_generator, base_save_dir=base_save_dir)
if models.autodetect_skipconn(generator):
# if it has skip connections
generator.save(os.path.join(base_save_dir, "pretrained-generator.h5"))
else:
# if it doesn't, add them
generator.save(os.path.join(base_save_dir, "pretrained-generator-nsc.h5"))
generator_constructor_args["skip_conns"] = True
generator_sc = architecture_specs[0](**generator_constructor_args)
models.load_weights_compat(generator_sc, generator, True)
generator_sc.save(os.path.join(base_save_dir, "pretrained-generator.h5"))
generator = generator_sc
return generator
def handle_train(generator, global_args, train_args):
""" Handles the main training of the model. Does the busywork/cleaning up needed to call train.train().
generator - Pretrained model, if pretraining was also done this run. Otherwise, None, in which case
it is loaded from train_args['pretrained_model']
"""
d_architecture_specs = models.ARCHITECTURES["discriminator"][train_args["discriminator_architecture"]]
discriminator_constructor_args = {arg[18:]:train_args[arg] for arg in train_args if arg[:18]=="discriminator_arg_"}
print(f"Detected {len(discriminator_constructor_args)} arguments for the discriminator constructor")
discriminator = d_architecture_specs[0](**discriminator_constructor_args)
if generator is None:
generator = load_model(train_args["pretrained_model"])
generator_optimizer = Adam(lr=float(train_args["generator_learning_rate"]))
discriminator_optimizer = Adam(lr=float(train_args["discriminator_learning_rate"]))
penalty_optimizer = Adam(lr=float(train_args["penalty_learning_rate"]))
num_epochs = int(train_args["num_epochs"])
num_minibatch = int(train_args["num_minibatch"])
minibatch_size = int(train_args["minibatch_size"])
instance_noise = str2bool(train_args["instance_noise"],"train.instance_noise")
instance_noise_profile = ([float(train_args["instance_noise_std_dev"])]*num_epochs) if instance_noise else 0
input_shape = *(dim.value for dim in generator.input.shape[1:4]),
output_shape = *(dim.value for dim in generator.output.shape[1:4]),
generator_mask_size = int(train_args["generator_mask_size"])
feather_size = int(train_args["feather_mask_size"]) if "feather_mask_size" in train_args else 0
gap_index = int(global_args["gap_location"])
valid_generator = data_utils.valid_data_generator_n5(global_args["valid_container"], global_args["valid_dataset"], output_shape, minibatch_size)
gap_generator = data_utils.gap_data_generator_n5(global_args["gap_container"], global_args["gap_dataset"], input_shape, minibatch_size, gap_index)
base_save_dir = os.path.join(global_args["run_output"], "train")
os.makedirs(base_save_dir)
train.train(generator=generator, discriminator=discriminator, generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer, penalty_optimizer=penalty_optimizer, epochs=num_epochs,
minibatch_size=minibatch_size, num_minibatch=num_minibatch, instance_noise=instance_noise,
instance_noise_profile=instance_noise_profile, input_shape=input_shape, output_shape=output_shape,
generator_mask_size=generator_mask_size, feather_size=feather_size, valid_generator=valid_generator,
gap_generator=gap_generator, gap_index=0, base_save_dir=base_save_dir)
generator.save(os.path.join(base_save_dir, "generator-final.h5"))
discriminator.save(os.path.join(base_save_dir, "discriminator-final.h5"))
return (generator, discriminator)
def main():
args = get_argparser().parse_args()
config = configparser.ConfigParser()
config.read(args.config)
train = str2bool(config["global"]["train"], "global.train") if "train" in config["global"] else False
pretrain = str2bool(config["global"]["pretrain"], "global.pretrain") if "pretrain" in config["global"] else False
if not train and not pretrain:
raise Exception("Nothing to do!")
save_path = config["global"]["run_output"]
if not os.path.exists(save_path):
os.makedirs(save_path)
shutil.copyfile(args.config, os.path.join(save_path,"run_parameters.cfg"))
generator = None
if pretrain:
# handle pretrain here
generator = handle_pretrain(config["global"], config["pretrain"])
if train:
# handle train here
handle_train(generator, config["global"], config["train"])
if __name__=="__main__":
main()