forked from Minqi824/ADBench
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_generator.py
358 lines (286 loc) · 15.8 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import numpy as np
import pandas as pd
import random
import os
from math import ceil
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from itertools import combinations
from sklearn.mixture import GaussianMixture
from copulas.multivariate import VineCopula
from copulas.univariate import GaussianKDE
from myutils import Utils
# currently, data generator only supports for generating the binary classification datasets
class DataGenerator():
def __init__(self, seed:int=42, dataset:str=None, test_size:float=0.3,
generate_duplicates=True, n_samples_threshold=1000):
'''
:param seed: seed for reproducible results
:param dataset: specific the dataset name
:param test_size: testing set size
:param generate_duplicates: whether to generate duplicated samples when sample size is too small
:param n_samples_threshold: threshold for generating the above duplicates, if generate_duplicates is False, then datasets with sample size smaller than n_samples_threshold will be dropped
'''
self.seed = seed
self.dataset = dataset
self.test_size = test_size
self.generate_duplicates = generate_duplicates
self.n_samples_threshold = n_samples_threshold
# dataset list
self.dataset_list_classical = [os.path.splitext(_)[0] for _ in os.listdir('datasets/Classical')
if os.path.splitext(_)[1] == '.npz'] # classical AD datasets
self.dataset_list_cv = [os.path.splitext(_)[0] for _ in os.listdir('datasets/CV(by ResNet-18)')
if os.path.splitext(_)[1] == '.npz'] # CV datasets
self.dataset_list_nlp = [os.path.splitext(_)[0] for _ in os.listdir('datasets/NLP(by BERT)')
if os.path.splitext(_)[1] == '.npz'] # NLP datasets
# myutils function
self.utils = Utils()
def generate_realistic_synthetic(self, X, y, realistic_synthetic_mode, alpha:int, percentage:float):
'''
Currently, four types of realistic synthetic outliers can be generated:
1. local outliers: where normal data follows the GMM distribuion, and anomalies follow the GMM distribution with modified covariance
2. global outliers: where normal data follows the GMM distribuion, and anomalies follow the uniform distribution
3. dependency outliers: where normal data follows the vine coupula distribution, and anomalies follow the independent distribution captured by GaussianKDE
4. cluster outliers: where normal data follows the GMM distribuion, and anomalies follow the GMM distribution with modified mean
:param X: input X
:param y: input y
:param realistic_synthetic_mode: the type of generated outliers
:param alpha: the scaling parameter for controling the generated local and cluster anomalies
:param percentage: controling the generated global anomalies
'''
if realistic_synthetic_mode in ['local', 'cluster', 'dependency', 'global']:
pass
else:
raise NotImplementedError
# the number of normal data and anomalies
pts_n = len(np.where(y == 0)[0])
pts_a = len(np.where(y == 1)[0])
# only use the normal data to fit the model
X = X[y == 0]
y = y[y == 0]
# generate the synthetic normal data
if realistic_synthetic_mode in ['local', 'cluster', 'global']:
# select the best n_components based on the BIC value
metric_list = []
n_components_list = list(np.arange(1, 10))
for n_components in n_components_list:
gm = GaussianMixture(n_components=n_components, random_state=self.seed).fit(X)
metric_list.append(gm.bic(X))
best_n_components = n_components_list[np.argmin(metric_list)]
# refit based on the best n_components
gm = GaussianMixture(n_components=best_n_components, random_state=self.seed).fit(X)
# generate the synthetic normal data
X_synthetic_normal = gm.sample(pts_n)[0]
# we found that copula function may occur error in some datasets
elif realistic_synthetic_mode == 'dependency':
# sampling the feature since copulas method may spend too long to fit
if X.shape[1] > 50:
idx = np.random.choice(np.arange(X.shape[1]), 50, replace=False)
X = X[:, idx]
copula = VineCopula('center') # default is the C-vine copula
copula.fit(pd.DataFrame(X))
# sample to generate synthetic normal data
X_synthetic_normal = copula.sample(pts_n).values
else:
pass
# generate the synthetic abnormal data
if realistic_synthetic_mode == 'local':
# generate the synthetic anomalies (local outliers)
gm.covariances_ = alpha * gm.covariances_
X_synthetic_anomalies = gm.sample(pts_a)[0]
elif realistic_synthetic_mode == 'cluster':
# generate the clustering synthetic anomalies
gm.means_ = alpha * gm.means_
X_synthetic_anomalies = gm.sample(pts_a)[0]
elif realistic_synthetic_mode == 'dependency':
X_synthetic_anomalies = np.zeros((pts_a, X.shape[1]))
# using the GuassianKDE for generating independent feature
for i in range(X.shape[1]):
kde = GaussianKDE()
kde.fit(X[:, i])
X_synthetic_anomalies[:, i] = kde.sample(pts_a)
elif realistic_synthetic_mode == 'global':
# generate the synthetic anomalies (global outliers)
X_synthetic_anomalies = []
for i in range(X_synthetic_normal.shape[1]):
low = np.min(X_synthetic_normal[:, i]) * (1 + percentage)
high = np.max(X_synthetic_normal[:, i]) * (1 + percentage)
X_synthetic_anomalies.append(np.random.uniform(low=low, high=high, size=pts_a))
X_synthetic_anomalies = np.array(X_synthetic_anomalies).T
else:
pass
X = np.concatenate((X_synthetic_normal, X_synthetic_anomalies), axis=0)
y = np.append(np.repeat(0, X_synthetic_normal.shape[0]),
np.repeat(1, X_synthetic_anomalies.shape[0]))
return X, y
'''
Here we also consider the robustness of baseline models, where three types of noise can be added
1. Duplicated anomalies, which should be added to training and testing set, respectively
2. Irrelevant features, which should be added to both training and testing set
3. Annotation errors (Label flips), which should be only added to the training set
'''
def add_duplicated_anomalies(self, X, y, duplicate_times:int):
if duplicate_times <= 1:
pass
else:
# index of normal and anomaly data
idx_n = np.where(y==0)[0]
idx_a = np.where(y==1)[0]
# generate duplicated anomalies
idx_a = np.random.choice(idx_a, int(len(idx_a) * duplicate_times))
idx = np.append(idx_n, idx_a); random.shuffle(idx)
X = X[idx]; y = y[idx]
return X, y
def add_irrelevant_features(self, X, y, noise_ratio:float):
# adding uniform noise
if noise_ratio == 0.0:
pass
else:
noise_dim = int(noise_ratio / (1 - noise_ratio) * X.shape[1])
if noise_dim > 0:
X_noise = []
for i in range(noise_dim):
idx = np.random.choice(np.arange(X.shape[1]), 1)
X_min = np.min(X[:, idx])
X_max = np.max(X[:, idx])
X_noise.append(np.random.uniform(X_min, X_max, size=(X.shape[0], 1)))
# concat the irrelevant noise feature
X_noise = np.hstack(X_noise)
X = np.concatenate((X, X_noise), axis=1)
# shuffle the dimension
idx = np.random.choice(np.arange(X.shape[1]), X.shape[1], replace=False)
X = X[:, idx]
return X, y
def add_label_contamination(self, X, y, noise_ratio:float):
if noise_ratio == 0.0:
pass
else:
# here we consider the label flips situation: a label is randomly filpped to another class with probability p (i.e., noise ratio)
idx_flips = np.random.choice(np.arange(len(y)), int(len(y) * noise_ratio), replace=False)
y[idx_flips] = 1 - y[idx_flips] # change 0 to 1 and 1 to 0
return X, y
def generator(self, X=None, y=None, minmax=True,
la=None, at_least_one_labeled=False,
realistic_synthetic_mode=None, alpha:int=5, percentage:float=0.1,
noise_type=None, duplicate_times:int=2, contam_ratio=1.00, noise_ratio:float=0.05):
'''
la: labeled anomalies, can be either the ratio of labeled anomalies or the number of labeled anomalies
at_least_one_labeled: whether to guarantee at least one labeled anomalies in the training set
'''
# set seed for reproducible results
self.utils.set_seed(self.seed)
# load dataset
if self.dataset is None:
assert X is not None and y is not None, "For customized dataset, you should provide the X and y!"
else:
if self.dataset in self.dataset_list_classical:
data = np.load(os.path.join('datasets', 'Classical', self.dataset + '.npz'), allow_pickle=True)
elif self.dataset in self.dataset_list_cv:
data = np.load(os.path.join('datasets', 'CV(by ResNet-18)', self.dataset + '.npz'), allow_pickle=True)
elif self.dataset in self.dataset_list_nlp:
data = np.load(os.path.join('datasets', 'NLP(by BERT)', self.dataset + '.npz'), allow_pickle=True)
else:
raise NotImplementedError
X = data['X']
y = data['y']
# number of labeled anomalies in the original data
if type(la) == float:
if at_least_one_labeled:
n_labeled_anomalies = ceil(sum(y) * (1 - self.test_size) * la)
else:
n_labeled_anomalies = int(sum(y) * (1 - self.test_size) * la)
elif type(la) == int:
n_labeled_anomalies = la
else:
raise NotImplementedError
# if the dataset is too small, generating duplicate smaples up to n_samples_threshold
if len(y) < self.n_samples_threshold and self.generate_duplicates:
print(f'generating duplicate samples for dataset {self.dataset}...')
self.utils.set_seed(self.seed)
idx_duplicate = np.random.choice(np.arange(len(y)), self.n_samples_threshold, replace=True)
X = X[idx_duplicate]
y = y[idx_duplicate]
# if the dataset is too large, subsampling for considering the computational cost
if len(y) > 10000:
print(f'subsampling for dataset {self.dataset}...')
self.utils.set_seed(self.seed)
idx_sample = np.random.choice(np.arange(len(y)), 10000, replace=False)
X = X[idx_sample]
y = y[idx_sample]
# whether to generate realistic synthetic outliers
if realistic_synthetic_mode is not None:
# we save the generated dependency anomalies, since the Vine Copula could spend too long for generation
if realistic_synthetic_mode == 'dependency':
if not os.path.exists('datasets/synthetic'):
os.makedirs('datasets/synthetic')
filepath = 'dependency_anomalies_' + self.dataset + '_' + str(self.seed) + '.npz'
try:
data_dependency = np.load(os.path.join('datasets', 'synthetic', filepath), allow_pickle=True)
X = data_dependency['X']; y = data_dependency['y']
except:
# raise NotImplementedError
print(f'Generating dependency anomalies...')
X, y = self.generate_realistic_synthetic(X, y,
realistic_synthetic_mode=realistic_synthetic_mode,
alpha=alpha, percentage=percentage)
np.savez_compressed(os.path.join('datasets', 'synthetic', filepath), X=X, y=y)
pass
else:
X, y = self.generate_realistic_synthetic(X, y,
realistic_synthetic_mode=realistic_synthetic_mode,
alpha=alpha, percentage=percentage)
# whether to add different types of noise for testing the robustness of benchmark models
if noise_type is None:
pass
elif noise_type == 'duplicated_anomalies':
# X, y = self.add_duplicated_anomalies(X, y, duplicate_times=duplicate_times)
pass
elif noise_type == 'irrelevant_features':
X, y = self.add_irrelevant_features(X, y, noise_ratio=noise_ratio)
elif noise_type == 'label_contamination':
pass
else:
raise NotImplementedError
print(f'current noise type: {noise_type}')
# show the statistic
self.utils.data_description(X=X, y=y)
# spliting the current data to the training set and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=self.test_size, shuffle=True, stratify=y)
# we respectively generate the duplicated anomalies for the training and testing set
if noise_type == 'duplicated_anomalies':
X_train, y_train = self.add_duplicated_anomalies(X_train, y_train, duplicate_times=duplicate_times)
X_test, y_test = self.add_duplicated_anomalies(X_test, y_test, duplicate_times=duplicate_times)
# notice that label contamination can only be added in the training set
elif noise_type == 'label_contamination':
X_train, y_train = self.add_label_contamination(X_train, y_train, noise_ratio=noise_ratio)
# minmax scaling
if minmax:
scaler = MinMaxScaler().fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)
# idx of normal samples and unlabeled/labeled anomalies
idx_normal = np.where(y_train == 0)[0]
idx_anomaly = np.where(y_train == 1)[0]
if type(la) == float:
if at_least_one_labeled:
idx_labeled_anomaly = np.random.choice(idx_anomaly, ceil(la * len(idx_anomaly)), replace=False)
else:
idx_labeled_anomaly = np.random.choice(idx_anomaly, int(la * len(idx_anomaly)), replace=False)
elif type(la) == int:
if la > len(idx_anomaly):
raise AssertionError(f'the number of labeled anomalies are greater than the total anomalies: {len(idx_anomaly)} !')
else:
idx_labeled_anomaly = np.random.choice(idx_anomaly, la, replace=False)
else:
raise NotImplementedError
idx_unlabeled_anomaly = np.setdiff1d(idx_anomaly, idx_labeled_anomaly)
# whether to remove the anomaly contamination in the unlabeled data
if noise_type == 'anomaly_contamination':
idx_unlabeled_anomaly = self.remove_anomaly_contamination(idx_unlabeled_anomaly, contam_ratio)
# unlabel data = normal data + unlabeled anomalies (which is considered as contamination)
idx_unlabeled = np.append(idx_normal, idx_unlabeled_anomaly)
del idx_anomaly, idx_unlabeled_anomaly
# the label of unlabeled data is 0, and that of labeled anomalies is 1
y_train[idx_unlabeled] = 0
y_train[idx_labeled_anomaly] = 1
return {'X_train':X_train, 'y_train':y_train, 'X_test':X_test, 'y_test':y_test}