-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIntegers.v
835 lines (684 loc) · 17.9 KB
/
Integers.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
Require Import HoTT.
Require Export HoTT.
Module Export Ints.
Private Inductive Z : Type :=
| zero_Z : Z
| succ : Z -> Z
| pred : Z -> Z.
Axiom inv1 : forall n : Z, n = pred(succ n).
Axiom inv2 : forall n : Z, n = succ(pred n).
Axiom ZisSet : IsHSet Z.
Section Z_induction.
Variable (P : Z -> Type)
(H : forall n, IsHSet (P n))
(a : P zero_Z)
(s : forall (n : Z), P n -> P (succ n))
(p : forall (n : Z), P n -> P (pred n))
(i1 : forall (n : Z) (m : P n), (inv1 n) # m = p (succ n) (s (n) m))
(i2 : forall (n : Z) (m : P n), (inv2 n) # m = s (pred n) (p (n) m)).
Fixpoint Z_ind
(x : Z)
{struct x}
: P x
:=
(match x return _ -> _ -> P x with
| zero_Z => fun _ => fun _ => a
| succ n => fun _ => fun _ => s n (Z_ind n)
| pred n => fun _ => fun _ => p n (Z_ind n)
end) i1 i2.
Axiom Z_ind_beta_inv1 : forall (n : Z), apD Z_ind (inv1 n) = i1 n (Z_ind n).
Axiom Z_ind_beta_inv2 : forall (n : Z), apD Z_ind (inv2 n) = i2 n (Z_ind n).
End Z_induction.
Section Z_recursion.
Variable (P : Type)
(H : IsHSet P)
(a : P)
(s : P -> P)
(p : P -> P)
(i1 : forall (m : P), m = p(s m))
(i2 : forall (m : P), m = s(p m)).
Definition Z_rec : Z -> P.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl.
- apply a.
- intro ; apply s.
- intro ; apply p.
- intros.
refine (transport_const _ _ @ (i1 _)).
- intros.
refine (transport_const _ _ @ (i2 _)).
Defined.
Definition Z_rec_beta_inv1 (n : Z) : ap Z_rec (inv1 n) = i1 (Z_rec n).
Proof.
unfold Z_rec.
eapply (cancelL (transport_const (inv1 n) _)).
simple refine ((apD_const _ _)^ @ _).
apply Z_ind_beta_inv1.
Defined.
Definition Z_rec_beta_inv2 (n : Z) : ap Z_rec (inv2 n) = i2 (Z_rec n).
Proof.
unfold Z_rec.
eapply (cancelL (transport_const (inv2 n) _)).
simple refine ((apD_const _ _)^ @ _).
apply Z_ind_beta_inv2.
Defined.
End Z_recursion.
End Ints.
Section ring_Z.
Fixpoint nat_to_Z (n : nat) : Z :=
match n with
| 0 => zero_Z
| S m => succ (nat_to_Z m)
end.
Definition plus : Z -> Z -> Z := fun x => Z_rec Z x succ pred inv1 inv2.
Lemma plus_0n : forall x, plus zero_Z x = x.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros y Hy.
apply (ap succ Hy).
- intros y Hy.
apply (ap pred Hy).
Defined.
Definition plus_n0 x : plus x zero_Z = x := idpath x.
Lemma plus_Sn x : forall y, plus (succ x) y = succ(plus x y).
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros y Hy.
apply (ap succ Hy).
- intros y Hy.
apply (ap pred Hy @ (inv1 (plus x y))^ @ inv2 (plus x y)).
Defined.
Definition plus_nS x y : plus x (succ y) = succ(plus x y) := idpath.
Lemma plus_Pn x : forall y, plus (pred x) y = pred (plus x y).
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros y Hy.
apply (ap succ Hy @ (inv2 (plus x y))^ @ inv1 (plus x y)).
- intros y Hy.
apply (ap pred Hy).
Defined.
Definition plus_nP x y : plus x (pred y) = pred(plus x y) := idpath.
Lemma plus_comm x : forall y : Z, plus x y = plus y x.
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- apply (plus_0n x)^.
- intros n H1.
apply (ap succ H1 @ (plus_Sn _ _)^).
- intros n H1.
apply (ap pred H1 @ (plus_Pn _ _)^).
Defined.
Lemma plus_assoc x y : forall z : Z, plus (plus x y) z = plus x (plus y z).
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sz HSz.
refine (ap succ HSz).
- intros Pz HPz.
apply (ap pred HPz).
Defined.
Definition negate : Z -> Z := Z_rec Z zero_Z pred succ inv2 inv1.
Lemma negate_negate : forall x, negate(negate x) = x.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sy HSy.
apply (ap succ HSy).
- intros Py HPy.
apply (ap pred HPy).
Defined.
Definition minus x y : Z := plus x (negate y).
Lemma plus_negatex : forall x, plus x (negate x) = zero_Z.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sx HSx.
refine (ap pred (plus_Sn _ _) @ _).
refine ((inv1 _)^ @ HSx).
- intros Px HPx.
refine (ap succ (plus_Pn _ _) @ _).
refine ((inv2 _)^ @ HPx).
Defined.
Definition plus_xnegate x : plus (negate x) x = zero_Z :=
plus_comm (negate x) x @ plus_negatex x.
Lemma plus_negate x : forall y, plus (negate x) (negate y) = negate (plus x y).
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sy HSy.
apply (ap pred HSy).
- intros Py HPy.
apply (ap succ HPy).
Defined.
Definition times (x : Z) : Z -> Z.
Proof.
simple refine (Z_rec _ _ _ _ _ _).
- apply zero_Z.
- apply (plus x).
- apply (fun z => minus z x).
- intros ; unfold minus.
symmetry.
refine (ap (fun z => plus z (negate x)) (plus_comm x m) @ _).
refine (plus_assoc _ _ _ @ _).
refine (ap (fun z => plus m z) (plus_negatex _) @ _).
apply plus_n0.
- intros ; unfold minus.
symmetry.
refine (ap (fun z => plus x z) (plus_comm _ _) @ _).
refine ((plus_assoc _ _ _)^ @ _).
refine (ap (fun z => plus z m) (plus_negatex _) @ _).
apply plus_0n.
Defined.
Lemma times_0n : forall x, times zero_Z x = zero_Z.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; try (intros ; apply set_path2) ; simpl.
- reflexivity.
- intros Sx HSx.
apply (plus_0n _ @ HSx).
- intros Px HPx.
unfold minus ; simpl ; apply HPx.
Defined.
Definition times_n0 n : times n zero_Z = zero_Z := idpath.
Lemma times_Sn x : forall y, times (succ x) y = plus y (times x y).
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; try (intros ; apply set_path2) ; simpl.
- reflexivity.
- intros Sy HSy.
refine (ap (fun z => plus (succ x) z) HSy @ _).
refine (plus_Sn _ _ @ _).
refine (_ @ (plus_Sn _ _)^).
refine (ap succ _).
refine ((plus_assoc _ _ _)^ @ _).
refine (_ @ plus_assoc _ _ _).
refine (ap (fun z => plus z (times x Sy)) (plus_comm _ _)).
- intros Py HPy ; unfold minus.
refine (ap (fun z => plus z (negate (succ x))) HPy @ _) ; simpl.
refine (_ @ (plus_Pn _ _)^).
refine (ap pred _).
apply plus_assoc.
Defined.
Definition times_nS x y : times x (succ y) = plus x (times x y) := idpath.
Lemma times_Pn x : forall y, times (pred x) y = minus (times x y) y.
Proof.
simple refine (Z_ind _ _ _ _ _ _) ; try (intros ; apply set_path2) ; simpl.
- reflexivity.
- intros Sy HSy.
refine (ap (fun z => plus (pred x) z) HSy @ _) ; unfold minus.
refine (plus_Pn _ _ @ _) ; simpl.
refine (ap pred _).
apply (plus_assoc _ _ _)^.
- intros Py HPy.
refine (ap (fun z => minus z (pred x)) HPy @ _) ; unfold minus ; simpl.
refine (ap succ _).
refine (plus_assoc _ _ _ @ _).
refine (_ @ (plus_assoc _ _ _)^).
refine (ap (fun z => plus (times x Py) z) (plus_comm _ _)).
Defined.
Definition times_nP x y : times x (pred y) = minus (times x y) x := idpath.
Lemma times_comm x : forall y, times x y = times y x.
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- apply (times_0n x)^.
- intros Sx HSx.
apply (ap (fun z => plus x z) HSx @ (times_Sn _ _)^).
- intros Py HPy.
apply (ap (fun z => minus z x) HPy @ (times_Pn _ _)^).
Defined.
Lemma times_negatex x : forall y, times x (negate y) = negate (times x y).
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sy HSy.
unfold minus.
refine (ap (fun z => plus z (negate x)) HSy @ _).
refine (plus_negate _ _ @ _).
apply (ap negate (plus_comm _ _)).
- intros Py HPy.
refine (ap (plus x) HPy @ _).
unfold minus.
refine (ap (fun z => plus z (negate (times x Py))) (negate_negate _)^ @ _).
refine (plus_negate _ _ @ _).
refine (ap negate (plus_comm _ _)).
Defined.
Definition times_xnegate x y : times (negate x) y = negate (times x y) :=
times_comm (negate x) y @ times_negatex y x @ ap negate (times_comm y x).
Lemma dist_times_plus x y : forall z, times x (plus y z) = plus (times x y) (times x z).
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sz HSz.
refine (ap (plus x) HSz @ _).
refine ((plus_assoc _ _ _)^ @ _).
refine (_ @ plus_assoc _ _ _).
refine (ap (fun z => plus z (times x Sz)) (plus_comm _ _)).
- intros Pz HPz.
refine (ap (fun z => minus z x) HPz @ _).
unfold minus ; simpl.
apply plus_assoc.
Defined.
Lemma dist_plus_times x y z : times (plus x y) z = plus (times x z) (times y z).
Proof.
refine (times_comm _ _ @ _).
refine (dist_times_plus _ _ _ @ _).
refine (ap (plus (times z x)) (times_comm _ _) @ _).
apply (ap (fun a => plus a (times y z)) (times_comm _ _)).
Defined.
Lemma times_assoc x y : forall z, times (times x y) z = times x (times y z).
Proof.
simple refine (Z_ind _ _ _ _ _ _)
; simpl ; try (intros ; apply set_path2).
- reflexivity.
- intros Sz HSz.
refine (ap (plus (times x y)) HSz @ _).
symmetry ; apply dist_times_plus.
- intros Pz HPz.
refine (ap (fun z => minus z (times x y)) HPz @ _).
unfold minus.
refine (_ @ (dist_times_plus _ _ _)^).
refine (ap (plus (times x (times y Pz))) _).
apply (times_negatex _ _)^.
Defined.
End ring_Z.
(*
Definition Z_to_S : Z -> S1.
Proof.
refine (Z_rec _ _ _ _ _ _).
Unshelve.
Focus 1.
apply base.
Focus 3.
intro x.
apply x.
Focus 3.
intro x.
apply x.
Focus 1.
intro m.
compute.
reflexivity.
refine (S1_ind _ _ _).
Unshelve.
Focus 2.
apply loop.
rewrite @HoTT.Types.Paths.transport_paths_FlFr.
rewrite ap_idmap.
rewrite concat_Vp.
rewrite concat_1p.
reflexivity.
Defined.
Lemma eq1 : ap Z_to_S (inv1 (pred (succ (pred nul)))) = reflexivity base.
Proof.
rewrite Z_rec_beta_inv1.
reflexivity.
Qed.
Lemma eq2 : ap Z_to_S (ap pred (inv2 (succ (pred nul)))) = loop.
Proof.
rewrite <- ap_compose.
enough (forall (n m : Z) (p : n = m), ap Z_to_S p = ap (fun n : Z => Z_to_S(pred n)) p).
Focus 2.
compute.
reflexivity.
rewrite Z_rec_beta_inv2.
compute.
reflexivity.
Qed.
Module Export AltInts.
Private Inductive Z' : Type0 :=
| positive : nat -> Z'
| negative : nat -> Z'.
Axiom path : positive 0 = negative 0.
Fixpoint Z'_ind
(P : Z' -> Type)
(po : forall (x : nat), P (positive x))
(ne : forall (x : nat), P (negative x))
(i : path # (po 0) = ne 0)
(x : Z')
{struct x}
: P x
:=
(match x return _ -> P x with
| positive n => fun _ => po n
| negative n => fun _ => ne n
end) i.
Axiom Z'_ind_beta_inv1 : forall
(P : Z' -> Type)
(po : forall (x : nat), P (positive x))
(ne : forall (x : nat), P (negative x))
(i : path # (po 0) = ne 0)
, apD (Z'_ind P po ne i) path = i.
End AltInts.
Definition succ_Z' : Z' -> Z'.
Proof.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intro n.
apply (positive (S n)).
Focus 2.
intro n.
induction n.
apply (positive 1).
apply (negative n).
simpl.
rewrite transport_const.
reflexivity.
Defined.
Definition pred_Z' : Z' -> Z'.
Proof.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intro n.
induction n.
apply (negative 1).
apply (positive n).
Focus 2.
intro n.
apply (negative (S n)).
simpl.
rewrite transport_const.
reflexivity.
Defined.
Fixpoint Nat_to_Pos (n : nat) : Pos :=
match n with
| 0 => Int.one
| S k => succ_pos (Nat_to_Pos k)
end.
Definition Z'_to_Int : Z' -> Int.
Proof.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intro x.
induction x.
apply (Int.zero).
apply (succ_int IHx).
Focus 2.
intro x.
induction x.
apply (Int.zero).
apply (pred_int IHx).
simpl.
rewrite transport_const.
reflexivity.
Defined.
Definition Pos_to_Nat : Pos -> nat.
Proof.
intro x.
induction x.
apply 1.
apply (S IHx).
Defined.
Definition Int_to_Z' (x : Int) : Z'.
Proof.
induction x.
apply (negative (Pos_to_Nat p)).
apply (positive 0).
apply (positive (Pos_to_Nat p)).
Defined.
Lemma Z'_to_int_pos_homomorphism :
forall n : nat, Z'_to_Int (positive (S n)) = succ_int (Z'_to_Int (positive n)).
Proof.
intro n.
reflexivity.
Qed.
Lemma Z'_to_int_neg_homomorphism :
forall n : nat, Z'_to_Int (negative (S n)) = pred_int (Z'_to_Int (negative n)).
Proof.
intro n.
reflexivity.
Qed.
Theorem isoEq1 : forall x : Int, Z'_to_Int(Int_to_Z' x) = x.
Proof.
intro x.
induction x.
induction p.
reflexivity.
rewrite Z'_to_int_neg_homomorphism.
rewrite IHp.
reflexivity.
reflexivity.
induction p.
reflexivity.
rewrite Z'_to_int_pos_homomorphism.
rewrite IHp.
reflexivity.
Defined.
Lemma Int_to_Z'_succ_homomorphism :
forall x : Int, Int_to_Z' (succ_int x) = succ_Z' (Int_to_Z' x).
Proof.
simpl.
intro x.
simpl.
induction x.
induction p.
compute.
apply path.
reflexivity.
reflexivity.
induction p.
reflexivity.
reflexivity.
Qed.
Lemma Int_to_Z'_pred_homomorphism :
forall x : Int, Int_to_Z' (pred_int x) = pred_Z' (Int_to_Z' x).
Proof.
intro x.
induction x.
induction p.
reflexivity.
reflexivity.
reflexivity.
induction p.
reflexivity.
reflexivity.
Qed.
Theorem isoEq2 : forall x : Z', Int_to_Z'(Z'_to_Int x) = x.
Proof.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intro x.
induction x.
reflexivity.
rewrite Z'_to_int_pos_homomorphism.
rewrite Int_to_Z'_succ_homomorphism.
rewrite IHx.
reflexivity.
Focus 2.
intro x.
induction x.
apply path.
rewrite Z'_to_int_neg_homomorphism.
rewrite Int_to_Z'_pred_homomorphism.
rewrite IHx.
reflexivity.
simpl.
rewrite @HoTT.Types.Paths.transport_paths_FlFr.
rewrite concat_p1.
rewrite ap_idmap.
enough (ap (fun x : Z' => Z'_to_Int x) path = reflexivity Int.zero).
rewrite ap_compose.
rewrite X.
apply concat_1p.
apply axiomK_hset.
apply hset_int.
Defined.
Theorem adj :
forall x : Z', isoEq1 (Z'_to_Int x) = ap Z'_to_Int (isoEq2 x).
Proof.
intro x.
apply hset_int.
Defined.
Definition isomorphism : IsEquiv Z'_to_Int.
Proof.
apply (BuildIsEquiv Z' Int Z'_to_Int Int_to_Z' isoEq1 isoEq2 adj).
Qed.
Axiom everythingSet : forall T : Type, IsHSet T.
Definition Z_to_Z' : Z -> Z'.
Proof.
refine (Z_rec _ _ _ _ _ _).
Unshelve.
Focus 1.
apply (positive 0).
Focus 3.
apply succ_Z'.
Focus 3.
apply pred_Z'.
Focus 1.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intros.
reflexivity.
Focus 2.
intros.
induction x.
Focus 1.
compute.
apply path^.
reflexivity.
apply everythingSet.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intros.
induction x.
Focus 1.
compute.
apply path.
reflexivity.
Focus 2.
intros.
reflexivity.
apply everythingSet.
Defined.
Definition Z'_to_Z : Z' -> Z.
Proof.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
induction 1.
apply nul.
apply (succ IHx).
Focus 2.
induction 1.
Focus 1.
apply nul.
apply (pred IHx).
simpl.
rewrite transport_const.
reflexivity.
Defined.
Theorem isoZEq1 : forall n : Z', Z_to_Z'(Z'_to_Z n) = n.
Proof.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 3.
intros.
induction x.
compute.
apply path.
transitivity (Z_to_Z' (pred (Z'_to_Z (negative x)))).
enough (Z'_to_Z (negative x.+1) = pred (Z'_to_Z (negative x))).
rewrite X.
reflexivity.
reflexivity.
transitivity (pred_Z' (Z_to_Z' (Z'_to_Z (negative x)))).
Focus 1.
reflexivity.
rewrite IHx.
reflexivity.
Focus 2.
intros.
induction x.
Focus 1.
reflexivity.
transitivity (Z_to_Z' (succ (Z'_to_Z (positive x)))).
reflexivity.
transitivity (succ_Z' (Z_to_Z' (Z'_to_Z (positive x)))).
reflexivity.
rewrite IHx.
reflexivity.
apply everythingSet.
Defined.
Theorem isoZEq2 : forall n : Z, Z'_to_Z(Z_to_Z' n) = n.
Proof.
refine (Z_ind _ _ _ _ _ _).
Unshelve.
Focus 1.
reflexivity.
Focus 1.
intros.
apply everythingSet.
Focus 1.
intros.
apply everythingSet.
Focus 1.
intro n.
intro X.
transitivity (Z'_to_Z (succ_Z' (Z_to_Z' n))).
reflexivity.
transitivity (succ (Z'_to_Z (Z_to_Z' n))).
Focus 2.
rewrite X.
reflexivity.
enough (forall m : Z', Z'_to_Z (succ_Z' m) = succ (Z'_to_Z m)).
rewrite X0.
reflexivity.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 2.
intros.
reflexivity.
Focus 2.
intros.
induction x.
Focus 1.
reflexivity.
compute.
rewrite <- inv2.
reflexivity.
apply everythingSet.
intros.
transitivity (Z'_to_Z (pred_Z' (Z_to_Z' n))).
reflexivity.
transitivity (pred (Z'_to_Z (Z_to_Z' n))).
Focus 2.
rewrite X.
reflexivity.
enough (forall m : Z', Z'_to_Z (pred_Z' m) = pred (Z'_to_Z m)).
rewrite X0.
reflexivity.
refine (Z'_ind _ _ _ _).
Unshelve.
Focus 1.
apply everythingSet.
Focus 1.
intro x.
induction x.
reflexivity.
compute.
rewrite <- inv1.
reflexivity.
intro x.
reflexivity.
Defined.
Theorem adj2 :
forall x : Z', isoZEq2 (Z'_to_Z x) = ap Z'_to_Z (isoZEq1 x).
Proof.
intro x.
apply everythingSet.
Defined.
Definition isomorphism2 : IsEquiv Z'_to_Z.
Proof.
apply (BuildIsEquiv Z' Z Z'_to_Z Z_to_Z' isoZEq2 isoZEq1 adj2).
Qed.
*)