-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathvpc_nlmixr_nlme.Rd
36 lines (30 loc) · 1.2 KB
/
vpc_nlmixr_nlme.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/vpc.R
\name{vpc_nlmixr_nlme}
\alias{vpc_nlmixr_nlme}
\alias{vpcNlmixrNlme}
\alias{vpc.nlmixrNlme}
\title{Visual predictive check (VPC) for nlmixr nlme objects}
\usage{
vpc_nlmixr_nlme(fit, nsim = 100, condition = NULL, ...)
vpcNlmixrNlme(fit, nsim = 100, condition = NULL, ...)
\method{vpc}{nlmixrNlme}(sim, ...)
}
\arguments{
\item{fit}{nlme fit object}
\item{nsim}{number of simulations}
\item{condition}{conditional variable}
\item{...}{Additional arguments}
\item{sim}{this is usually a data.frame with observed data, containing the independent and dependent variable, a column indicating the individual, and possibly covariates. E.g. load in from NONMEM using \link[vpc]{read_table_nm}. However it can also be an object like a nlmixr or xpose object}
}
\value{
Called for its side effects of creating a VPC
}
\description{
Do visual predictive check (VPC) plots for nlme-based non-linear mixed effect models
}
\examples{
specs <- list(fixed=lKA+lCL+lV~1, random = pdDiag(lKA+lCL~1), start=c(lKA=0.5, lCL=-3.2, lV=-1))
fit <- nlme_lin_cmpt(theo_md, par_model=specs, ncmt=1, verbose=TRUE)
vpc_nlmixr_nlme(fit, nsim = 100, condition = NULL)
}