-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmesh_DRL_DDPG.m
100 lines (90 loc) · 3.9 KB
/
mesh_DRL_DDPG.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
clear;clc;close all;
%% 环境、状态及动作定义
env = mesh_DRL_Action;
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
rng(0)
%% 建立critic网络,DQN和DDPG将观察值state和动作值action同时作为Critic输入
L = 12; % number of neurons
statePath = [imageInputLayer([obsInfo.Dimension(1) obsInfo.Dimension(2) 1], 'Normalization', 'none', 'Name', 'state')
fullyConnectedLayer(L,'Name','CriticStateFC1')
reluLayer('Name','CriticStateRelu1')
fullyConnectedLayer(L,'Name','CriticStateFC2')
reluLayer('Name','CriticStateRelu2')
fullyConnectedLayer(L,'Name','CriticStateFC3')];
actionPath = [imageInputLayer([actInfo.Dimension(1) actInfo.Dimension(2) 1], 'Normalization', 'none', 'Name', 'action')
fullyConnectedLayer(L,'Name','CriticActionFC1')
reluLayer('Name','CriticActionRelu1')
fullyConnectedLayer(L,'Name','CriticActionFC2')
];
commonPath = [additionLayer(2,'Name','add')
reluLayer('Name','CriticCommonRelu1')
fullyConnectedLayer(L,'Name','CriticCommonFC1')
reluLayer('Name','CriticCommonRelu2')
fullyConnectedLayer(1,'Name','output')
];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = addLayers(criticNetwork, commonPath);
criticNetwork = connectLayers(criticNetwork,'CriticStateFC3','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC2','add/in2');
% plot(criticNetwork)
criticOpts = rlRepresentationOptions('LearnRate', 5e-3, 'GradientThreshold', 1);%, 'UseDevice',"gpu"
% criticOpts = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold', 1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
'Observation',{'state'},'Action',{'action'},criticOpts);
%% 建立actor网络,将观察state作为输入
actorNetwork = [
imageInputLayer([obsInfo.Dimension(1) obsInfo.Dimension(2) 1],'Normalization','none','Name','state')
fullyConnectedLayer(L,'Name','ActorFC1')
reluLayer('Name','ActorRelu1')
fullyConnectedLayer(L,'Name','ActorFC2')
reluLayer('Name','ActorRelu2')
fullyConnectedLayer(L,'Name','ActorFC3')
reluLayer('Name','ActorRelu3')
fullyConnectedLayer(actInfo.Dimension(1),'Name','ActorFC4')
tanhLayer('Name','actorTanh')
scalingLayer('Name','actor','Scale', 0.5, 'Bias', 0.5)
];
% plot(layerGraph(actorNetwork))
actorOpts = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1);
% actorOpts = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);
actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,...
'Observation',{'state'}, 'Action', {'actor'}, actorOpts);
%% 建立智能体DDPG agent
agentOpts = rlDDPGAgentOptions(...
'TargetSmoothFactor',1e-3,...
'ExperienceBufferLength',1e6,...
'DiscountFactor',0.99,...
'MiniBatchSize',64,...
'SampleTime', 1);
agentOpts.NoiseOptions.Variance = 0.1;
agentOpts.NoiseOptions.VarianceDecayRate = 1e-6;
agent = rlDDPGAgent(actor,critic,agentOpts);
%% 训练智能体
averQuality = 0.9;
steps = 100;
trainOpts = rlTrainingOptions(...
'MaxEpisodes',10000,...
'MaxStepsPerEpisode',steps,...
'Verbose',true,...
'Plots','none',...
'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',averQuality * steps,...
'ScoreAveragingWindowLength',10); % "Plots", "training-progress"
% "UseParallel","true")
%% 是否加载预训练的agent
loadAgent = false;
if loadAgent
load('./agent/finalAgent_9.mat','agent');
end
%% 是否训练agent
doTraining = true;
if doTraining
trainingStats = train(agent,env,trainOpts);
save("./agent/finalAgent_"+num2str(steps)+".mat",'agent')
end
%% 部署智能体
% simOptions = rlSimulationOptions('MaxSteps',500);
% experience = sim(env,agent,simOptions);
% totalReward = sum(experience.Reward)