-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathenetdataset.py
80 lines (70 loc) · 2.51 KB
/
enetdataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import tensorflow as tf
import tensorflow_datasets as tfds
import yaml
import numpy as np
classes = {
7: 1, # road
26: 2, # car
24: 3 # person
}
# fmt: on
N_CLASSES = len(classes.keys()) + 1
WIDTH = 240
HEIGHT = 152
CROP_FRAC = 0.05
BOX_FRAC = 0.8
scaling = 256.0
def get_preproc(seed):
def preproc(data):
# box_starts = [[CROP_FRAC, CROP_FRAC, 1.0 - CROP_FRAC, 1.0 - CROP_FRAC]]
# box_widths = tf.random.uniform(shape=(1, 4), minval=-CROP_FRAC, maxval=CROP_FRAC)
if seed is not None:
tf.random.set_seed(seed)
box_starts = tf.random.uniform(shape=(1, 2), minval=0, maxval=(1.0 - BOX_FRAC), seed=seed)
boxes = tf.concat([box_starts, box_starts + [[BOX_FRAC, BOX_FRAC]]], axis=-1)
box_idx = [0]
# image = tf.image.resize(data["image_left"], (WIDTH, HEIGHT)) / 255.0
# segmentation = tf.image.resize(data["segmentation_label"], (WIDTH, HEIGHT), method="nearest")
image = (
tf.image.crop_and_resize(
tf.expand_dims(data["image_left"], 0),
boxes,
box_idx,
crop_size=(HEIGHT, WIDTH),
method="nearest"
)
/ 256.0
)
segmentation = tf.image.crop_and_resize(
tf.expand_dims(data["segmentation_label"], 0),
boxes,
box_idx,
crop_size=(HEIGHT, WIDTH),
method="nearest",
)
image = tf.squeeze(image, 0)
segmentation = tf.squeeze(segmentation, 0)
segmentation = tf.cast(segmentation, tf.int32)
output_segmentation = tf.zeros(segmentation.shape, dtype=segmentation.dtype)
for cs_class, train_class in classes.items():
output_segmentation = tf.where(
segmentation == cs_class, train_class, output_segmentation
)
# image = tf.transpose(image, [2, 0, 1])
# segmentation = tf.transpose(segmentation, [2, 0, 1])
return image, output_segmentation
return preproc
def create_cityscapes_ds(split, batch_size, shuffle=True, seed=None):
ds = tfds.load(
"cityscapes", data_dir="tensorflow_datasets", download=True, split=split
)
ds = ds.map(get_preproc(seed), num_parallel_calls=tf.data.AUTOTUNE)
if shuffle:
ds = ds.shuffle(100)
# ds = ds.take(1 * batch_size)
# ds = ds.repeat(2)
ds = ds.batch(batch_size)
ds = ds.prefetch(tf.data.AUTOTUNE)
# ds = ds.take(1).repeat(1000)
return ds
# create_cityscapes_ds('test', 1, 10)