diff --git a/doc/tutorials/sequence_learning/iaf_psc_exp_nonlineardendrite_neuron.nestml b/doc/tutorials/sequence_learning/iaf_psc_exp_nonlineardendrite_neuron.nestml
new file mode 100644
index 000000000..64152d282
--- /dev/null
+++ b/doc/tutorials/sequence_learning/iaf_psc_exp_nonlineardendrite_neuron.nestml
@@ -0,0 +1,143 @@
+"""
+iaf_psc_exp_nonlineardendrite_neuron
+####################################
+
+
+Copyright statement
++++++++++++++++++++
+
+This file is part of NEST.
+
+Copyright (C) 2004 The NEST Initiative
+
+NEST is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 2 of the License, or
+(at your option) any later version.
+
+NEST is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with NEST. If not, see .
+"""
+
+model iaf_psc_exp_nonlineardendrite_neuron:
+
+ state:
+ V_m mV = 0 mV # membrane potential in mV
+ dAP_trace pA = 0 pA # dAP trace
+ active_dendrite boolean = false
+ active_dendrite_readout real = 0.
+ dAP_counts integer = 0
+ ref_counts integer = 0
+ I_dend pA = 0 pA
+ I_dend$ pA/ms = 0 pA/ms
+
+ equations:
+ # exponential shaped postsynaptic current kernel
+ kernel I_kernel1 = exp(-1/tau_syn1*t)
+
+ # alpha shaped postsynaptic current kernel
+ #kernel I_kernel2 = (e/tau_syn2) * t * exp(-t/tau_syn2)
+ I_dend' = I_dend$ - I_dend / tau_syn2
+ I_dend$' = -I_dend$ / tau_syn2
+
+ # exponential shaped postsynaptic current kernel
+ kernel I_kernel3 = exp(-1/tau_syn3*t)
+
+ # diff. eq. for membrane potential
+ #recordable inline I_dend pA = convolve(I_kernel2, I_2) * pA
+ inline I_syn pA = convolve(I_kernel1, I_1) * pA - convolve(I_kernel3, I_3) * pA + I_e
+ V_m' = -(V_m - E_L)/tau_m + (I_syn + I_dend) / C_m
+
+ # diff. eq. for dAP trace
+ dAP_trace' = -evolve_dAP_trace * dAP_trace / tau_h
+
+ parameters:
+ C_m pF = 250 pF # capacity of the membrane
+ tau_m ms = 20 ms # membrane time constant.
+ tau_syn1 ms = 10 ms # time constant of synaptic current, port 1
+ tau_syn2 ms = 10 ms # time constant of synaptic current, port 2
+ tau_syn3 ms = 10 ms # time constant of synaptic current, port 3
+ tau_h ms = 400 ms # time constant of the dAP trace
+ V_th mV = 25 mV # spike threshold
+ V_reset mV = 0 mV # reset voltage
+ I_e pA = 0pA # external current.
+ E_L mV = 0mV # resting potential.
+ evolve_dAP_trace real = 1 # set to 0 to stop integrating dAP_trace
+
+ # dendritic action potential
+ theta_dAP pA = 60 pA # current threshold for a dendritic action potential
+ I_p pA = 250 pA # current clamp value for I_dAP during a dendritic action potential
+ tau_dAP ms = 60 ms # time window over which the dendritic current clamp is active
+ dAP_timeout_ticks integer = steps(tau_dAP)
+
+ # refractory parameters
+ t_ref ms = 10 ms # refractory period
+ ref_timeout_ticks integer = steps(t_ref)
+
+ I_dend_incr pA/ms = pA * exp(1) / tau_syn2
+
+
+ input:
+ I_1 <- spike
+ I_2 <- spike
+ I_3 <- spike
+
+ output:
+ spike
+
+ onReceive(I_2):
+ I_dend$ += I_2 * ms * I_dend_incr * 1E6 # XXX factor 1E6?!
+
+ update:
+ # solve ODEs
+ integrate_odes()
+
+ # current-threshold, emit a dendritic action potential
+ if I_dend > theta_dAP or active_dendrite:
+ if dAP_counts == 0:
+
+ if active_dendrite == false:
+ # starting dAP
+ dAP_trace += 1 pA
+ active_dendrite = true
+ active_dendrite_readout = 1.
+ I_dend = I_p
+ dAP_counts = dAP_timeout_ticks
+ else:
+ # ending dAP
+ I_dend = 0 pA
+ active_dendrite = false
+ active_dendrite_readout = 0.
+
+ # the following assignment to I_dend$ reproduces a bug in the original implementation
+ c1 real = -resolution() * exp(-resolution() / tau_syn2) / tau_syn2**2
+ c2 real = (-resolution() + tau_syn2)*exp(-resolution() / tau_syn2)/tau_syn2
+ I_dend$ = I_p * c1 / (1 - c2) / ms
+
+ else:
+ dAP_counts -= 1
+ I_dend = I_p
+
+ # threshold crossing and refractoriness
+ if ref_counts == 0:
+ if V_m > V_th:
+ emit_spike()
+ ref_counts = ref_timeout_ticks
+ V_m = V_reset
+ dAP_counts = 0
+ I_dend = 0 pA
+ active_dendrite = false
+ active_dendrite_readout = 0.
+ else:
+ ref_counts -= 1
+ V_m = V_reset
+ active_dendrite = false
+ active_dendrite_readout = 0.
+ dAP_counts = 0
+ I_dend = 0 pA
+
diff --git a/doc/tutorials/sequence_learning/sequence_learning.ipynb b/doc/tutorials/sequence_learning/sequence_learning.ipynb
new file mode 100644
index 000000000..5692bbfa9
--- /dev/null
+++ b/doc/tutorials/sequence_learning/sequence_learning.ipynb
@@ -0,0 +1,3902 @@
+{
+ "cells": [
+ {
+ "attachments": {
+ "image-2.png": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABFYAAAJXCAIAAAA2LkeuAAAACXBIWXMAABScAAAUnAHVi7b7AAAgAElEQVR4nOy9f3xU1bX/vSZzkjkzmYRJmMgIgww1apBYg4Yaa7ShDRVqfAwFHmkvrbHCS634GCpUqPgKVL3gRb7YC71oRYMXvdALvcQvcsGCN2NNS9TYDJdgooQmSoApCZlJZjI/z2SeP5bZ3dlnJglJSIKs98tXO3Nmzz777HMmrM9eP7YmGo0CQRAEQRAEQRDElUHCaA+AIAiCIAiCIAhi5CAJRBAEQRAEQRDEFQRJIIIgCIIgCIIgriBIAhEEQRAEQRAEcQVBEoggCIIgCIIgiCsIkkAEQRAEQRAEQVxBkAQiCIIgCIIgCOIKgiQQQRAEQRAEQRBXECSBCIIgCIIgCIK4giAJRBAEQRAEQRDEFQRJIIIgCIIgCIIgriBIAhEEQRAEQRAEcQUhjfYACIIgCIIgiIsmFAoFg8FIJDLaAyGIUUar1ep0uqSkpIF/hSQQQRAEQRDE5URXV9eZM2c8Hs9oD4QgxhDJyckTJ05MTU0dSGNNNBq91AMiCIIgCIIghoVQKFRXV0f2G0HEJCsrKzk5ud9m5AUiCIIgCIK4bDhz5gzTPykpKZJEthxxpaMoCnOKnjlz5vrrr+/3K/SzIQiCIAiCuGzwer34wmq1TpgwYXQHQxBjBI/H8/nnn+OLaDSq0Wj6bk8V4QiCIAiCIC4Puru7Q6EQACQkJJD+IQhGSkqKLMv4OhgM9tuevECDpK2tra6urrGxsaWlBQCKi4tzcnJGe1BxiUQiP//5z/H1K6+8MrqDuUTY7Xa73Q4AJSUlNpttlEdDEARBEJcAFgKXkECr2ATRC/ajGEim3CWRQA6Hw263v//++y0tLW1tbQBgNpttNpvNZrvnnnsKCgouxUlHDK/Xu27dupdeeklRFHbQZrONZQkEAL/73e8A4Ic//OFoD+RSYbfb161bBwDFxcWjPRaCIC6a5cuXOxwO/ojVasUkB6vVqtPpsnqgzAeCIAhiiAzzPyRVVVXPPPMMLsbzNDc319TUAMCLL75otVpLSkqeffbZ4T31iPHCCy+8+OKLAGA0Gi0Wi9VqBQCLxQI9/4RbLJZdu3aN8igJgiAuK3DtrN9msiwvWrTo4YcfzsvLu/SDIgiCIL6eDJsXtamp6Yknnrjzzjv7/TespaXlueeeG67zjjBtbW2of7Kzs0+ePHny5MnKysrKyso5c+ZATyxWdXX1aA/zSsRkMqGnMRAIjPZYCIK4VAQCgR07dtx5552//OUvz507N9rDIQhiQLjdbrvd7nQ6R3sgxEhgt9sbGhpGexT9MGwS6Ne//vW//uu/DldvY5bm5ma0sJ944gn0/BBjhNLS0qampqamJlobJoivPYqibNy48Wc/+xkfkEwQxJjF4XDMmjXr0KFDoz0QYiSYNWvWCy+8MNqj6IfhkUAbNmzYsWOHcNBsNq9YsWLnzp21tbVHjx7dtm3bihUrMjMzh+WMo0VzczO+MJvNozoQgiCIrzMmk6msrGzNmjWLFi3Kzc01mUzqNocOHUK3PEEQYxxZlm02m9FoHO2BiFRUVGg0moqKitEeyGWJ2+3WaDTLly8XjttstrFvJw9DLpDT6cQ0dJ7CwsLy8nLMk0FwbX79+vVvvvnm888/P/TzDgvV1dU1NTVnzpxxOp1Go/GGG27Izs7Oz89Xp9ui+GESKBAIsNdYgy8QCOALRVHYR4jJZFL/++12ux0Oh8PhOHHiBJ46Nzc3Nzc35jgPHTqE7uOSkhL8bk1NTXV19alTp8xm88aNGwc9A4xAIFBXV+dwOI4dO6Yoyg033JCVlVVYWNhH5nFbWxv6Os+cORMIBKZMmZKdnZ2bmxuvIJvT6cQVoJycHKweUVdXV1NT88knn3i93oceeig/Px/nBADmzJmDfjbMEDh27JjVar355pvnzJkT82+o2+12u90AYLFYWFXEmCdtbm622+0ffvihLMs333xzYWEh/6Cq8Xq9drvd4XCcOnVq+vTpeXl5ubm5siw3NjZWVVUBQH5+/uWu7QlirGEymdauXcsf2b17986dO//7v/+bP7ht27ZvfvObP/jBD0Z0cARBXCR5eXlNTU2jPQpihLg87nV0yKxYsULoMycnp++vhMPhoZ93iKxZsyaeQs3JyamtrRXa9zGHxcXFfZe527x5M9/VhQsXnnvuuUmTJqlbLl269K9//at6tKz/aDS6Z88eXpbYbLZ+L5bFivzwhz+M2eD111+fOXOmejw/+MEP3nnnHXX7+vr6ePFmkiSVlZXFvMWVlZXYpqyszOPx5Ofn818sLy+PRqNlZWX4trKysra2Vq2msrOzjx8/ru6cfVG4d/xJW1tbCwsLhQ5NJtO+ffviTV19fX1WVpbwFYvFUl9fX15ezo+cIIihIPwVjfmXLRwOL1iwQPg95uTkjIV/UwhiZFAUpaampqamxuFwjPZYLoJz586Vl5efPHkS37pcrsrKynPnzkWj0draWv4jbLxnz549e/a0trbynWBUEX593759+/fv9/v9+FE4HD569Gh5eTk24GEf7dy58+OPP+Y/ampq2rx5MwCsWrUKU7vr6+vxeGVlJescOXr0KG9gsManT5/etWsXb0icPHly3759GAY1kMkJh8PHjx/ftWtXeXm5MMJoNNra2rp//37sTfhbx8bp9/s/+OCD8vLyDz74gG8gzPPOnTv5SRPOcvDgQewhXoPDhw+Xl5fv27cP7wt2DgBz5szB2WOTrx5JOBxmAxBua5SbTHbrcczCxe7Zs6e8vLy8vDzexH766af46/D5fDEb8AxVArlcrmnTpvH/GqWmpu7fv3+I3Y4A+M+tLMtZWVlFRUUlJSXFxcXM2JUkSbh5alufcVESyO/3s3/CZVnOyclZvHhxUVER02NWq7WpqSnmaAGA6R+z2VxQUJCfn5+VldXvxfYtgdavX880VVZW1oIFCxYsWMDcGrIsq28o0xUWiyUvL2/x4sUlJSUFBQXM/TJnzhz1idi3VqxYgfpHkqScnJyCgoLMzExBAm3btg29PWazuaioqLCwkHnSTCaTy+USOu9XAq1YsQK9QEajMT8/v7i4mHf+VFZWqgd89OhR5nEymUxFRUULFixAVWaxWFatWoUfkQQiiKEzEAkUjUZrampuvfVW4W/s4cOHR3i0BDFaXKYSCP8tZv9c4tstW7bwi6ElJSXRaJQPbLFarbw0KigosNls/EKwyWSqra09d+4cH4uxatUq9pXa2lohcgT9UfgpsxyEMeBxwRgzmUzFxcXsLTYuLS3FLxYUFESjUY/Hs2TJEr7DoqIitTXPo15TLioqYp9u2bKFH39OTg4/ITjOgwcP8tnpixcvFqZdmOecnBxBhGzevJkPn8nKyuKVWDgc3rhxI99AkqSjR48y+4rB/m6zmUSampr4v/CSJK1fv54fALZHOYqYzWZezT777LNCUFJZWZl6MkdUAp08eVK4/n5dQGOERx55ZOPGjWolWl5ejrc5OztbvbLIbk9Mixkt7L7dMqwaeGFhIf8ch8PhsrIyvMELFiwQvsUeHUmSLBYL/1h4PJ5+L7YPCfTBBx/gR5mZmYIZsWfPHhRmVqtVvRayaNEi9SQ0NTVhcTwA2LVrl/Ap+7XgZS5ZsoSfYbwQ9vdIkiSTycR34nK5mA9H/ej3K4EkSZIkadWqVeyk4XCYyRj848UTDofZXk8lJSX8UHfu3Mn/LSAJRBBDZ4ASKMr9HWasWbNmJIdKEKPICEugcDjc2dl5/vz5CxcudHV1DbqfmBLIaDSWlpa6XK6mpqZFixahYZCTk1NfX+/3+7dt2yZJEq86cKU1MzOzsrIyHA7v2bPHZDJlZ2fn5eVt2bLF4/HU1taincAsgePHj2/cuBHFzOnTp7dt2ybLcmFhIetz3759ACAEgwxQAhmNxpycHHSbnD59OhqNFhcXS5K0Zs2akydPhsNhtBZ4TSLgcrksFovZbN6zZw9aQegT48dWVFR0+vTpcDh88OBBo9GYmZnJTDIcp9ls3rZtG15+UVERfzlsnh955JHW1tZz585h6FZpaSkbA/5FXbRoES79Hz161Gaz8WdZv349mqY4IS6Xa9euXei0cblcQm9scngJlJOTYzQa9+zZ4/f7W1tb0RPw6quv8u3NZnN+fj679Ti37CbiAFgQ0NGjR2OufI2oBGKxQIwnnnhiiH2OOtu2bcNr4W8PMkQJdPr0aTSdc3NzY0ZuPPLIIzH7Z8aBLMv4M7so4kkgZuWbTCa16ykajbINjmKq7Zh4PB5cjLFarcJH/ILBsmXLYn6dX5JRT/K5c+dwAtWd9yuB4l0F0zm8Io1yzzb/J0/9KUkgghgWBi6B/vM//1P4d2fJkiUjOVSCGEVGUgIFg0Fnb9ra2gbXVUwJ9J3vfIc1+OMf/4g/Z960vf3226+//nr2Fv9K7Nixgx3BDd95jYHVuX7729/GG8ljjz0GAF9++SW+HYoEuu6664TQOGEw0WgUt2uPZ7nhOmy8aHz0DvFOJLQ9tm3bxo/zkUceYQ0w+Xn16tX8kPLy8pieaW1tveaaa7773e/iW5fLhXuK8EYp2ro7d+7EBhiyFHOEA5FABw8eFAYZDoczMzMtFgvfXpZlfn1/3rx5BoPh73//ezQa3b9/PwDs2bMn5hh4LkoCDbUiXHt7u3Bk6tSpQ+xz1JkzZ47BYACu+MFw8cILL2BN7VdffTVmmQFmx//hD3+I2cOaNWv6zt2/KCoqKrD2QFlZWcwaBosWLcLgwHjjUWM0GufNmwcALperra0tZpucnJxly5b13c+CBQvU4YUWiwX/mrS0tFzs/j9Wq5X5fHgefvhhfNHY2Mgff+211/DFU089pf7W4sWLh/FGEAQxcL7xjW8IRy5cuDAqIyGIrzc+n084oiiK3+8frv6vu+469nr27NkmkwmD/NnB22677fPPPxd2E/re977HXt95550AwAfH3nfffQCAfgM25oqKig0bNixfvvzBBx/87LPPAODUqVPDMn62igoA7733Hg7GzoGLwvE2yamqqkJlpf5IUZTq6urs7GwhyA0A/vznP/Mt77jjDvb67rvvxuBAvkF2djYLXTGbzbfccstf/vIXfFtTU+N2uwsKCqqqqtiYMQIIJ6qmpiYQCDzwwAMDnhURHC1/1yRJWrRokdPp5O0uq9XKBwTeddddPp/vb3/7GwBgKsTq1at37NgxjFtLDbUiXGpqqnBEp9MNsc+Rx+124/IGO5Kamurz+Y4dOza8J8KoszvuuIP/zfCkp6dbrdaWlhYsbqZm9uzZwziew4cPA4BOp/v+978fr012dnZDQ0PfeqO5udnpdLI2Wq0WALq6upqbm2PWnMjKyrrhhhv6HhsLqBNgHX755ZfXX399353wzJ07l49eY7Bn+O9//zt/HH+Zwm+Sgd75rVu3DnwABEEMC+q/HrgSSRDEMBKJRILBIL7WaDTd3d0ajQYAAoGAXq8fllPwtjsSsyQv/2+3zWZTrz+qF0zZV5xO55133tnY2JidnW02m61Wax91bi8WXC5n4Lq5ukI0ALS0tMTsobm5WV1yie9NuDRJktBK5A8KxaWg94xBrHlmDfAsO3bsUO9tg2fBBvEGORBiXsiUKVPwFCyJS30VbJyyLG/btg0VLABkZ2c/9NBDy5YtG+KtHOpzEA6HhSPnz58fYp8jRmNj4/PPP//mm2/G21xPcAsMHVx1OHXqFN7FmOBgampq1B9ptdrh9TycPXsWAILBYB9ltXESGhsbnU4nvxShKArWN+9jlhobG2OW+R7IVUyYMCHm8fHjx7PBX5QEGjduXMzjEydOxBd8DcfPPvsMJfG3vvWteB2mpaXhi5g7lhAEcYlQ5+Div6YEQQwjUa4QVDQaRf0jHB/7rF69urGx8fDhwyyXuKKiot8dWtlmJ+wI2mbC8rRQaCExMTE1NfX48ePXXHPNAIeXlpbGJlYAz97R0cEfPH/+vNPpjLdGPAi6u7sBYO/evfPnz4/ZAIcXb11+IOBk1tfXo8sOQdNx4HsHLVq0aNGiRTU1NUeOHPn973+/fPlyr9e7Zs2aQY8Khi6BhHJwACB438Ysb7755oMPPsjEj9FoNJvNbAOf6urqQCBwsaFWfeN0Or1eL75Qq22BmKeORCLMXh8WmHrpdzzCkLxe76xZs3idhisrGE3ndDrR5xtvApOTk/s9Xb8y6WKFR8wq5PE6REcWqNZ4eFg0zlD+NBAEcbF0dXUJR4ZrTZogCIYkSUlJSaFQSDh+ef3cqqqqsrOz+f0wPvnkE74BWuHCv+O42PrRRx8x78ebb77pdrv7Njy++c1vlpeXf/TRRwOXQNOnT9+9e3djY6N6d8Hs7GzctINtOwkAZ8+eVRRlGBdecZ3XbrfHk0DoQTpw4ADWqxAwmUySJPVtBU2fPh0A3n//fV4CYZRdvG0k44H7Z65atWratGmvvPLKKEugnJwcSZJ4L4rD4VAUZRj9jJcCh8Px6KOPKopisVieffbZ4uJiQYlOnTp12BOBGFlZWffff3/fbWI+35fI2yDLcsx0lz7O/uijj6L+Wbx48cMPPyy4L3fs2NGHmwsuB7cJC4CORCLx2pw5cwZfjP3LIYivDefOnXvrrbeEg8MbIUwQBCLLsiCBNBpNzJDyMYvJZKqrq2tra0Mzr66uTohgx/VWweRDY33//v0//vGP0co9cOAA9LfiWVJSsmnTppUrVwp7xNvt9nhbpzzxxBN79+5dvnz5rl27mE+Jaa1ly5Y999xzu3fvLikpAQBFUVauXCnLMsthHjo5OTlFRUUvv/zyfffdxwvFhoYGk8lksVhw55jdu3c/8MADrIGiKIFAAAdstVr7NpgXL168bt263//+96WlpfgVu91eUVGxZMmSmDvdq6mrqzObzSwQSVEURVHQqTAUhipUTCbTXXfd9T//8z/sSHNz85YtW2KGQo4d3njjDZy7ysrKmAGOw5huxUhKSkpPT29vb7darcKu56PF1KlTGxoadDrdkiVLBh5i53a733zzTQBYtGjRzp071Q0uxeyNMJMnTzYajV6vl+kcNfFCewmCuHT84Q9/eOedd/gjRqPxrrvuGq3xEMTXGHT4eL1eDJdKTExMSUmJF7g1NnnssccefPDBGTNmFBcXO53OI0eOLF68mFdBNpstJyfn+eeff++99yRJuvvuu1etWpWVlVVcXLx3796qqqrCwsK6urrMzMyBBKeUl5cvXLhw2rRpRUVFmZmZzc3NNTU1jY2N8aIH8/LyysrK1q1bd9NNN82ZM0eW5bq6OkVRMNz3ySefPHTo0NKlSw8cOGCz2ex2u8Ph2Lx5s9plNBS2bds2e/bs2bNnFxYW5uTkuN1uh8NRU1NTWVmJqmPLli1z586dO3funDlzsrOzW1pajhw5smvXLtR1xcXFL7300owZM1AysUrCDLPZvHnz5qVLl86cOXPOnDltbW0VFRXZ2dlYa3sg7N279/nnny8oKMjKylIUpaqqqrGxke0xM2iGwVfzk5/8hJdAAPDrX/963rx5fbi3HA5HvHoAI0NVVRUAZGZmxtQ//Wb/xwNVe7zMovT09G984xvt7e1Hjhzxer0D1L6XlOnTpx88eLCjo8PhcAxcAuHsAcA999wTs8Gwl5EYedLS0mw2W11d3UcffSQkQTFYgRcKhCOIESAQCGzYsGHTpk3C8fXr1w88oJwgiItCr9fr9fpIJJKQkDAU8ZOVlVVeXs5iRmw2W1lZmWAKlpWVCVEV9913H5/H+8ADDwj/4BYUFAjfMplMfM8lJSWyLL/11lt1dXXZ2dl79uzJzMwcP348b6NWVlbu2LHjiy++cLvd7I/Jrl27NmzY8OGHH7rd7vnz569atWrr1q38idTjh54tHzdt2tTQ0FBdXW00GouLi7FIXTzWrFlTWFj41ltvNTQ0KIpitVpZ+TWTyXT06NEXX3zxww8/rKmpyc3N3bhxI+9QwtfCpPETEnOeH3jggZtvvpm9tVqtx48f37p1K55FkqTc3Nynn36a1YKy2Wy1tbXYoLq6WpKkxx57jPW5cePGW2+99cSJE06nk81eeXk5r9NKSkqys7Nfe+01h8NhMpmeeuop5hGKN5n8nV28eLEsy3/+85/r6upMJtNDDz1UUFAwDDqi37LZ/RIOh9VqR9jUknHy5Ems/Tf08w4FHHC8Mudsr1/1xhR97wuEkmDixInxzst6Hvg2Owh7yi/qW4x4+wJhOXyItTFoH7AtcWJWsmdb94BqwxyWxLx58+Z4ncfb3qffBv3uCxTvpPEa9H2z+Jw32heIIIaOEChisVgqKysrKysPHjy4ZcuW0tLSmCsR/BaHBHElMMJboxLEZcSI7gsEAJIk7dy5U0j+cbvdP/rRj6ZNm7Zw4cJnnnlm9erVCxcunDFjxrRp0yoqKoZ+0iGCzp+6ujp1/KLD4Rh0pWMsDnH27Nl4boGnn34aJfLzzz8fs+Yb0tbWFm9HneGluLgYzQ673f7SSy/FaxYIBPiJYq4zDI3lURRl+fLlw1tGYrR46qmncPnhN7/5zZEjR/iPnE7n0qVLR2lcBHFF4HQ6Z82aNWvWrLlz5z7++OMvvfSSOsIWw05GZXgEQRDEZc0wSCAAyM/PV6sgAGhoaNi7d+9zzz23YcOGvXv3YqWEYTnjELntttsAQFGUhQsX4t6gAOD1erdv3445cIPL9sOqFwDw6KOPxtwGy2w2Y/lpRVFuv/321atX8/kkbW1tVVVVDz744OTJk+vq6gYxgEGwbds2vNjly5fPmzcPg1DxI6/XW1dXt3r16qlTp/Il47KyslAbbN++/cUXX2SCp6GhYe7cubt37x4LMX5Dx2KxYJUIt9uNRtjevXvfeeedtWvXzpw50+FwxNzLjCCIkWHhwoUHDhygHYoJgiCIQTA8EggAFi1a9MEHH8QMVBiDYK4bANTU1MyYMePqq6+ePHlySkrK0qVLvV7vli1bBnchs2fPxqzc3bt3T5s2TdMD72ApKSlZv3690WhUFGXDhg143qlTp6akpGRkZNx55507duwYSS9KVlbWnj17MDKwoqLipptu0uv1U6dOzcjISElJuemmmzZs2CAsvppMJhYQuHLlyrS0NBz/tGnTjhw5kpWVNfQctTHCqlWrNm7ciNVgtm7dunDhwnvvvXfdunVOp3PXrl0supcqwhHESGIymUpLS19//fVvf/vboz0WgiAI4rJk2CQQAOTl5TU1NW3evLmPQghms7m0tPTjjz8exvMOAlmWDx8+vHjxYnzrdDrRG5OZmblv375HHnlkcN1OmjTptddeKykpUYcF8m9XrVpVX1+/YMECdL94vd7m5mZW3S8/P3/z5s0jWS6iqKiovr5+1apVrJxDc3Mzi8TLzMxcs2YNmyukpKRk586duP6KYXJer1eW5cWLFx89evTrJAlWrFhx+PDhZcuW5ebmyrJssVjmzJlz8ODBBQsWsCm62ML2BEFcLCaTqaCgoLS0tLy8/Ny5c5s3b/56eJsJgiCIUUETvTS7/DY3N9vt9ubm5o6ODq/XO2XKFJvNlpmZmZubO6a2DHI6nQ6Hw+l0yrKcnZ2dnZ3db3uMcMvJyenb0G9paWlpaUF/js1mi2clNzQ0NDQ0YA14i8WSmZl5KUobRSIRJsNww6948BOC4+kjziQQCOD4A4GAxWLJz88fRaOkubkZE5b6vTXDxeOPP45pY62trVSQiiAIghgBIpEIBvBLksTX9SIIor6+Hvd1vPHGG/vdw/dSSSCC+Hrj9Xqvu+46p9NpMplcLtdoD4cgCIK4IiAJRBDxuCgJNJyBcATxNcPtdsfMy1IU5ZlnnsEUKSyZQBAEQRAEQVwukAQiiLg4HI6rr7768ccfP3LkSGNjo6IodXV1u3fvvv3227HEhcViYdsHEQRBEARBEJcFYygthyDGIG63e+vWrTG3isrKytq5c+fg6qcTBEEQBEEQowV5gQgiLllZWWVlZXl5efxBk8mUm5v77LPPHj9+PDc3d7TGRhAEQRAEQQwOKodAEAOipaVFURQslDfaYyEIgiCuUKgcAkHEg8ohEMTwY7VabTYb6R+CIAiCIL6urF27VqPR4C4jX29IAhEEQRAEQRCXH8uXL//Rj3402qO4XHE4HLNmzTp06NBoD2R0IAlEEARBEARBXH7Y7XbcsJ4YBM3NzXa7Xdj8o7S0tKmpyWq1jtaoRgySQARBEARBEMTIoY6zamtra2tri9nY7XY3Nzd7vd5LMRLc7kKQARd7ukAg0Nzc7Ha7Y37ax6UNvI3X621paemjgdPp7LsHp9M5lPA2RVGam5sVRRl0m5aWlubmZtxTcSxAEoggCIIgCIK4hNjtdo1Gs2PHjmeeeSYtLW3q1KmTJ0/evn07fjRt2rSMjIyMjIy5c+fy2uPFF1+87rrrsH1KSsrMmTOrq6vZpxqNxuFwOBwOTQ9o4ms0mgcffJA/+0svvYSN8S2mu9TV1c2bNy8tLe2mm27Cbp1O57x58/R6PZ5u1qxZ/bqYqqurZ86cmZKSMnXq1LS0tBkzZvBfefPNNydPnoyXNnny5Jdffpn/Lo6zqqqKXf6dd97JK4RZs2ZNnTq1oaEBTzF58uTJkyfzMwAAiqKsXLkyLS3t6quvzsjIuO6669555x2+QSAQWLlyZUZGxtVXX43X9cwzz+AkzJs3DwDmzZuHs4eT9tJLL02dOpWXWzgteI0pKSlz587lP8XJbGxsXLp0KbtTeGf5+5iWljZ58uSpU6fiMNi9GEVoXyCCIAiCIIivFR6P59NPPzUajdOnT++j2f/64FwIbjaAJSlum7MXvH94v35CuvH/LZg2xFG98MILJpOpvLzc7XZv2rTp0UcflWV59erVTz75ZFZW1htvvLF79+5nnnlm8+bN2P7YsWP/9E//lJubK8vy+++/v3v37lmzZtXX19tsNgCorKxcvny50+nctWsXtr+okkULFy60Wq3btm0zmddJySUAACAASURBVEw2m83pdM6YMUNRlCVLltxzzz1tbW2rV6++/fbbm5qaTCZTzB4qKiqwk1dffdVms7nd7nfffZf5grZu3fr4448XFhZu2bJFkqTXXnvt0Ucfdbvdq1atYj3U1NTY7fannnrKZrO98cYbe/fuffTRR/ft28cauN3u2bNnl5SUrF+//t13392+ffu8efOamprYnoSzZ8+urq4uKiq6//77ZVl+4YUX7r333srKyoKCAgBQFGXWrFnV1dXLli27++67jUajw+H44osvAKCkpMRkMi1fvnzVqlV33313vNkLBAIzZ850u924R0hDQ8PKlStnzpxZX1/PT8tPfvITm822a9euxsbG3/72t0uXLs3Nzc3JycFZWrlyZXFx8fz5861Wq6Iob7/9dt/epBEiShAEQRAEQVwOKIpSU1NTU1PjcDhiNohEInv37i3rYdOmTUePHlU3+3NndM0X0Ycav/pvy7loW1hsE1Yi//R8RcJ3n8f/pty/5aW9Hw5u2JWVlQBgNBr9fj8eOXr0KBqiO3fuZM2ysrLMZnO8TmprawGgtLSUHcnJycnJyRGaAUBJSQl/BDVVbW0tvi0rKwOAgoICvs3ixYsBoLKykh05fPgwAKxatSrmYPx+v9VqtVgsHo8n5qcWi8VisYTDX01rOBzOz8+XZfncuXNsnABw+PBh9i3ULaxDfLtmzRrWAEe+f/9+fPvqq68CQFlZGWvg8XhkWc7Ly8O3W7ZsAYCNGzfGvATUWvv27eMP4imamprwLU7dli1bWIODBw/ydwHb5+fnswZ4r1esWIFvS0tLAaC1tTXmGIaXTz/9FH8dPp+v38YUCEcQBEEQBPE14f333z9+/Dh729nZeejQodbWVr5NMAr/3grnwv844uiCf+/VBADg2Z1Vu947wd6ebu38xb8d+fSLftJa+qCwsJC5L3JycmRZlmW5uLiYNcjLy2tra+OTahRFaWhosNvtO3bscDgcFotluOofPPTQQ+y10+ncu3fvj370I1QdSFZWVmZm5qlTp2J+3eFwtLS0PPzww0ajMeanTqezsLBQkr6Kt5Ik6cknnwwEAna7nTUzm838Gb/zne8AQGNjI9/V/Pnz2WtszBq89dZbN910009/+lPWwGg0FhUVsUC1AwcOyLK8bNmyuLPQH++++y4AzJkzhx2ZM2dOTk6OUEeOH2ReXp4sy2yQeFGbNm2Klys1WpAEIgiCIAiC+Jrw17/+FV9oNJpoj6sB/SeMag8o0Z43mq/+/4QPTvYqCgDlB4+p+99x6H8HPTYMuEJwq/Hc3FxeQkyZMgUAmK185MiRadOmTZs2bdasWY8//vi6devcbrdQumDQZGVlsdeKogQCgV27dmk4Jk+e3NjYKEwdA5UYxnrF+/R73/sefzAzMxN6KxxeIwEABvjxUsFisfCnEBq0tLQcP3782muv5Ye9d+/elpYWVEENDQ1ZWVlMdg6ChoYGm82GI+cvRNBpvEbCO8sGWVRUlJeXt2HDhoyMjNtvv33t2rV913UYMSgXiCAIgiAI4muCx+PBF9FoVKP5St989tln3//+91mbEz7oacMUEADA6SBc12Mtf/K580ybBwA0GohG/9Hm//758395+LuDG5tgi7vdbkFCdHR0AAAmmbS1tS1cuNBsNh89ejQvLw8b3H777YM+r+CFMJvN7DWmpixYsOCxxx7re8yMrq4uAGAzHPPT7u5u/uDp06cBIC0tLV7nOEI+x6bvBoqiZGZmYjicAF6dJEn86QaBJEn8RLFhoBjrY5xskJIkffDBB9XV1e++++6RI0fWrVv3m9/85uOPPxZk1chDEoggCIIgCOJrgizLaj+JYLBm6uGvXQAob/7hB4KruaIIN1971bhkXUdXMAoolb5qNWvGlEsybhV2u93tdm/cuJHpH0VRGhsbs7OzWRuTyaQu9Dxx4sRz587xRzCaK15VAwCw2WyyLLvdbj4srW9uu+02AKiqqrrvvvvUn956660AcPjw4Z/97GfsIAq8CRMmDPAU/ZKVlWW32/Pz83lXktDg0KFDvCDhwYN9x6dlZmYeOnQIvUnsYEtLy0V5liRJys/Pz8/Pf/bZZ48cOTJ79uxXXnll48aNA+/hUkCBcARBEARBEF8TZsyYoT54yy238G/zuOwVpn8mJsE0/T+OS9qEB+feDAAQBeB8HV8dHCl4A3379u3C1jcWi8Xr9Qrlxa6//nq+Mpvb7cbElb5t/UWLFh05cuTIkSPC8XgbBOXk5GRlZW3fvj3mRjc5OTk2m+3QoUPs64qiYEG8gausfrn//vsDgcC6devijfn+++/H88b8OpaA63taUODt3buXHdm7d29DQwOfwdU3wgRifb+6uroBfv3SQV4ggiAIgiCIrwl33nnn2bNnsfAxcvvtt0+aNIlvk6qFH6bDATcEewK1LInws6vErlb9+Nt//fzcn/73NDuyfOG3vpU18RKNXCA/P99kMm3atCkQCGRnZ7/33nsVFRVC9NRtt922e/fuuXPn3nHHHQBQWlpqMpkeeOABu90+c+bMhx56yGg0vvLKK7m5uVVVVX2fbvPmzXa7fe7cuY888ghm8Dc0NLz99tv33HPP2rVr1e0lSXr11Vdnz549Y8aMJ598Mjs7u6Wl5d13333iiSew8tv69et/8pOfzJ49+7HHHpNl+bXXXnM4HOXl5eq4skFTUlLy9ttvP/fccw6HY/78+WazubGx8b333gsEAljObvHixb///e83bNjQ2Ng4f/581B6nTp0qLy8HAJvNZrFYNm3adOHCBa1Wm5OToxY2S5YseeWVV9atW6coSm5ubkNDw7p167Kysp5++ukBDvLee++VZfnuu+/OzMxsaWl5++23A4FATNfZSHPJC9QRBEEQBEEQw0G/RbGR06dPHzp0qKqqqo/qwOHuaKU7+mZr9ESfBYSPnmh5ctuRjbuPtnX0X2g4HrW1tQUFBQcPHuQPLlq0iK9wHY1Gy8vLCwoKWNnoyspKDHszmUyFhYX19fWlpaX8V/x+f1lZWUFBgc1ms9lsp0+fjkaj4XB448aN6OLIzMzcsmXLwYMHCwoKWFFs4SwMl8tVWlrKVJbVal28ePHHH3/cx3XV19cXFRWxxJvCwkJWTjoajR48eJAVvsvJyRHKTxcUFKxfv54/IoyztLR00aJFfINz584VFBSUl5ezI+FweMuWLdnZ2RiZZjabCwsL9+zZwzfYuHFjdnY2BstZrVa+RvbRo0eLi4vRZ4VlrPft21dSUsLXsPZ4PEuWLMH5tFgsJSUlLpeLfRpzMvk7u2XLlry8PDy7zWYrKSnhy6APLxdVFPsf1UIIgiAIgiCIsUwkEnE4HAAgSdLNN49oTBpBjHHq6+t9Ph8A3HjjjXq9vu/GlAtEEARBEARBEMQVBEkggiAIgiAIgiCuIEgCEQRBEARBEARxBUESiCAIgiAIgiCIKwiSQARBEARBEARBXEGQBCIIgiAIgrjMiEQioz0EghhbBAKBgTcmCUQQBEEQBHF5oNVqcYuVaDTq9/tHezgEMRZJTEzst400AuMgCIIgCIIghgWdTqcoCgCcPHlywoQJqIgI4komEol4PJ7u7m4ASExMHMiPgrZGJQiCIAiCuGzo7Ow8efLkaI+CIMYo11xzTUZGRr/NKBCOIAiCIAjisiE1NXXixImjPQqCGItMmDBhIPoHyAtEEARBEARx2REMBjs6OoLBIAb/EMSVTEJCgk6nMxqNBoNhgF8hCUQQBEEQBEEQxBUEBcIRBEEQBEEQBHEFQRKIIAiCIAiCIIgrCJJABEEQBEEQBEFcQZAEIgiCIAiCIAjiCoIkEEEQBEEQBEEQVxC0o/CVy4kTJ2pra0d7FAQxomi12m9/+9tTpkwZ7YEQxD+oqKior68HgOTk5KysrNEeDkEQxCXnk08+wRerV68elQGQBLpyOXv27GgPgSBGmkgkcvbsWZJAxFjjV7/61WgPgSAIYqS54YYbSAIRo8NVV1117bXXjvYoCGIkOHHiRGdn52iPgiAIgiCIUYYk0JVOSkoKSSDiCuFvf/sbSSBiDGI0GvHF22+/PWPGDACIRqMXLlwAAI1G093drdFoZFkOBAJ4JBqN4v/iW2yPPSQnJweDwUgkkpCQEIlEhBNpNJrx48erBxAKhfCnwbqVJAkAFEURWiYnJ/v9/u7ubr4xe4EkJiYqihKNRpcsWSJJ0uuvv56amso+DQQC2INwFTgwv9/f1dXFRssuDRuzTkwmkyRJXq+XzQke1+l0eESNLMtsnkOhUEdHB/sWOzvrMCkpCcccDAY9Hg9r9pe//OWxxx574403brrpptTU1KSkJJwlt9s9kHkWZlvdmJ2OzQwbCcJGiBgMhmAwiLeJnx/WM84bPkLs+Pjx4/m39957b0ZGxiuvvNLV1RWJRHQ6XXJyskaj4ac3Go2y61UTjUY7OjrUTwsAyLKsKErMbvHS8HmI9gCqxwlJTk7W6XRutxufPZ1Ol5KSEmeC4Y9//OOSJUsOHTp04403xhsn/zww1LcSuN+gcDwhISE9PV24I+wr48aN02g0LpcLuBuBnciybDAYWOO2tjb114Vfh06nmzdvntVq3bp1q9/vZ21iXkVMuru7XS4XP7E4SEmSLly4IEx4QkKCTqfDEyFpaWlarTZe536/3+fzsR/puHHjuru7Y/5rq9Vq09LS8PW8efM++eSTW265ZSDjvxSQBCIIgiCI0cRiseCL9PT08ePHJyUlabVanU7Ht+E1gKAHEDSJEhIS0EaM2V6j0ZjN5oQEsRJSV1dXTEMK++S7SkhIGDdunHoAer1er9d3d3cnJCR0dHSg+tLpdJIkTZ06lRl84XC4vb2dt+kZKSkpBoOho6MjnoZhyLI8btw4AIhEIi6XS1B6bAYEy9VoNCYnJ8e83qSkpLS0tGAwyJv4Op3OYDD4/X40tXEqUKuYzeaJEyemp6cnJibiMPACcVoSEhJSUlIikUhiYmJMzRCJRHirF8+Orzs6OtSWPc4Mmz12HB8Sph/YLVYLCf51YmJieno6339SUpJer09NTWXzYzAYUlJSvF4vk6MAwK5XjdfrxccVh2EwGLRarc/nwyN4O/BEkiSxOcHGgsZjQ1VfkSRJEyZMwBmONxLEbDYDgMVimTx5csxxIuPHj0epz2C3Evr8lbEXJpMJVZC6AQCYTKYJEyZ4PB61ojOZTGwkwkMSUwECQGJioizLaWlp7GmB3k9133i9XlmW2duEhASz2YwXaDAYcM2CXW9ycrKiKMFgEHqktclkiieA8bFEyYcj12q1kiTF/JOi0+lMJhN/4QMc/6WAJBBBEARBjAk8Hg86AdDgCIVC7CNcQmaeAUmS+MVg6PGWMHOTh9dCPp9PbZrodDqv16s2OtW2Ne//4Y+j3ohEIlqtVtAk/Fv+ioQesJlanvGD1Ov1vPmr1WrNZrOgmhITExMSEsLhsE6nC4fDeMbExER+3R2vl71FI0xwYgSDwWAwyM6FE8KGJ8syPwyDweDz+fAeybLc0dHBelbPtlarZTdXo9HwDbD/mDMjzB5+ijIDet9iYXr5g3h2cWYB8N6xbwUCAZztQCCAx/nrZQhr/2wYCQkJ+Bizj3AAoVAoGAyyS+O7Elryn7LBK4rS0dGRkZHB7kIoFPJ6vYqiyLKckpKiViwCwi2ORCKCBGK3Rt2V0WjE5x9/d+x54J8lQb3gby2mngkGg6FQyO/3a7VaJtr561X/GKH3fcSPBqgf2traIpEIf6f0ej17bTKZurq6QqFQQkJCNBrV9oA3C0/a1dUVTwLhdDEnHgCg30/dcuADHhlIAhEEQRDE2MLn86FforOzk5lHsizjOm4kEvH5fGimJCcno/kCva3emOZgNBoNBAKSJCUmJmIAjyRJqampiYmJaAaFw2EAQOcJH7oDPXJIq9UyFcSO45BYBFFiYiL2w8zZYDCIa97MjFbbuKFQKBwOY2RXTPtJlmW2cI5mqCzLGo0GLXW+Gb/ajTMjWG+SJJlMJp/Ph/F4nZ2dqJrY2JgxFw6Hmahj3qfU1FR8gRqgu7vbYDCMHz9eURSdToeOGrxA1EWC2Yf2KPSEwPGaRLh8HAa7akGECAZ9QkKCJEkGg8Hj8aC9q55Dvjfhu2iI47AxaCo5OdlsNgeDwZhel3A4zCKd+LspeJ94tcxQ6zR1g5hOGAAIhULs/nZ2duJc+f1+jUbTR2gcIssyejbwjDFt+rS0NJ/PpygKHwbG/EWRSCQUCgmyEJ+laDQqSGsW3ae+kGg0iv3HjB6EWJoWeq+D4AD6vl7E7/ezJwp70Ov1vPDWarXMEdfW1obiX6vVsh8yAIRCoVAoFHPGEhMThRvKX29CQoLRaMTgWJ1O169MHUlIAhEEQRDE2ILZvhiPhKkUuM7Nm54Yt5OWlobpJfxCPq5PBwIBwYSKRCKdnZ0sZ0ZRFJfLlZKSotfrdTpdMBj0+XzhcDimAY0mVygUQmtPlmWMwhIsP0xdYEvpGEyF4V5JSUlJSUnYPzpAurq6UFMpiuLxeNLT09HsRuEUCATwU4PBgNlQgUAABwAAXq8X4waxn2g0yjfDODEUiupr0el0CQkJLK4spuhCxo8fjwvkTAZIkoTCiUkvr9eLcUrAreKzjyRJ4sUbu034lhmjaBZjY1yDj0ajer0e7c5oNBoKhVCCRrlEEUZ6ejpeKd5HnAThWnB+8LVg0bJ7wbrFcEEcudr8FRx6ODkJCQnJycnRaLSrq0vwDCBM8KilkU6n6+7u5oVozNuBJ/L5fPxM4tMyEAnU3d0dCARwnOpTsN8R3u5wOIwtmbMIHY+CLNTpdOz+hsNhprLw3mm1WmEeMPCMXWY8sZqQkIA3NCkpiUUkssaYW4VOMFTp6I3sI2MHz2UwGGKGqAUCAUwGw7PgJMTriicpKQkXYiDWXcMQWehJLxxTjLkBEQRBEMQVDrNj0KeBOTZ4RIiGQgcLb56yhXx+GZsHfUF86FFXVxeaKWjMdXV1eb1efh0abdZIJMJMt6SkJN4rJSx+Y7oCb0LhKrIkSUxfRaNRRVH4EKBwOIyWHBqUSUlJvFEbCARYgBn0JJlgrFFycjLztGAztPYwTgwzW9TzIMwkg6+pgPFCas+Jy+Vixjo7L94FvV7Pzwb03COhB7WxyPeZkpLCUj58Ph/WPIgX5RiNRnFi2WODy+28BEInCd5l3tBn1jCaqsxDhUSjUZTcrLFer0c5JPiFeHGFb4XHj2keQSImJSVhGglOSDgc9ng8zIso+JfQxPd4PHhneR0VL0yLn0M01vmQSAFcboCegNKrrroqphKL6UlD0COEsXk4JNSWGHSHqsZgMKCSh95OHt4Rh483OhiF+67VatPT0yORSHt7u/BRMBjEPCgeWZb5fCR8BgSEHxeOAR8qPBIvsQ0xGo1JSUlY+0EIZeRPpygKPpM6na7vbK6RgSQQQRAEQYwJWNiMOsaJvRZWedlbZnlremdsgyo2SR2ZE4lEeJWFJpqiKHxjrVbLj8rv9zNTEkULv/jNLke4QBaghX2iE4kNRpKkPtawWf/sQgbSDAB8Pp9er1cvQquNMLxeo9GIEVMo89SnUBRF0D/AmeDJycmRSIQXALztGM8eFfpk08vMfSReUBnmyaDFzE6KXgK10OUNfb7gAY4H/WkoqzQajdAYrXmUQ2ztX9A/nZ2dgv7ByCufz8dfCyJ4G7Baw/nz52NeaSAQMBqNrHPeJdJHYTQ2h6FQSFEUDGIUQL3BauuhAuno6MDcfV5BxTsLQ5BYqC39fj9z3mKqFXOH8heodgr5fD5BcWHQGivvxv/MI5GIWm9rNBqz2YwzoNfrY/7E2K+Gn3aDwYBRpgkJCX3oRiQpKYmXcOjM5E/X3d3d3t7OMouEmhyjAkkggiAIghgTsACheEogHA6zQltCYgCG6wSDwe7ubjRomKASzCxQGVsYFcbauFwutAUxbAaTmzGan7URRqhe/BbasFVkSZKw/BS7ZNa47/K+bITR3lndMZsJdiQ6oISWfAAPJoJjzx6PB/Ml4i1787Ih2lMDjdcAbPYwIpH/KJ49Kpj77DhLvhdyZqI9hTF4XxavSwEAVQebCpYQz99HIQIQY/ygp56e2+3mG6Mqhh45ZDabMd2fH3wwGOT1DxaiwBkwGo2oqfjZUFvtwuOBI2GNUaGxxgkJCePHj48XsoXChh9PIBBITU0VZhulHe8XZdfi8/kw9Q56KyiUlPjAq3VyOBxGec+eInab8HeHzpBx48YFAgFetMcMiktMTGRt8HeEGWjCaKO9K3bw8O6+mAi/R71en5ycjA9hH+4a4TKZv0un06WmpgojwZZsBtRLFSMPSSCCIAiCGEMI+cQMTFJnbUDlE8AwNgxXQ9MWjWxhpR+J9pSvFVbQBXcEy8bB6lUsj1+9HK5eJ9ZoNJigj/E/uJ6NuTqCmysajaakpPB2MAbXYXQZplOzUgHYLa46YyKEcFJQOb7Q/4DpOqxSXGJiotFoNBqNkUiE3xoFjbNAIBCvDDQvGzQaDd8Mh40TyNSCcJti2qOsrBy+xVi1lJQUdL4J8WAo59Du5Otrq5Uz5mvha5aMLhxkZ8SRR6NRJgiDwSBKVn5u2ZVGVbnvwOX34y1gKVIICnXMYIE4VjvfIT912FhIcEpOTo6nf/x+f1tbmyAqEhIShAGjnItyBRX5R0hw6DEFxaIWWcoW3yFz0bCnSBDw+GlHRwdGaSqKgjUew+GwsLSBAhufdrapDn+j+cZY6STmbMSDTyNEZFlGRxP7mQhrATghGPnGXyY6i/i654yuri72bAuRcqPIaEqgtWvXAkBJSYnNZhvFYaxcuRIA8vLy5s+fP4rDIIgrirYOn9cftlliBCQQBBEIBPgkbHaQeSrwCDorhO/yGduKorA9T6Eny0WwyIU8GbWByF5HIhFMQui7shMr1wY9KSidnZ249t/Z2cmC63jTLSEhQTCb2I6ToVAIyyTgdaGLJikpye12M08IS5vB7CBhPGjIYm4MlklgBh8WreZrAAgL1f0alCyrAeUZ1n3uYz7V8GJv3LhxHo8Hx4NVzpKTk1mSBp7LYDBoNBo0T7EeBkuMUetSLKGBQVxMd+Edxych3APG0UFvkxoA0NERDoeTkpKY+wI4QaWeELzX0d7l7PgGkiSxDZ34ctvsyeHVIP8E8iXdEK/X6/f7k5OT1a4Y5nbgUU8RXz1PUF/4gg8BRQWlXibgf4asBgn/FKGAxzvLj8rn8+FmU2xLXOgtElDAo9LD0EToPfnCzUI1hW8HUjScBTri1ZlMJlZwgm0KzO8+xLLFUCezPtluYNB71yPoLTIRoUj9aHFpJZDT6WxoaDCZTDk5OepP161bBwDFxcWXdAz9sn///s8++2zv3r2jO4wxyF+74N+cAAA36uEXEy/uuxvPwmdcJHCaBGkSpEuQJsEECe5IhcSL0f9vt8N+V68jugQwS3BVIkzXX0Rv6n4EZpvg/rg7eo8E2u/9cx+fXnj7FyZjX0Uwv/uLt94/9gV7a81IsWakTjKnWDNSb5ic/sDd35STLuInv+6NP/3636v4I0Z9ks0y7tqJaXfP/MbF9gYAgZDywq6/fFh/7tipvzvbvQAgJ0mZk9Luu+OGn993iyV9QFtcE8QVQsxNS0BlpcVbAkdfB0s/wLAZXI3mRYKQBQS93REYx8VbSImJiX2rAmYhMdcTv44e08SEWPY0v9jPyiSwzvn4Lr5cLzNn1bYvO84veGPRM2bMaXon66tNRjSFmVpjqkPIfhFkat8qiBd7eDtYD1jlLCkpqaOjA8UV7ifDB78lJyezetyKonR1dfHL9ihB1SqXGeJ4OgwYA5VfEWHVwPF5EwQVD5Z0S05ORm9SvGDCmHXV2M3FQn96vd7tdvM3Kz09PRwOC16gaDSKeVDqR0h4BvR6PfoohMEkJibyqlg9A7wKxdstNIhEIufPn8c54fPZ+KeIXTIrPc8QCnAL449Go1hUUPgU84vU3+L/bqB7B8V/MBhEfyz0VJNnZ2ff7e7uZt/lO+/q6sIL5+tr84OE3q5RIX9JKNGO5RzUIx95Lq0E2r179/LlywsKCiorKy/piYhLQV3Pv5Kf+uGEH6bHKCIyUFwKuBT4W8/bP3XCt1LgW0ZIH+wDGOyGMyE4E4LaLjjghqcmgnn0i4uMOVpaPS2tHvb21XdqF313+v2zbpx8VYyt2QeC1x+qa2qta2p9+8+f//Nbf37/pZ8O3I1T/emZhza+0/DlBXxrs4wzGWXsra6pddN/Vv+fnxc+fO8tgxsYQXzNwJLWwkGUH3ymBMSxWRFhZ1VsjI4gtt6v0Wja29v1er0sy3zgmV6vR6s6GAwK9l8f8HWKI5EIWmPqOmYarsoCvohZXYCNX6vVdnR0sDYx8yXYFKn3ZhVOrYmVHCWkVUCshWq2Lh4KhdC4R7Ob13jq2DCcNI/Hg5GEan8Fb9Ojwcomhy+HzdqwnSjxLao4SZL4ZfuYW7Lyw1BvR6PpXfqC30mmb0HFwEeFueb6NXP5J5x/clihP6G9JElM0oPKW4V+Kr4979nTaDR+vz8YDMZMHMJMNuwBq2bzg4xGozgYWZZR3ghRizhyjIhLS0vDUgfx9uTV6XTqsntM7bAnR9gvldWOZzD/nlar5RON2CTgwgFwUgo9qNAjMpkcUodKQu/fgvCL03C7JPNH2FvMnsIdnPGR478+wO2MRoDRDIRDXTS6UXBEPLqjcKwLAOCqRDgfhhrvYCTQHSnw4FVfvT4fhvNhOBeCyk74MgRfXoAaL/xqEiQM2B1klmDDlH8Mr02BOh/8oR1cCrx2Hp6aNJh+xiav/7Logbu/OeivP3D3N1//ZRG+bjzjOnW2veHLC//29ie1jX+vbfz7nvfr/7zlAUk7oHr/AGCzjDv11mP4Wol0Nzs73v341K+221taPQ9s+L/vv/STgXTyhz81/Pi5CiXSB/LG2QAAIABJREFUbbOM+92TP7ht2iSjPgkAAiGlrqn19YPHXvtvx4f1Z0kCEVc4BoMBHTVq+0/I2Eb4Ld4ZLFGbT8rHj3Q6ndvtZrYLs728Xi/zLbDAM1wPxvIGmBIgpJrg4m7M7T5QBqBPoL29XS1LmBRhtr46tRqLI6OI4jWScMlCroLJZGKFp9hVx8s4xwnEhCi23RDCW/DhcFhYvPf7/Ww3yZjXhRkRWMSZVUJDfwXmdWD7zs5O4Z6yXJG+q5zxMBOfHenq6pJlWbg1/DDYWXhvFXr8MJcdgwbj7Z+jhj2f+Fa9kyYW9cZorj76ER5vVjsB7xRvdquTfISukpKShGvs7u72eDzqinC4QTB7K8syuhmxHhqbWPTw4GOPFcbxhrIvhkIhvEbcqgtilerG+gr89aLu4svQS5KESxLsSsPhMJY5YT5bXo76fD7+ZuHMYw1uQaiASmTGDJUUJp+pOKGeYcx7gYsCqMZxAtkqA5YG4TfCglFlNCVQQUHBKJ6d6JtjPuiIQJoEi83wf87BR174sfniotcErkqEqxIh2wAF4+CwG/6rHZqDsN8F9w3KHZqggasS4bvjIBKF31+AkwHwdYNhoFb9FUTmpLTMSWl3z7z24Xtv+c0fPvrVdnvNZ+eef7Oq7IG7BtGbpE3InJSWOSlXiXT/4t+OVB0/7fYG+o7NA4BASPnlK+8pke67Z177H2vu49vLSVLuDVfn3nD1T79/04f1ZwYxJIL4OiHLcsy1cz6Yns+f4TUJkxBM/PCgoY/5KhDLd8T7GVjgGTsRvwE8wkK/dDodFg4GlYXEB8lgcBRfBRijqrq7u3U6ncFgYLqFZZBj3lEkEom534jJZMIdSwVfjeAlAwC0FPmyAThUrM3AemttbRVWvtEng2auesZ4nwmqLE1PNT+MuWIthfSVUCiEmy+FQiFMf4feRKNRvsQCX3M8yiXTI0wGC2bohQsXtFqtyWRikoMfBsszYUdSU1Nxc1LcIqYPNw6WZ+CfPXWyh3A5WGOQZQexB4YRs1Y4K3KI1cmFfX6h9y1QK6vU1FSj0Yihg2zSsGhe38GcbKtT3EeYHcfS2PxjjzUM2G+HL3sQr5ygUOLPaDSib5BdKb/WoK5TF9M/ZjAY8HkLhUKtra0Y9YqFFjC1jG/M33Qm5wTPHi55mEwmoTQ8CraYFbQ1Go3RaBQiFYVbFolEAoEAbnTW2dmp/jM1wgxJAjkcjoqKii+++AIAjEbjlClT8vPzc3Nz8UFcu3btsWPHAKC5uRkrHyCs/sGOHTsAYM6cORaLhXXocDgsFsucOXOcTqfdbv/www+NRuM999yTl5fHn9dutx87dmz69OlFRUVZWVn8qJqbm7Fn/qT8gG02W0lJSR/XZbfb7XZ7zGYVFRUOh6OgoEDQb31PxeVIlQcA4PYUuNEAaRK4FPjIA3cMMn6qF4ka+EEafBmCGi8ccEOuESb1taFZP2T1+KacIfjGWHGujkXkJOmpH337k8+df/hTwz+/9Zf5d03Lnpox6N6+c/NXfrSGLy/k3diPA27V7yqbnR3XW9Ofe+g78fRS3o2T+u2HIK5Y+BQXfkkbc52xZq6wxwjCp7goiuL1evm9O+Ih7M+jVjt84WMsHIwWmIar+CzEtqF1yPsf8BL0en1qairL7dH0rkOg1Wq1Wm28/UZi7lAp6A1sKfigtFqt2hVgMBh4nwMr+SVIDtaAn0OMpEKDVVEUXALnt+jhFWZiYmJ7ezubCuipQM07AQQbndUclyQpEAjgLqiotZh5qt4YCuORmH9DGAYPC7xklbtibqGDYganhd9wVkj2gN6uOd6Bhg4H9sAwmP7Bomf8Hq84MGHvTnYWnJPU1NTu7m4s3S5cl/CoazQadHLGnIe+wXIXwlXw7sp4IYI8gpJndRTYlTJww1+2odBAfHFer5f9ocC9dzIyMoStpZCkpKSYqxh8gTh0NAlxa1jXAV8L3ku9Xs9vK6zpXdeOfyZZycrRZfAG+qOPPvryyy+rj5eXl6NywGoHANDc3MxeA1f/4MEHHwSA2tpaJoEqKirWrVtXUFBgs9lmzZrldDrx+HPPPVdcXLxv3z6v1ztv3rwjR46w3tatW7dz506+pgKezmQyxZRA2H+/EmjdunXFxcXqZm+//TbqK14CLV26dPv27X1MxWVHQwDqfGDUQm4yAMBtRjjkhhP+4ZFAyIJ0ONYF4Sh86IUfDiEv7u89/8imXa5ic0T5l4e/d6C6MRBS/uO9E/+8pGDQ/Zw6+1VZCWtG/8/EzsPHAeDOb15zy3WWQZ+RIK5kNFwVNegthDBgSWjP29bQu8oZWo1oLKJqUptWvB0ZU+0IVg5vzbAoPn5UCQkJrNAZ9PZX+P3+pKQkth4sGIhIvP1G0KmFMT/s64KVjyamsHmrVqsNBAI4CfyWpmwlPubmp2zYRqNRHQWXlJTEUnGg9xY9ycnJiqKwUCVWEprPu+AvWZ09BZygMhgMvI+OgePHjBd2MBgMejwezE5hw9D0lENgJ2UeQqEAtLBZEy9m+A1nhRSspKQkZlIHAgFha1fonYIPvZ8x3CZIXS5MvY0My2jCZBjUn5IksVOzNDaNqsZdZ2dnd3d3zC19eITgOlYahL8KdFcKNUWQmEWl+foiWq2Wv++sIB5KYiwXEW8v3ZjwUjMajQYCASxKjvGH6HvBBqwAIE5Ue3u70WhMSkrCh5P93WDb6TLQPej3+wUPD+YRCR5LwYXFBjkW9A8MWgJt37795ZdfNhqNZWVl+fn5FoulpaWlubn5rbfeYm2ampr27t27cuXKvLy8Xbt2seNM8MSjpaVl1qxZWVlZGzdutFqtVVVV69atq6io2Lp163vvvVddXV1WVpaXlxcIBF544YXq6uoHH3ywoKBA7VcdGTZs2LB9+3ZZllesWHHrrbdmZ2c7nU5hKi47TnRBJAo36uEaHQDAjQZ4twM+9cEXQZgSY9FtMJgTIUOCs2HwDuGHcD4M/9UOAHCDniTQgLBZxn3jatOnX7S1e2JUkhkgjWdcv9peCQDfuXmKNaOfRa+/nnS6vQEAKMrLHPQZCeIKR9NDzFgjtYzh37J8APwuxregxeZyudiqthBGxV4L27wEAgG+7jMLbVKPCnNRNBoN26qI74dvKazuo9Hm9/uZa0Kv1+v1esHK5IuwmUymhIQEdFwIyQ8ulwsrAptMpo6ODlZ7jSklvnIAW4l3u9389PKTCXFinIRbIEiUcePG4X4ywWAQK4PzX0QhwZxOaP7GnNWYnTNw/BcuXEArlmV9YFVlo9GIw/D5fHzmiaZnF1RQPUuoPJkvSJAufr+f+T1YRQE+hSmm6wZUdrzwbMSMjxIEBgp4fI2hbkyWMFeeWsQi0WgUnxxMremjOjNqWibLBWnKX4Va/8SrTiHsS8smnC+Il5qayheWQM8qFo6PeetZlQs2LWytgS+9wAaJ6TpslQQXDlwul9FoFDahUm9c6/f7cWNW4VeMNdM1Gk1qaiq6xdgpBDAQTu2YGnkGaTYeOHAAADZv3rxkyRI8YrPZ8vPzFy9ezNrYbDaWTHlRNQ8aGxuXLFny6quv4tuCggJJklavXv3444/Lsnz8+PHMzK9sqcLCwqlTp7a1te3YsaO0tHRw1zJEcCrWrl371FNP4ZHMzExhKi4vPBE44QcAmNbz675RDzfq4YQPTviGTQIBgDkRzoahLfbfqBh0RGDj2X+8dSnQpgAA3JwMP72YkC6hH55F42Hy8F3goPmX3UffePe4cPCpH+XdPfPaoXduu9r06RdtTefc/TcFAABne9d3f/EPPX+mrbPZ2QEA9+Rd97sn5/b79eaeE00agL+IIAiI5dzAClS4UYxgpKLCEYLy09LS0FGANdlcLhdab7hRKfQYQ5i0jRkO/ADQ4sFh8A4WUJmVGCoTL+0Bk4hMJtP58+f54DcsQs164LODUlNTExMT2Ual/J4/vJUp+Cs8Hk/MdWWW/oHj5IfNTtrV1cUWv9n2Kfz+MxqNBrO6ExMTY5ZAgB4blKlN/AoqLra1K94gwcSEnhrBaDWyMSckJKh9COoHIyZs81nhMvFKjUYj27qHTSxf/w1UbkYUb36/X9AqmNmPC9BCRQE2YP5GYEJ8SkqKEK4mJI8JtjXa3CxzDHrUNR+mKDh5+GthlxNz+QB7ZpPMnnn0cggZUzh4/AqfUBTT28Ob+Fi1D1+rdxkCVUE8Fs8GPRGJKDDYhrn8I8RXuQCump8kSViegbXk66Dwk8Ou0ev1qmttu91u3BcIsw3VxQ+xB4/H09XVxYs3HuaGkmWZFRYfSGjfJWWQEgjTCvmf0PDy7LPP8m8XL168evVqAFixYgXTPwBgNBqLi4u3b99+4sSJSzSSfsFJ6GO15rKjzgdfBmFCIkznVka+kkB++L4JpGF6aK9Ogv/1wSnRuR2XcLTXXkOsk+l6SLmYQggx+xlTNHx5gRWPZjwxf+awdD7tGvN/VzdWfzrQ2gOBkMLvNYRkT824e+ZU87j+tzbz+L9aap2Q1k85XYIgQOXcYP+4YJUqvqVOp0tJScFNLXljAg1utM8SExP5iBe12YERUMCpAixlxg+Dr2QgmJJY7gz3LUlOTo6nhfjCu8xsium8wg1MePtPKCyGCLF//AUKSVNRboOdeHsoseQHJpZwoZqFriUmJqKCimm0MRsUT52amirLcmdnp7C1KzbW6XSsNjGbQ+hJsWC7hYbDYcGHEO/BgN6bq6IfLJ5xGQqFOjo6TCYTOm0wf0MwWNFUZVOKZjq/xxRwKgWT0OJVF4i54ZJOp2OqRq/XJycnC54NocgHf97k5GTcH5Z5e/Bi+WeJxbahE5Kdl7kp+FBJnDrsubu7O+ZOOwzMdRHsvZhbiLa1tQkuIzZC9S5DPPFuHFYOhFh6Xli/wH2u8LXL5YrXIQYBqjcpwolSF17XaDR8nCfEqi8viDfgXNCYqcUX58BK7jHHNmIM8vQ5OTlVVVXPP/+80WgsKirqN7btosjMzBQ6tFqt+OLWW28VGk+aNAkAWlpahnEAF0VeXp7D4bhEUzEqoAtouqHXpj3TDfCuGz7zwwkf3DxMpqxLAYCLqIWQJsFTPTu0hqPgDMMXQfifDviPNvhfHzxmGWjBOr4fgXFjI5ruXx7+7vy7pgkHzeOGsDETR0trJwAMvBaCNSPl/Zd+iq8DIeWz0xc++dz524qa/2/LHw9Un/qvX8/ve4PUrsBXf16VSIzodoIgeAQjjO0wyPYq4W2OYDBoMplw0RcTITDLX7BHY+4xCr2DcIAzajFdhNWtwhONHz8eI2oEc5mtZ6NWibcdDSu8K0kS2pHC1ihsGOp6bjEREn54Sxd6Si9gHWFNT9FtdNSonQYYFAS9xRJwVbbU+Hy+8+fPs01+BBsUTcN40y5JUlpaGnNbaXo2V8WtM1HJ4Bao7OuYj8FrSH7ryWAwyJKL2LQwYaCepUgkcuHCBZPJhO41DGrimxkMBo1Gg2Z6NBrF4cWrowAqpw1zVeF8arVaISeEiUMAwPocLIyNuUTYJp7Cebu7u/HxxgcJbygf0JWYmMh0hbBMHwqFJkyYAACsPIBg5ce7NPbMdHZ2qjfsUm8hqt4/lA0SXUwZGRnoNYpEIlgYA/N/2GB4mYTXy3fIHlFEXWyDr+XIu4hxflAjYbfqXyK7NfxtjUajMX0e6oUM4WFgTlH+wcMJ9Pv9MXPeRpJBWnxPPfXUkSNHGhoali5dCgBZWVmFhYX33XdfYWHh0MfEBI8a3gXEo04GHTGefvppu91+iaZi5PkyCJ/6ALgoOMSaBNMNcNQDn/qHTQJhGJt5wM+gFnrtf3p1EsxIhik6eLMV6nzwp0743sB26RT6GYOYxxkGvuXoxfLF3zsAYMqEgfYvaRP4wWRdM/6+O67Pvd7y85cOvfvxqVffqX38h325p6b2fLelrfPSXRRBfD1QrxyDascVoQGf/BCJRNRWBW8hsVJvfDEoYdscHha7JRiILAUo5jadMfvhC++GQiEmAARBIoC10ViUGlvgx4tiFirvIsMScwDg9/tZEQWtVsvbcKyuHWaD8G6EeI4sXv5hIjjb5EewQVlMlHraEZxzrF3ONqNEtw9TgMLivRA3iMFRuFVoTMcFfh239USNJ2hLn8+nURU4BgDcFRdtZSzYjXeK19X8HcfLZx/FHA8LzVI7YaAn3YiX4pgoYjAYmOBh8OdihjvvX8JbHy/bHgeAW/p0dXUJVcL5eDz+kWB3RKPRdHV1CRJIkArCR+gHi0ajLpdLq9UKFdhcLhdzP+r1elR9CQkJWDkaBSQqUt6BKTyiQrENfoGD1RFhl4P+Pbwj2NJsNvMqKF7EoHoa8TULatWo9kvFkD+hQ1TveMZRL4owyI1UrFZrbW3ttm3bCgsLJUlqaGjYunXr7NmzZ82aJZTeHwR9FDaIt02Y+it8LuPgGGAPl3QqRp46H3RGAAB+64Qlp3r9d9QDAHDCBxcGnL3TN9iPIXZW50CZkQwTkwBgrMe2jR0wk6ffzXz65v+54/ppNjMA2I992XfL26d/taJx6oxrKGckiCsBIdRNr9fjppy8ccZ/qjYo1WIG4+IAQJIk/DeUFeBCpwduy8PasxJSfCder1dw2mg0GiGpnffD9A3uWclsI2ZOseV81lKr1ba3t2O2UkdHR2dnp8/nw22CmI2I4spkMun1ekz3Z/NjNpszMjJwByFhqLgpEIvSwePxdiPt7Oxsa2u7cOGCei0cfV98YTG/34+Z5cK0M1CQ4PaXeLHd3d3t7e3Cpkn8dGF0Im9NYh4O76xTf9FoNKalpZlMJsyw4scQDoddLldrays/+eyeCpXfMBeFeVfYjdbr9SxTC3onaPE3MRKJsN08NaqiAmqHCc4qTnhnZyd7zAwGAz/PghIwmUws1pHPV2EN+Drm6oJmuE8UvuZHK0gjdakG/leAvyPm0uGf8FAoxP/ofD4fWwjANqFQCGPDPB5PMBjEuiNsX1q+Yof6ER03btxVV12VkZGBA2CPazAYxJ8An9HX2dl54cKFtrY2FtgmFKZT3w5+JmO6fQQ3LPT4Epn7i2+v9pKNFoPfS1KW5UceeeTw4cMul+vgwYPLli2TZdlutz/++OPDOL5BwOSQ+kkdoLMIe4hZkyRmD2N2Ki4WJQqf9icknOGvIuWGyEde6IgAAEwYcuwZBux9OeCcoiuZ31d+6mz3AsANk4dQiRwAACZnpAKAo9HZdzOTUUbnj7rAA0EQAvjvDi4ba7XacDjMNgxF1JZKH8vkrEF6errZbB4/fjzb8BE/ivbs1JGSkpKenm4wGLDMcXt7ex/BLQiW6+VNUhQkmp68kZhZ0QyDwaD+VLCi0Fjk3Rd+v9/j8YRCIZQivNmHHgB1jeOYNdxw0pKSkpixCwCyLGNlOaEHvmSzusgYy7lifh70nHR3dwvTjjDzlF9m5YuMq+cKRZ3RaORnjB8J/y1MR0lOTjabzczwxWeATQLzvHV3dyuKwpwPKSkpeBXCZeIDYzQaJ0yYgDOMfgm/39/W1jaQDS6Zd0KwmFHasVGp4yHx1BMmTLjqqquEXXcwLwh69gh2u91o1qu3BsazRLmC6UyNsBlOTU1FEcV2AWazJPwWBAmXnJzM5LfRaPR6vR0dHUKNELVGRVXJP36sHgObCqzGht/CHya6j2KmtLFBqqvY435c6pGguAWumBuofuzqH2nq/8/emwfJdldngufevLlnVi6V9d5DSKMNpCckgVhsMNCDZIwl2uOwMDYwtoOthZc2HpvAM4w9xqYjcHTQRM+YifB4PPQYY08bDQgbT3uhWcKCEBaLQMJIWAhJaLX0XlVWZWXlnjfzzh+f8tOp87uZryTEqwf6fX+8yLp5l992853vd875ztoaFxi3TlxfLu7p3gGM8SAbJacBT0HqQ6VSueaaa6655ppisfj+97//tttu41etVksW2gmnDVSfe+ihh4wS3be+9a2D3yE1v+jOO+9cceGKofi+wDeHcudQROQdZ8mlaYkn/29bPt2ROwby33534l7juXysLSLSir7bW4nIyamISOW78yY9HdAbTv6nP/6siJx3rPZv/vUV3+XdUBroIIoIv/3zL/vF//h3n/v6/Tfedv+VV5y77LR4No8yT35TxsPjBwZ6r9p8pU2H4XCYJEmtViuXywhUM9vkGiYQS2c2w/ZC4BO9HJqH6MqkNAoh3Fyr1eC+wMmoHdnpdJKFfJzrfECzi8Ui6A2bB2MXRYeo4u1uOfNPKJWtHMjH4QYLQcULmTwIlqtWq7owC691FcYwYryVKT2JvsP0ZPdZvolGra4QytkxpmEQBJVKBd9ms9koitiYQqFgih0h7Go2mxWLxdRwvkajAd1qvZmLgKh8Pr+xsTEajTqdDv4kWzDZLzD0Kdmnq6+a9hDFYhGJVZ1OR5v4GFuQYQTdpTrBqNtubtvtdqnkQVbPGruyWD+QiMC4jUajZrMJvqpjDmGXY5HncjlqzYkIJN25wvP5vFuWihoJfBeQrqOr36YyAV3wSvt2OBQQbKQLLo7jTqezopyRfoWZgYPHpYpQIzcJCoGmhW5BYcYQ8kipVOJt9QRhzegYXU19i8Wilrg4RDyV2d8veMELZD9zAJdghdPTg3q9jtDGT37yk7/8y7/M4w899FBqAVMXyDi677777rzzzuPHj/P4Jz7xiQOyGncovi9w+0BE5HhRnrMk8f6Sony6I98cyr0jueBJBVIN5/KPe/KPe7ITSzOSX9iQ/Hdn9N7al2+PRORJtudJ4AMf+ACsh7e//e06AvO9730vPvzO7/wOD375y1/+1Kc+JSIvfOELX/3qU0tIf4+w2x//2X/9pz//9O0Pbe6ds7H2f/zGqyvFA8tQpOGvv3DXTd94UERefMkzT3nym65+7v/1N7fe8q1Hful//bv//L9c+6KLn2FOiGfzP/4vX/vWg9v/+6/9+OpbpQ7yJz/5yVtuuUVEXvWqV734xS9efbKHx5kMWjbaqgPfgH0J/mBoQKVSgYsg1Ydg1LdEBJJrDFNBrFFqDneSJKVSKYoi7dLh5m63203VatN750aTd2dnB9+ORqN6vQ7tZmYFkFT0ej3Yozolw4CCwuymOOxFg5V5xKnZguR7XZhlfX2dli4lpDkClUrlyJEjy5hqsEjX2d7eXl9fj6KI5XHYF22e4hHMbuJtC4UCC/IA9XqdaVGYynq9TrMbWRngWjD03UFAYpU+Qnqja/ggvBCM0Q27MjVh9LKB0BwK9eiHiqp7YwZBRJrN5mw263Q62lmhx0E/HetZp2aZdauD8cBCtXw2rtWXJEnS6/Xy+TwXpxY3J13EC8jR0FlPa2trk8nERAkNh8Nms6m9uOwUgyRNwavBYKDVCIIgAMFA6heazQQ2V6tDv1+yv2YX9UioAIne5XI5auLxoPHecExcL2smk6G0IHK39JpBrV4sSP2ylEqltbW1M4EFPUkKdNVVV/3SL/3Stddey+HodDrve9/7ROQlL3kJT7vssssKhcLW1tZ73/vea6+9FoNy7Nix1eV4v3v8wi/8wh/8wR/8/u///vHjx6+88koRuemmm97ylrcc8PLLLrvsiiuuuO222972trf9+Z//+XnnnTcajW644YZf+ZVfgZdTn3zAoTjzsTWVOxZCCMuU1Y4X5YK83DuWO4YHohwnp/KFxSLfjOXkVB6ZyoNjEZFSKK+qyWWndiE8jlHy+N1EZHcm/zKVL+6JiDQi+YnGsussBnP56+30r1qRvOwAu4rvfve7ReTtb3+7PvjRj370G9/4xmtf+9rUk//u7/7uoO37rnHPv+x8+L/+0+Jz5+6Ht7/1YPu2u0+ISL1SeMfP/vDVP3TBwe/WG055NxF5dLt3x31b//kzt4vI2RvV3/75l57yDlEm/MDbf/ynfudjdz+887Jf+/C7/vuXvviSZ1x63pFWrXj7dza/fs+JP/vUN774zYffdPVzT3mrD37wgw888MBb3/pWcxyD/KpXvUof/PrXv37DDTdcdtllngJ5nAbcdtttKzJIr7jiioPU7y6VSuvr6zB39AZqEAS1Wg32it5l1zQgWGTV6xIlWlMY0tXgUdyZhn2DZ4FrMb+ZTKZQKORyuU6no3fHcbI2bmRhVLkJKoDOvoCxXqvVhsMhWwgbDnaw6Zf7WQsKL2MvBqmkBRIOmgHO53MotrFSkLbzzK2gqLYsOwLFQ7XRqc/R3hXUaBIRSBRoDxIBxT9z0FTDxHPH47F7uZsAQ/0AUe4p0G9UK3LHkLFzJLeGBsOro0vuzmYzXbgpdRAymUyxWCTVJPuFghlvzvWseZTst9d1AVBNpbDadcwhr+r3+5rXzefztbU18HA+C7QQJ+gsrCAI4MkxXJ1SeDzCeEujhc0G62VpGm8mbjgcwpsHOQq8d1ogBONQqVTg1IKyPEYSRAvbDXEcd7tdHTfId18LzeMIxD/My2VUwqMo6vV629vbeHHy+TxYkB4WESkWi3BjyqHiSVKgG2+88cYbb4yiiALWt9xyS6/Xq9frf/RHf8TT6vX6u971rn/37/7du9/9btgoIvIP//APoCXfO7zrXe+6/vrrH3rooauuugr7TKPR6OUvf/mv//qvHzA/5/3vf/+rX/3qm2666fzzzz927BgcWb/xG7/R6XT+9E//VJ95wKE483HHUE5MpRDKc5bTklwgx0ty71juGMiP1yV/KhHqb48ec9FonF+QHyrLiyr7RLcPgt5MPrSZcvz5ZfnZdakd+FUazOW/LMnMv7h4IAp0huOmbzwIF43GDx8/62evvORnX3HJOUeeWA+3dgdv/Q9/4x7/qZdd9B9+6ZXHmukKJQYvec4z7/jQL/7bP/jkxz9/5+//Pze5J1zxrKNv/PHLn1DDPDzOKLzjHe+48cYbl317wP/4ptNpJpOJosiNJoK5sLa2pjfLjS3lFqTnZnyyEOPK5/OpunPB/gRuQJdSRSCTZiahnVNbAAAgAElEQVSaKUGHGiV0hsMhnoskDdMFXg7D3QgVuBJSGrlcrlargePxbqasJMYnk8lks1m3igvg6uaZJ7KmJOgiSuW4CQ88gX9SvVr7E1LFf2Gemt7hQ2qbl9VFRUEhWvDaBadhtI95LYLEdFAiW44/ddGhQqGwt7eHE5D3lc/n3eI2xm+GEETdJAhRJEkSRRGHVBM5ftA75jrLhcBppVJpOp0i6cWkuuXzeXCA1AuX/alnLTWSTX9FH6Y+B++CDicrFAq6oKoLzbhSH6RbC16hu2b0KpDa5/4mUO1df5X6OLcliB1d1n5JK7EFUTuqkLORwX6Zu0PBk6RAH/rQhz73uc998YtfvPvuu++8885CoXD22Wdfe+21v/qrv2rSb97znvdce+21n/nMZx5++GHskLFyjvv/wXnnnXfllVeaO+iT3aFPveTYsWO33nrrO97xjttuu+2+++57yUte8opXvOI3f/M3b7vttje/+c0XX3yxPvniiy82R0Tkx37sx26++ebf+q3fuv3220ej0bXXXvsTP/ET1113HULprrji8TyKgw/FGY71SH6yIdlAzl9Z5fWqNcF/O6O55JezjpdW5KL9c9WMZD2SVlZakYRPsLjq8bTAvEwgrUjOzcszDhzSlXofjQMqdDPCSuP1r3/961//+gOevAy/+8aXi8jzLjx68Es03nT15a943jn6yNkba+cdq517tH7esdoTzbR5xfPO/d032oNRJjzvWP2FFz3j+H+z/oTu1qqVPvp7P/3Zr33ns1+7/84Htu75l53ecHL2xtqFZzV+6mUX/dTLLjrITX7xF38x9XjqIF9xxRX6VfXwOA04duyYDp8mDuICEpG9vb2trS0k0GsmQFVlVoARxU8AZGXwTzg3YG9hT10WNlapVDKhL6YZcC7B7t/c3MSGbq/X4968uTBJkkajwT8bjQYqC8FjwIwgbdnD1TCbzbLZrNmYNxvn+k8WDB2Px8x4MVoCsKThwxkOh7lcTquWYUs0k8nQwMUYGmtVG6PMTZJTZWeJSLVaRUIUJgjC3CQndFyAAUL7WA6AFXVRUVBoPB5Txi2bzZooqVQNLrgKt7a2SFQ42oVCgZY6+I8swrF0+Fmj0SBtg0aF6zfLZrMQ4OZzgyCoVCrw+CE3DHPkVr4C8XZHQBZzjeKnCCfDcR3Ox440Go1+v48F7I4tl7oemXK5bCom6SHNZDKFQoELDzlaeiXkcjkMIMZhOp0yiA7+otSqoHgxU+M/dcFTvDvuhgXeJrpq0QDX4cmBQgKhfpBONpO0X4YV/E2U2H2yv8RWPp8vFotaAv4Mwan1vz1+UPHpT3/6xIkTF1544Y/8yI8cdls8PE4H/Jr3+N7hqquuuvHGG9/85jd/6EMfeqLX3n777ZdffrmI/O3f/u0LX/hCbNailCespUqlAqv3xIkT+sJWq6Xr/BiTCPkqu7u7OhAFBvRkMoFXAfVD9T1hU+LRPGhK37gwdjkeeu2112az2U984hMMqdrc3NRVO9fX1zOZzObmJn0X2WyWD4JWgbFSdB+bzSZIUerGOUFL3aS7IIgISSAkD7lcrlQqtdttDgvNShG58cYb3/CGN9x8880IdAftdEsSgS2YLXbwASNWVq1WlxVgJWazmZaVMqROg6F05riONkSP4L2ZTCY7OzvXXHPNkSNH/uzP/gyxXiYGzyw5DU2BtJepVCoxZsx4n8IwRKSioTRgKXqNhWFYr9exDvP5vCY2WAPL6vDO5/OPf/zjr3vd62655ZbnP//58/kcfOPkyZOai8IuR9oSW8iRkUVdKciXI6bLPAhpRahJZRYqJPjctul6XKnbIswpQqvgecvlcplM5oorrjj//PM/8pGP5PP5drvNaj+8NooiHXUWRVGtVut0Onr88ZuAF8G9HNobyLbicUhcwMd7yrWKFxyfEe0GvxCi8oyM/ktf+tKbb775uuuu++AHP7j6tt8jPJVyCB4eHh4eHh5PGrTjjXYWzS9NRWDKlMtlBghpg4ZVUMx+MwoBsaIljGBtDCGZR0vABUGgta1EJAxDFJfkbYfDobYRNemaTqfILdF1SPEVxMRarRZMrmKxmMlksGuOZhj/iekj1BT0uK2majrXHMppkAcgw5lOp2trazDXKNVVKBS0/U3QnMUII2mKzeA92d/UAD8U6IRD74CpESt2rpfVddUBbCJSq9XwLJPaAUKoLzTzrrvAfDNZkAFxtv81uwDozXB7oWXoACb3m7hQGOt8OvxXHL0wDJkIBx8XEo34xEwmw4QxlisFwKzwGbFwPA0Oq/l8Du4kyi9k+E+SJMbW52lGrtplFKbULG+4vb2NDYvpdArXFoTXNfNHbh7/nM1m7XZbzy9/E3CaWZZw2CJuDU4wWbySq7cYNIzGHQnYfD7v9/vFYnEymUynUyQlHuSG31N4CuTh4eHh4XEGoVgsctcfEVMMnoF3iFkTCD0iydEWKo0wE7sSBAGEj2Fzwwjmxi1SaMbjsYnGgYgCb7Isv4XQETVaRFj2275MotDb+UmSoDSkbrO5PzPUdTMCp1Cs7LfUdekeNsy4ZSATbKS64jgG3yPJ0eYs1cl2dnYoxcZh1/2Fsa4fN5/PJ5MJnHKoI+LCiE2nmterEQSB4Zn8qlKpcIpdp4qR3ZOFGa1D1ObzOcK3uFo44FxdjK9j43UgGUgLbyILsQ02HjSGbGo2m+3s7GDZQBhARKIoqtfrumuk0KZm63w+R2SaqMUJ8HKY7LwcTFXU4tSOuCiKtKg3tgzcWdDq6onSA9RIDZMzlWrhv00Wwg8Ur0NFIy1EgW/hRIJDyXRT9svf9/t9yuuDxCK36oDkHJF4rVZLvzj6Wy0f/73WRTsIPAXy8PDw8PA4I1AsFhnbpoEyLJCgbTabDOnBjrsuUChKEww57lCggmWTy+VogsDmhoWE7P9sNgtzVt9NRKDKxQxs5E5ohW4mHojIZDJhSjSArA9ZEB69o2w2vNFgmp4auVwOmUX4U6c2EfoqqjiIyM7ODiqrlEolhKiJYgIIt+NtdZNoH1N2XOecmOdy2OfzOUKYOOzLoI1maP0t2xpHSglkHpIk0byXgHHMGjIGqfLWsqi5mcvlUuOyKCrNzJPhcIhsH55jxMpA1PG52+3SQNfqc7K/+ipmVqfT6EQX/AvqBU8FZhBrlWsgjuOdnR1NI3WreBo9HsPhkB4PTBN43XA4DMPQaBtQbI1/ah9OqVTqdrv6hMFggIHVg2lUIty5XhYmZxTb8B5pJy1HOIoibJGYjQYSNtwf3hjcltzStB+eQ0yTjmxcBjZeBwEWCgWST7ONYjTEDwWeAnl4eHh4eDw16PV69913nzlYr9cPKIdAu9wEvHE3GpFjKOzI471ez1QUFREE7ciiSuPRo0eTJGFCCGxubPomC4Ev2O6y35sUBAGkDmC/IuZnOp2iYiPz/mkOUv5YR09p7wftS9YpAkxyCK+FiwABVOPxuNfr0evS7/dpZWpbEHvhxWKREhEw+Gq12vr6upGchjoZZYK108Ok+AdBgBZ2Oh1XWxn/TiYT0p56vX706FGdh6MNa1PVVByPBECVc9jZJKgm+Yr76+ype6sVWBHmZBL9RWQ0GkFXEPJ0xqWAwQexxHBhiEzQnet8gxo4j+ARWGDoPgi/Np11XKVLI3XD4HTCmRBuxnFsBBQKBeSrMPQOnhMyeYRl6gWmSX6hUNAZZeyRoUDwU7FIl8v/l4XJ6XHTMwVHEN/6fr/farVQZGlnZ0cr0eED87KQkQUNvdlslhrniXhUfl4dqKnnZTqdUj6b9YjwCuuUtjNBF8FTIA8PDw8Pj6cGN9xwww033GAO/t7v/d573vOeJ3Sfer2+t7eHUoY0RLAHL86uMyKp9OWMQwsW5SCx72v2wrlbHKhKrPyWOte0/DQ1mkwmjUYDHAZcCGxBb+Tzg7HbkISjTUAdqqTPL5VK2neRz+dN8SXjF+JnrUaAZqOMrE6sIigTPBwOEViFRlJIDeZvJpOBnWe8TxxtBETx+GAwQN4IaEwmk0G6OUW9tVRAFEUmZHE6nTL+Co3UFBE3R2MM2WBPeTIS3FFPk7ST5EpWwsw7jtBoBhMjGcZC6na7+XzeiFMbzqOdb2gh/4QqA3qnBR5ckqwb5tLIarWKwUdjeCY5AwgAWFMUReadQvwh01qQiiNLfDhBEJRKJQ6LdidC1ySTyZTLZZCl1HFeESanF5WGVtfAyO/s7ECtzlWi06qAENjAzBaLxWq1ihXuJrARq8PhjJeMjAgbKKkepBUpbacNngJ5eHh4eHg8NahUKm5GxwFdQBrwupjCHTBqYaxoH4JBNptdW1trt9uy2CafzWZUXSOw843PJjFanFCcZdVOaecx+C016d+I7WIPfpmiF8gG+uiesKLjui/8zPa4aS0GRrtsb29PxxqBjrpXRVHUbDZhqYPVmJbQcEf+ejab5a487FSUrdRBYrKo2WJojNvN6XQKx4XbU1CjMAxBpXBVr9cD+dRLa3Val66lqx/Ndubz+Uaj0W639RRj+WmYFCY639zyUGAd+MwFBpJsVheiQ3WukWZ0SGyD+LiJzBS1UMmatOdTFuF5rVYLfhL6XUFmXNGCVHciBQNRhBROV6SZaV4kK8Pk6GZMFgV/4FeBP1afg2EcDoflctmsKI1Aqc+jjuX6+rrsr5qqqzCHYWjcoXqyer2eeSU1L+12u7g5ZsRNETxEeArk4eHh4eHx1OBnfuZnnoQo9jIwb4eOEZrjMIPwrY7FwlYuksW1qpu+bRRFa2tr2Wx2e3vbXC4LUWzNPVKraiKBBJ91PZBkkR2ED2AIEF5DngwNbl2lxGT8l8vlZUn/9Xpdx/O4it7GX8HPq/V83co5uheyiIxyL0Q7dVVT5s0jEi/VdQNgIsSpDytLChC5ogjM+Dc9NdRI3wdFTvX93ckFK8PnarWqs31qtZqOm+LxQqGgs8i4HqIoQo4NyQlzlnK53LLSnG6zzeN041utVhzHEDnY3d3lygHrcG+IcESXNRWLRS2VJgveRaFqHjTmOxL9ISIiItlstt/vI9FIc4MkSUAAOFBxHDNmbEWYXBRFkMDmJgjkDfTNzZuuXy4AuT1GRA5A4SbIwfM1QWYgGBGU6PBok1TGslHLoAUVyuUyF09qxtpphqdAHh4eHh4eZxxgr+Cza45rozlJEqQ60LihIhNgcruDhXoBtJuNWVmtVnO5HDMZDDcgx4D1hsguCn+xnckiv4hZN1AU0E4S2W+YMuMfhVBWjAxN3lwuhwJEYRhSnsG0U0SQiP8kdp0LhQLYHfxRVFvG48IwdJuKCEYQDORomf7iAzkG1SN04RRNIXgtig6ZITJzhzug6o5LjYDUCwm3PYGjJjcajVx5unK5HMcxFqGeBSSY9Xo9VK3ROUupumSitJsJCkBrqo+vkIwUBAFrvNLn4zIEgK9VGIY6aSqXyzWbTaYDAXAimVEywhVMvNGuGFkU8F1dUIunrVCzMJMFKrW7u1uv11fQD5YkBjiPYFnmTCrs6a0HMCLo5sti2CGA7hYmxgn8STETxJLESFVCIOjqYTkN8BTo6Y5HH330c5/73GG3wsPjdMBkEXh4nMkwxUlRwB7Wg1tuBdvtOhIpiiIE6LuRacbBoklLoVCYTqfYO0csnDE6dcgczBqoRbEeiIlTMp0qFovcAnct3VMWXtS9w4darca8lzAMEfGFseLT4X1aTYF05Rx0lipY+lqYp1rfAuViEB9VKBSQDpQs9IhRLkn7hcgxgiAoFArYIxdVOEVEjCYekogQLmWGiI4LEclms2iepigEO4X76InQIwO1CdMes/FvyCpHACQN9jTO5NqjkofrfdLmcqFQQGd1y92yv9q8xsn0U+ErLANdBoqrl0LqjBXUZAauG63jl8vlIEOnm6R5LyWqzWJGAGoURdyeWEY7kyRZrWaxrNpVkiTNZnNvb8+VrAiCYHt7GxqSfFlQzgs0Bi+Ifqn1jOtHsIgqNzjw4sO7q9sGLThdHTUIgkqloksSrxB/P/3wFOjpDsrAe3h4eHicOTBx89CZnc/nqDZoLEJj8iKVCLvyOI3VG1EmEqfh/tp2nE6nNF/G4/Hu7m4qidJ/QmsB0LZOKsrlchRF2O1+qgqD0PSkdHUQBKwtC7jyXAZoEnJ18vl8oGS+V3An6H1zAPv9vnG44bm0IMEWaPqbHBta0kY5gNoALuC4gB8M7MhMAc1cmL9xHEPdS08EWAGqRZlCLssC0nRRII4AzGKtBq6HAoYyFAg4sCYuC6t0OBzSHZFa9pddY4VNuhRozeszgyDAs+B80PWp9ORSIJEBljiZY2JoJMDqsW6ekiyS8VAQiWqByFDimfl8XqdOuWoW8LC5s5DNZoNF2WIOKSbRME98y5cin8+jBrG5oTvj2NfgEb0DMh6PIZcP7ewoisrl8vb2Ngc/l8vVarUwDLVKRBzHK8TfTzM8BXr64pJLLlkdbODh8YOHMAwvuuiiw26Fh8epkRo3j7h8bWyZ0K9cLgcFYRhDMDVwH1hpeucbqlza6NF75MmiEJCoULrUzezZAlocDObmfD7f3t7WidT5fP6JGkCuOLX+FoFnEOYuFAr41q32Y4S59B00baCOthGESAUYJoxmmrzGHaebkar6zfHMZDKbm5uZTEbHCAVKWwwOB0hR84QkSVAqZzabVatVkyFGmXXoLAdBgMFsNpucCGTR4EI9tqCCbq8ptJDP57X7RZvFlUple3t7MploD48pGIVVzXQgjoN2R7imP5drEASj0QgOE73wDGVdW1tDMk82m61Wq2EY0vOmE4F0LVQG3SEAj75BOAbNmBgZAz2n2rUIfkiKzgDOcrmMGdf7He6w12o18D34lHihCWQNgqBarSLHD8CYTCaT3d1dvtqTyaRSqUAon3GbZsYhGDiZTNx3X2+awPODbJ9er6epHUabPcKbglnzFMjjkHH22WefffbZh90KDw8PD48UIMqIAsr6K2300EBJFvVMyuUyYocYQGU0rwaDQafTQaUO6OHSYisUCtiQNs6fJEngN0BFINcHBYdGr9er1WpUysamMhOpYZ8t6y81mt29OZrO7k2ouIX4PdpwRp4LqtCyPwGdN9H+Iu0E07VZUoF5cbf/mQdPi9/NY6HrACeD3OISWsOw2oMggJ3Kp0CKmsYrjmNw9FzDl1UqlVBwVrdhMBjA+i8UCsZ2z+fzcRxjeaROky6e45bl5Zm6GBQ8Nto9Bc8Gq+uaa+mOAMFY5ozSk9hoNGDuaxcQzH0w+el0ure312w2W62WqQ3FJ+pJNB9wK7cZlDGA5jiSxDih1IYmP8QddACnPBGdAHMhbshGghsn+1NxZBHfqF1VWNt4mwJVugdXUTAwdbdFFpWa+CdeBLfWE56OqmW8fDQa4cdkRTdPDw6/BR4eT0/ccccdshBQuvzyyw+7OR4eHmcQYLJjF9+4LIyTQVeQxK7wiRMn8BXEfPP5PIxsmOOoSyMik8kEFqGx8ilLBZuPx/v9frlc1qVRZJF/0ul0aCp1u92NjQ0RQdo0jNRkIWS3jAJpjWYjlq3l5tybmGzs8XiM4aLPBzv9zHuBaYjanbzQ0AZJq82SCjAubm/jYKFQALdEggdP0A3gBzyi0Whw595s6mezWdI8PVzwVhlCNR6PK5UK4+64xw9Xib4zKiCJUifjCeVyeUWxIM3EJpMJ5KF1AVOepq8KgsB0AYlSsp/5mIEVRTAggGHON2xB6/LxiF4h0+kU/grXC4GNBlfY3cysvkT7FRuNhmm/KDLm8kPz54r9DoCVjmUJV0wWAE/jEaxt0lH2azabQZMDLIjvlHYK6ZbjA3+OUmOIXNcrPkOd/AkFpp4eHH4LPDyenvjwhz/8/ve/X0Te9773eQrk4eEhC8ORggQiAiktbbHpDWOm7MPaRjSauSfkcbHzHcexNnmxS20MO8ZHodKi1hWAJ0GfzLxtE8VULpddPS4tom0C27TVZfR8tdyc7Le9EACm24NvdTEW+HxgX9KSo0AZh3E0Gum8lMSpzYIBQS4Hkh+y2azWpMa10BOHcamZpwZimUR5b5iC5TqURARqy+Y449ZIeNB9+kxIzOI43t7eRtCamb4kSQyvMKV1XOhmAHS/cGqgWm7omRE/MFJmSNxHgVTjgOKCjOM4juN8Pg9Df4WqGMOxEMdF8gB1smVd0+VEmQKEEQZr0q3CGgsWpWDjONbf0qVJWiUqYUn2BxPiCAQG5/M5YudKpRLXJ8YThXqGwyFCBHVBHk1UMH08gkkpFApuEKYLvjhmnWxsbGAks9mscZcBaMxoNEKbQQsNx0tlR4cLT4E8PA4H5v9aDw+P72t85CMfGY1GqbFDBweKkBj5qW63i6LyyBnQG8bT6RRZ7CuEd2ESISoM4SjaNEHNx9RmQ8G23W6nBgiJSKlUglVn6vP0er1+v2+sHG3XuoFt5mfQNJJyc8YMNaJ55XIZLTHmNZwV0CGge6fdbiOcDOfo9iONStdmgWAxvW0MqTJthksEBitU1BhzBTfIZDLJ5/PI2NFExRS4JKhdbuYXtTVxkJcgH0aLp+mNf/AogFvydHnlcrl6vW5iw1JhNOgwRHquqfdg6BkcO7Cw3f/1EBml3REuyFqDIFihpTGZTDSfTBZiiZSPW3F/Kgcgyx/K3aluMc09RKTf70NIQ/a7NDWGwyGabYIJ6UHSx4fDIdanHk8RQbQnapW6ithYtJSjoHIDo93Ix1IjTslS9ARBRA5dY51fkynHxsRxnM1m3SS61Lqxhw5PgTw8DgdnyE+Ah4fHU4Jjx449Jfdx3TLI3IDtCLcPNox1Ev+y35MwDCGRbFSDtVfBraLI4646s/ZpuOFGeuMf28ZoQ7lcZohUamDbarFsyM25wtbGks7lcqkap7Bf3Q1sU6hUd7PZbLKkIwWLNRBSpfPd0c7d3V0jKo1HILN8NpuhMqnLUnTyBtTDkHYFXk1hZdjxMF6h+IfhZcaXrgikPVTJIgsoSZJMJqOfSIriDoULV4NuGfRQo8skciaBLZvNLquE+ySAZ+kGwCh/ooVoVpAxSeOlVBnhakn16YkTTAiiBUeKPr/X66VOCsI4TQgo3hEsDC2NyJaAe8Pxu2zuTKew88KfI6rziZMplxptaG6u666eIfAUyMPjcOC9QB4eHi4QtYV9XJNGIgsFauyFL7O0RATF5hFe5YY/uUicdHMtkCWL0jRhGLLki95F1okumgUlSZLL5ZAapDvoBrYdRCzbFac2HokoijqdjvuLmizUwM1AIUwOhiOr9+C229vb8MyUSiWaffpahFSRbyBlZYWotK63s7e3Z/xmmv9UKhUEreEETESr1TJCyeJkxvMOzNdypxXQYtwM4TsIEOCXzWZXOItIC3FbOCJII+n70h3/Li3j+XwOIT78idpZptl07wCs1ElP5hNFuVwGe+ERlgo1KUCEEaMn4B5cNlnusnd9g5DNMFLgIoJw0yiKUC4WnklD7VilV0RKpRJ0HUQkiiJTnojNpiuVw6hlvlOjDZGMdCaUQ9XwFMjD45DhKZCHhwfAbGPs46b6H5BJjAQSHMFvSLVahZAXI45oIbk/MrlcTlv82vZC0BccBfoSNMz1ACT7ZQP0rZb9uKUGtj0JsWzjkXALRALj8RhJTbLfN8LgwGazuba2tre3N5/PYdpybAeDgc6Sx0EQQr0pjmonSKThsGuJYUON0FrZTz4bjQaN0QPW53EPVioVXZkUH3Q1nmKxqHOoDsh/WNEVZvQKp00QBK1Wq9PpYAwnkwlZmSxK9CQLiMja2tp34wKirxLZRIPBANGk+pwVGuij0ajVarnrH9sQ7uN0HdhGo4GYT1EhZyzABeB9ZBlZDoK+Z2r4Ga7VZUbZFxAJXZAniqKtrS0OAtjgzs4Ohp2bIKb4qTun7Xabj4vjuNPp6JA2I/8dBAGHESGUaIxxKSdJwpYwd/EMgadAHh6HA+8F8vDwMDC2IPLptSABM4kNNTIatbI/91pvvWcymVqtBgrkel006dK79TzH9QD0+31tr2v/xrKiossC204JZl3DlQSqxjo/zD43fgaoaXEQoKEHmwxHwBmMa4LI5/McEwxyrVbL5/OMuMNNptMpA5mQrKJtQZ2PrqtSosgP6pbqKcP5bMlgMFitlUyAFiKCjgejKEoWygdQjaPehr5tat0hQHuxtBmdiul0Ss4DV5seUlTmkUU4nOu7ILQuYmr3ta9yNpshe0f3GlIixihnGg9o8ObmZqvVwlLk+p9MJnEcGzeIqQNbKpWgfqEJqlnSlUrF9ZhFUWS2J9yNg1wup/1mevTwgQV5giAA/xFVCzWOY007efkyzyRymbSOuSyKI+Ndy+fzVOfDjLALGMa1tbVU/0+/39cbCnRinwk4U9rh4fF0g6dAHh4ey0BFqVarpXNyoigyeQ6AGzymi0WiRCl3gmGCuF4XFs8BYOhAIGtFHrmJ6kG+AciVtnXcsj+Qp1tW8DQVzLqm+WXq/ERRRMYIgwwV60X95M5ms0ql0ul0ZDGMejChnaDl7JDFjgBFjpjmijrNhkd0OSZZ5KPDJaLJSRAEJkaL50M0DM1mjpM7Vi5vyWaztVotDEO0EFGRtPvn8/lsNoPGlxZVY6a7LOoO6Ucc0CvFSZH9Djfd32KxCLUA91uN1bqIstBd0HNnjP4oitbX1907Y170ezQYDLDCtWzaaDQycYamDiwy9MxYIXKSrUItINMALRWYz+eNz4rZevpPgs8iP8zlcmYBu1fpy5d5JiVtypBGKAvZBv2jwctxCURE3CcuKxZ0JuBMaYeHx9MNngJ5eHi4MMFv5XJZe4FQ9geuG+2FSN2Vxw6x7Jc7E5Fer6cldwEjZCwiYRimWucGlLtNFvIGeLQ2T1PL/qwoeLoMrgQWgARxqAbzYBiGCONhogI3/skPU015EKrRaITIuiRJEGvHQR6NRnqO4ILTauMA7Bu2Vn0AACAASURBVOlCoYB8G3QQGRQ8Z9nvfxAEpgQT76nHand3l3cztjhEJhBtSMteT66mzUmSaOtfC0VoagRoM1qDWuepksdwWYCK61JCQRBAddC4epaJDYgIBP3codN5ULKkdo0oDXRxqIL2H0LHj1/pDQKTnqeHHbKNtPtTtUbgiUV1WtAhOGT0bd2GQQwDndL8cDgcatcrphVpTlS4zufz0+kUPtKtrS0MtfZMwsmjQxZNT5H4pIdUEzlqqbti32emHDbgKZCHx+Hg4BmoHh4eTxPAtg72y7W5Hh7Y7tVqFdYPqmGac6ilq4E7oyymtphTT14WeWWyzyF3SwJAixwCaHicJgzD4RCVc1YUPF0GlvcRp1Y94qB0T2kUNhqNzc3NRKkzi6pms7u7q4tOwsqEU4UBcqaFxkwslUpogH46CV6v11tfX6dHCBVmdCJWak9PnjypfUrssm4Jd+gBV+COKtKuct3yMX7sifgwm800/3ED/DTYZaRFQRmMT8xms5TLAzuFWc+asNrVMx6PDQXSpvPu7i49b0EQZLPZJEmMe00WsgEuMplMq9U6efIkj2BAWJ0J0IOpKUewROdt2REky2kxAO4IgGYHQQAJNe0wwTvCWzUaDZAr/GkGBz3FomLMJzgwKimBUZuhhjtxNBrBzTubzUwg3Gponw+EyFFJjPwTYt+ongx9yDNHDhvwFMjD43DgvUAeHh4GqV4Ol5yIyHQ6rdVqT1RKa8XutQb0c7WJAzITRZHJPoeFjVQT2Z+3gJgr2I6pqQ7LCp6ugEt+giCoVCqZTGZ3d1dvNidJEsfxzs5Oo9EIggA74kmSZLNZWvBUEIY2A66az+cQ0TItRPI3jFTjQKOpHSjtaRI88EPtT0NChUmR1wDr4GCCKvBPPt3If6O/qXn8kCjY29sDh0Hz9PzCUcABzOVyELtzOdUyx6DhtNPpFDWRmG9Gms2FgZHXN4Grp9vtMuQMd6PYAGAC3qCH5oqhp4IiZs1mE/0tFosos6NdiDwZ3B4BqG7YpKTxSaPw7ooB6HQ7rahhHt1qtXCmyRMTh90VCgU+UfsJyYGpqs/n9no9UC/4bdwyQdD8oOCBe4KZUEjJGa/RaDRCB1F4Ss4weArk4XE48BTIw8PDAJvQ5jdBK7/xdwM2GYz11FsVCgXsWydJgrxzs3tNW1/2CxljW12bXAyFiqKI4TpMvJb9fMYY7my5bhg+LCt4ugywp91ulkolVDvhQWOHRVEE/iOLoiU6Swele9yEctnPjuI4juOYjib0FxvbGCtNIQgMAjTKyBjlYDLQZD66R3pUDTdGsdTUPH5qf2mb28hzkZjl83m6WUajkdY7XuE+oua4TmVBeJVZz3pVmBC7XC7n+p3EieSEmAfvg8E8ZVFX2a8FNx6PW60WPiMK1JwcKMUzxpQScJukklit8K5lCSgGYMQJ9RO1+zdJkmWa3WCVWPMIwlzhU3WFJbFBwMnSNay4hguFAtTnEAWay+WW6ZcsM2agnocTJpPJyZMnm83mmZMIJCJPTIzFw8PjKYenQB4eHoS2tLQ1KUoMijK47XZ7a2vL7B/z2o2NDeRauD8ysOnb7TZUARAAhq+MYWqkn93EawCuGFGFKcX5ccPmNK3/YrHYarU2Njbq9fpBpOFSNa9hmTH8JhWmLKxLVEwaBvuFFkLyS9REQGJORFjyNdmvbEZpBA4+mNUp+wiQJbqpSkmS0KSGiyZZwO0voU1kHgTh0aeVSqW1tTWOBh49nU7hAGw0GqkUCI4+lkiShfK1iHS7XazSTqeDnCheVSwWQS/ZKtjcpCIresTisKCgeJZ2fy1zb2o/IbhWHMdshsGyxDM0vlwur62toRkIIUObe70eilOtra0VCgVXDICfTxlBNxgMqG+uMZlMtra2wEwQzEaGlupT1a/zsnQjTHq9Xq9Wq/gp6Pf7nU4HXtPxeLy9vb25uakT3syExnGsWWiqa/Tgr8DpwRnExjw8nlbwXiAPDw8Ds5NtPAD4UK/Xs9ms9lrs7e0hv9/ssIZhiGgfrX6Wz+eTJKGVD4aDnAFeqHURTPkabZTr2CStc62zLAhcBS9KPp9nVMxq8qN15FiWhM1AfBQ8PKmeLlyo2YhhCzyNxX9EJJPJ6MxvTQ7NhVBGloXyr3aDyP5NfWyEgwkwDd0YkXqsWq3Wzs4OWV/qsEN8zA0ORMOgGA43QipJliXyXHQ76MbHcZw6U+CfpgFJksBRQ+Mbn01kl6lNxDx+9ylGmQB60IhS6/f7w+FwbW0NvkTw1WXeKnYB4wk3qe6X9mIZz08URZAKNDry9JFqsXVo2WN9umIAxWIRi1bfH6V14N3iioXCh2F0Wsx6MBhgBjn+IC1JkkCtHp4cDnUmk2k0Gu1224wMJS70yfjpCBbKHLJITcQTsUox/kmSwEkLPW7U6YKE/bJNkzMBngJ5eBwOzqikQA8PjzMB2IKlMe2eUCgUIO5kbGvYFkYTDNDq2JBLZtXUYFHlXfYXrtGSXyAe2qwPggA5/aiNo5MEYE3qW6Xu9YzH48FgcMpgMKMjl81moyii4LKIIMoIRrObpwE+efLkSXTHuGUMEAYGyxXjSeU6Iy+ur6L1TKJomIDJDoJFS4eJUUogkJ5B8WgOu4iUSiUGDaZyLYC5++PxGNlQpj2yXJ5rmQsllS+5Hieg1+uRJ3CZQbqD55AeoHdoDGibSexxs5um0ylK2YrIfD7HLoAZFgO+JgCbnVqYyPW/gSebVChD8/RXw+EQFAgVeLUYADLTGOiYyWTW19fx1WQy2dvb43KStD0Cs1th5gvTvb29TTKmnVEI0qNYHO6vI1ENW051mXIZQAhbv1mz2YwxeKgjxKBKSdPuP1x4CuThcTjwXiAPDw8XtVpte3tbZwsg3QUOFpj12mthQptS7ddGo9Hv9+fzebFYDJQyFa+FxwAqXrlcTtupsGO63S4tRWQ2DwYDCkyRLQAIzsE9UZxHu5U071oNGpfY0uZx2vGwF5vNZuoj6EIxEU2pW9FI9G+32+ymljOmfJy2gGHU4rPe7NeNBPsCs+JX2vhmRRpiOp0yro8b/HBBQHcOQtiYJso8pNr9GOft7W1yM/yLeTmlPJdhVql8CRawHnZ+ZULa3JWJ9QYfQpIknU4HGmKUMkMakslMk/3cmM86ZaVdCtbJfm+PZobguvAo6j4ijtGtAqQdWVTO4FX4UCqVSqUSuY2+HI+u1Wq8EC/Xzs6OEZs246Z3K4wU4WQyyWQyWrQwjmNTBsqIxemb09eaumug1a5NN3XwpL4bCvWesrzYocBTIA+Pw4GnQB4eHi6w06xD16IoMmYQDCAYfKm2tQFjdWDDGUowHA5JMJb5kVqtFiSzSJB0ggFk4vAVso+q1So05RAtMx6PWSTeNYjdqqmmO24+jL52NpvV6/V2u21+VN0QsmSh97CCM5g/tW3K47VazQwUNvuRI6Q1LeDpMkn/q8HCmgg/w0FsvWezWV0clvTP8AEDY5rjbs1mcwVhKBaLur6nLGiteyZcZEYlnE8BVUZkWiqD0n4zXXmGUmapcXHueObz+dX8h4J1gFkqKIEahiH8irrjdDwCkJDWzwVhwFKBnABzqPr9PkkyCZh+++j/YZ1TZBnhleGWh4bercAo6eahGWYoMpmMKQPFCk5upV1seYC06CFioWHTHu0jDYIAiVUUICkWi5VK5SDlxQ4FngJ5eBwOPAXy8PBIhQldMwFjukSJ7K/7uaxAqqErJvJH/7m3tzcajVyDFawGCmndbhfCyuZBNMpTewRSR7g1UoIFWCKT4sLGvaD/hGVmbGK9tR8spMno/InjuNfrpZYhMnLGy5wkiAPUR0ajEcx33AHFi0AI9WS57XenTG+96zNBQbW9C/qHWi6p/4+s+F8GxWRFZG9vDxQUpjkEo+F1ZF2aYrG4Imqx2Wz2+31ExBnnHqIll12Y2jB0J5X5pF4VBEGhUAjDkHlW/Eo3hqKFvAMHR9MDEwaGIkhbW1s8Mh6P4ZgydWDx9kEIjtwbawmX6Ofy0XEcb25uIm8KR1gcKZvNuhF60+mU7xFoqhuoFkUR/JPY19C+SmJ1VWLGuPJdMOKBBvCRsr6W+bWJoojDS6ffMkp8muEpkIfH4cBTIA8Pj2Vg5JU2FGAdmjguOAdgdsBkWV34EiFD/NMkhyBfZTQaNZtNdweaFU6Qou0Gs8Eod+1X7KzzR08XedTRbsyQgRVYLpfjOHazTRBWhF3w1NCaMAy1yFs2m2WgWrKyEquWMz543oKRWoYAQ5Ikk8mkWCyaxqPjSLVPlTwuFoupCTZwCulhBP1zz4RccrCQfzBhXRwTUeVikiRhF0QJRi/zRRiUy2XY2Zubm1xdy8gPcq4g4KYpRyaT6fV6poROKjRTRaKLESEAnet0OltbW9Qi1xLn+m6a3ZkaspVKJQxDw53A88kidNqYS3ehbS1pnJYHDY0B0XWrbyX7VQdTBevw+wDmBnk9dxZWVCVm0aRSqYR3AW/ZQd4FOj/N8LK4s1ZuxC/MKe/5vYanQB4ehwxPgTw8PFxo8pMkCemH2T3N5XIsejObzVDfQ58AlwXNrNTkbz5FFmbZ7u4uvTGArnAiizAn7HDTkIVR7t4ZXhHdJPNQA6pgob4Nssmz2Sw27KlEzPtohw+IHG8VRRGMLWTPB6eqxHpKx0Vqa9kM7XODNWkGRKejjEYjl8Llcjn6AE0yhptooVOeeHmtVkPo0ebmpjgjHCyKycr+tChtnVOIbNlQpPpqQD9QMdNklBGsUQMSa4K43BI6qU/XTDWKIuqbJUkyHA51Xpau8kTRQtSQlYVynV7kiNvUsnW9Xs+8MtPpdDwe6zXGYTSxl3rktd9ydSJcNpslDdPtPyUwg9hBINzTllUldosmcXW56Vir76nBC7U2vUv8DgWeAnl4HA5W56F6eHh4EEykERHK5iLonyVQZZGT7YqtseploVDo9/s0r2n1moQZEYGgrS6yaX6yKAoHba4VPhmdp44HkaQx1Eoj2K9UBoN+mWkFW1zXRdG2JpQk8OcTrcR6cOjeaSYmCydAqh9G9ouPE3EcF4tFWtX6Wv0BmScQPtYtmUwmJ06cgOx4q9VCCr5hGvl8HlVxocKs78lHoFPaLUDlPbJx7atBPhgbOZlM+v2+68nRUVJwVS0bVVeADnlWOEh6ZjJ8ZrOZKRJlVODwIlQqFSxLN8DPyNa5euJRFJmwOnrJ4MFb1iPwKxAwM+/wW8IxaIrJjkYj0H6d5OPSWlFvLlnTsqhC/S7k8/lutzudTtkdDKMuqKrLyC6DvudkMgEd0lF2q4UTDgWeAnl4nG58+MMfftOb3qQNDhw53FZ5eHicsdB2mLaw5/N5kiSojUMzKFVvmkeCICBjkYUFqc0RbZyNRiPQDwTxQxqLD4JxhiItqfFvuD9KGHGTGErB+FZvsetIIe5k6y4baFtc1xLVJ+gNfl25aPlIPzFoXQrTVB1eyH4haz9VfNztURiG0+mUiV60gDGMkEYwYhj8czwe7+7uVqtVpKboOQ2CoN1uM8jKsCN+RkyjcQvIfjZOX818PmfEF5HqyTE1arB00apSqcTwtsAR7AbFMrFhokS0dYKNbokO4tKRnLpK7zK42U2ouoMPIPCI2MS3uVyu0Wh0Oh0SAG3uw42JGEswJaYG0X8CmqfXDFZFs9nEVy5nFocRjcdjFJXCenCjCvkuiAgrjJm7abG72WymK2WlQr9f2IhJkkSHeq5OcTwUeArk4XG68Wu/9mt/8Rd/cdVVV+HPj370o48++qinQB4eHi6YdZ36LWzoarWqN9fjOG632+VyOTWC3zAWrUbgeipQklIH8cvC1wT9LsQ+yRLlLlk4OkQEktxGfsoVszp4/I+2xUejEcx9veWf2v2nkP9sbW0Z+xhdKJfLCPHSyuaw3VHWCQkYbqiY6dH6+jqnFb6gVquFa+Gckf3k0EQDjkYj+hOM0YzTMMi1Wo2pJtqTBquX5zM0zixF+Gp05pX7rT5SLpdJq8rlcqlU0urMaLYuoQOQYrHZcJRBRRDrn/5M9hf30RVvdCTncDicTqeQF4ePxS0uTCcbHr22tgYHJqrukMDoRQVepAknFwBcK9rJQ9rDkcfkcth5WxZB0jsget71Q/F68oRlUYVhGDKG1gAMXEdjHvDFwWnGk4Y6V2EYMsURCYcHueH3FJ4CeXicbrzxjW/8+Mc//vDDD+PPbrd71llnHW6TPDw8zkzoYibIh8GeN6xG2BkILdPVSOM43t3dRbhO6m110RJZJNugtr22rrC9bYL4tecB9R+XNd5YVyYjSPZXOKG0HU9eNS5OhBLK3sdx/N0UIUH4H+t1Iik89UxkvMh+pxk+DAYDuCYol8yb7+7ulsvlfD6fmuvvsgv6TOBGCxbqdmQRuDnUw3SiP843NywWi5TmSxZZ6QwyNP4rnT8WLKp2woOhj8MzwEJVwX51jVwuh/ktFAq4CWK6dI0a7e5DCZ3UedEMZzQacdmAR8EnY66CIjP/NO8C3Jiy0GTHwRVlf3gHUikc5BgiQcjVByeFiONYO105Vox1TGUjsj9LSpzdCrxE2umUOoCpeUHu70M2m61Wq6hAhR4FQbAsreggQJ0r0DxK1eE3JFVL/XTiKdsO8fDwOCCuvvrqRqNx991348/d3d3nPve5h9skDw+PMxBauwlHUKUU7hedT4yoHkMwaNihRMkyUlEqlZrNZr1eR/43qn/UarVWq2U8PNhs1teuTpKGWcY/oyhyq80gVKZYLNbrdX23VB/OeDxGLoc41htMNFQ4XV9fPyD/GQ6H7XZ7a2sLeSyouoNuzudz0qHVfTSNSZIEutu1Wg3uBX1+v9/f2dlhxJeG7jJ4rLYR2aPBYKBZaBiGcOvJ/ui7+XyuN9pzuRws9VQrWY88xjCXy5VKJfQLlwwGg62tLXhdstlsPp9vNBrsHddPLpfjt+12u9vtdrvdra0tthkJbKtXjoFZNnpI+/3+1tYW69KsWEI68we5N/is78zsF/cO5HuuS3Y8Hne73U6ngxBT/RWZA11GfCKfq2NB9bWGWqdOHLyOeIouSGXcRMti2OCW5J9hGGJyRSSTyaBmKwgYBCSeBDB3aA+2GHQ7DxfeC+ThcbpxzTXXvPa1r+UP5WQyectb3nK4TfLw8DgDgdKi2s+AhGN8ns/n29vbtVqN1UjDMNS2NYWPITCF3dxms5maWqPLDfX7fU1ITPVDXgLza3UXoigqFotILEGgGp4CAwtbztjG3tvbQwgZvA0uh2GBVxGp1+smD346nT4hq1pUEKAslLjd4Bxq0xkY9eRqtdrr9Vylr0ajwfoqmn70+323g6ivipChUqnU7Xa1EUwNCWz58ypMASYIx+GQ4QlRFFWrVRjBuVwuk8kw24QmfhRF6+vrRkMZGtOiTHDkeFQqFddXA+Kkj2hHGS90RzIVWvkAInv0nLiOC+2iRBvcB5ldACbVGE5o7HJd8TaXy83nc2jEmZvrylSIeAQFlQXH2Nvb00FlBkEQ4LRcLtftdsm6UVwYtF/2+46M73F9fX1nZ8cIP8jCw4bNEVN9lWfW63VstYRhaJa6Zp66cG2SJHBEm0JMqSBjTPbrbaT+Cp1meArk4XG6kc1mr7766i9/+csnT54UkVwud/XVVx92ozw8PM5EaIshWRRb5J+z2azb7a6vr+MgC+kg4ASUAMYZDI4VVUGN/WRM/0ajYVJfarWayeZPBTIohsMhmI+JCmu1WjrRaDwew3xHngboEyWwdb7TYDAgK8NtV9euMTUZwcQMY0F+DpleahaN7pdWT97Z2XH5D5rESTHfoq6lFluT/ZFgxjTH+cF+yW88HXlW2K2HyasL1MA3Agk4Wa6M5wY7GbehGQrNUlbjiRq7RvlAXw42pXWldQAe3gg378Uks+lWGbvcranFeMLRaBTH8dramhn/tbU1o4cBfoU/Qa2pneAOBQPP8KcWbyTf0FRkfX290+kwPBKP0O8CoyXBoHBQb3Cw7hbbsMxHtMxRo1UlmA0IjEYjzB3UxjOZTKVS6XQ6uu+p43Ao8BTIw+MQcM0113z1q1/F5/X19ScdZevh4fGDhM9+9rMPPPCAPmJUjyXNgMjn83ov1pzQ7XYZeINNdCgHwCamJYRqjPq2poI7E7IBLVRN89pgc3MziqKPfexjk8lEExiiWq0iJT11NAAUsZnP5/TYiAhMKwxOEASUSO6UW7VBu1dYy8aTwvTxjXlNCSqVSkei6VyKg45+EOK++NXe2tFqb1Pmcx0shN/tv//7v7///vtp+HLotKKAKaqTJMlkMmFPoyjitGJGeCYM+jAMdWY8z3dnn/JiCDCDMW3y+HGmbpU+vr29PZ/PP/axj5mRZwP0yXA28is4rHSoJFwl7rDjQjkVzFW5XK5YLLpvgSzEqWV/9BrO/8pXviIin/70p++66y7dkdTHlctl0LlsNusuY6SW8U8UPiI3wOMk7T3VTTLJPKYXy1ypcRzDAQUSu7e3t7m5+Zd/+Ze6iK2IZDIZiAe608RzzAiw2XxQ6vurfxMg5gFPqY4O1at3Op3qucBGDHRB3IBSuLxSO37asDR3ysPD43uHu++++3nPex5+LF760pd+4QtfOOwWeXh4HBpuv/32yy+//LBb8f2Ns//V1S//9/+pfOzsZBYHmUhE7vjTP/jie9/hnvmK93/4Wa95o4g8+A9/86m3/WTqV7PxKJMvTLqdL/37d971sT85LT3w8Hg64rrrrvvgBz94KI/2FMjD43BwySWX7OzsbG5u3nrrrV4OwcPj6QxSoOuvv37Zr8F4PGYUnHEFQG3WnN/v95FVAtFh1IdBdAriUngm3QiETkDCmYVCoVgs6gsRRtXpdIwOmIhQj/uNb3xjFEV/8id/gsaYXHAk1osIKjOKI0p2d/HoLAguDfq1wuMF7LFbj8A2PrFer38k/6wToU1LeOP03o1kPJlM6EF6qND8TOM5IiKJSCA/snvP5XE7WGt8O1zrSfTlzDq/Aiqz0csHDwxL9Qtme9m99k033fTOd77zj//4j5/znOcwwQbFYZl94bo7hsMhXAdhGK6trWUymX6/b8YcvggdtVir1ehdcc/XM8U/uRJmsxkny6STiQjywXDDfD7/+te/fmNj4w//8A/d+4vI7u4u/RuYWegN8oRsNru2tjafz93l4d4Nct5IQzJRZ6niE8VikXFWehCYy1Qul7e3t0VFbeVyua985Stvf/vbr7/++ksvvRRjqNeYTqfRg2yaFyyK+XS7Xfg/0Sl3Nnk5ht2dHbgx8Vk7hZBApedCT9P29rae3Le97W3nnHPOBz7wAf1TEIZhvV6fz+dsJHKWzJSJyGAwoDof/U56cs3PCL/Sa8x1QlYqFXo78Zq7J+s76IXxcz/3c7fddtshUiAffuPhcTj4yZ/8yeuvv75arXr+4+HhAZx33nmXXHLJsm9PnjxpmAmAXHZ9pk70F5GNjQ1oXsM0b7fbWu33gDuhtVpNG75I1Gk2m+6ZbA/Uis8991zdGAJGZKFQOH78+ObmpmnG/9Zf30oiEbkjI797jtT3Kx2Y5O9/itZPdFLsmfI5F1xSFlE1fE5MywIzOxARebB13lUb57/vkXCWLA4q/iMivUzhk9WLRORzmSNvveCsZ37nOyJy9tlnP/vZz242m4g6Q5UYnJ/JZFBCVBZqy5lMhrGIsqggOR6PEeOkBw2iDpwRPa2z2YzpRsYM1eIHLIMznU5hQOuMF5wThuHGxgYHBCS5UqmkLjzUmNKNRJN0YlilUoGOBagIgPJT5m7mHK1APR6PNXlg4J+uJaUHQT96NBqZlXnPPfeIyMbGxsbGBp+CBQNdBD0g5XIZlEA3jydkMpmzzjorjuNcLler1ZIk0bVEi8WiEYHY29szsnL6FWM9VjQGdKXdbmMlhGG4vr4exzH4zJEjR/ieIti1Wq1imiAvEUWRjoDFlkcQBKlTZvoF4CeFf+KHArptmD7za+MmyHF4p9MplBtW/56A9YVhCB3IFWeeBnhRbA+Pw8HVV1+9s7Pzkpe85LAb4uHh8f0BWAzYwNbHXVEms5sOe4uuCZ17sExfywUE5fg5m81Sp8tcYpTZlulKwzQcDoe9Xs9c8rW4CP4jiXRn8rldgYcEhUp2d3dNpv5nuwFOfuzOi+NRPEVyOU3t50QLX0oiIvJonPl8b8F/eAdevz9n+wujxzfpIf2MzzoJBDUfB4NBr9fb3t7u9Xq7u7t6fEaj0fb2tlb2I8CjeHIcx+wmmFVqsj7cGmAys9nsxIkT29vbkDA2qspAuVw2Wm2aiRmYLX9OEySwkceC5WQSafL5PGbqxIkTzJ43s6YXhqnAwyZheehB4FOy2SwejRwV/Witk7G7uwsfC1x2vV6PfkgAcwTFM9Nx6CsgzQa+F1ME1hWar1ar6+vrhULB0AZ2GU4kFHWdTqebm5sUiQaxgWc1SZI4jiFS7xIt1B41L34+n4c4pD4IhsyJcEtF6cvxawBpeI6ASScz/me8WYPBAKvanCwO4jje3t7e2to69EQg8V4gD4/Dwitf+cowDN/61rcedkM8PDy+P1CtVrVZnCQJ5L9chWKtECULaTJCl6ccjUZG5FdbMLTegiDI5XL1eh3yvqAuqbJpgaOUbRojaisaH8bjcaVSwUY+7hnTaAxERPrj8dbWY0QC7izT3wnOW7QiWfhy9vq9vcxERBCwNJvNmsGsHCb9eYCT40RG5mbBY0SoEsyPR+Nbpo/biKNZkmrX6gKvmUyGHXH7q0fVDNpBfHGuLrko8sAKtqmZ961WazqdoiCprqK77Fl7e3vD4RB1fvhczqwrgS0i9Xq91+tBzaxcLpN7IBCRTjNCi23k83lWkk0W5Xe5PLRcxPr6Ol0o7qNR/pXHMbC7u7sQFTCqFQTi31boO+uWaLdb6iVwkKLvZmZJtHq93vr6uhYgQZMYSIYnwhe0rFWpg8fxdQAAIABJREFUMDsO5XIZlEbURPBbeNighcj4NGpgsP38HARBs9nEUEP7++TJk5lMRvcxSZJ6vY73FBoq2Ww2DEP8bvBM4ys7FHgK9DTCfD6/6667TlnozeO04fOf/7yIfP3rXz/shjx9kc/nL7roooPoFHl4nAkol8ta/ZY7wYhdGY1GMGVKpRI0fHGOWzAHEWiyX0c7iiJm7MiCYokIiqXCCaONGG33QJR5NBrBQISxi5yE+Xyez+cRpYOMl36/zwQVJAUh9YIOkytyk8+M5/1FoMrl0uOzNP+hffnD0eAzk32ZJ4HIsTB+duaxsRqNRq1WCxq+L50OPj1+zJT/V5X5i6rhLQsOGAYyX/Tp3xR3joRxXzL/PH3M1H5h1Gc8HyodYWARw4bhSpUFC4IAxZHy+bxJ6UFV03w+r4OXgCiK9MTRcZQoZT/QrYPQJzATEhv91Ww2g1odDfrBYAALFd1pNBqYRLpoUuWwUeuJf+qeYriQiga7PwxDFPmFFR5FEfSgkyQpFosooInHuZLN7hH9aNczkyQJS2PJcvI5Go3YPH5r8uKm0ynaidlcVukol8ulcnW2Bw4frdqHf5lZ5zb1gDDSi9jm4J963QKVSkX3Av6f1Hc8SRIwQAw1o23xO2O6Hyy0uXFkNpttbW09Cdr/PYWnQE8j3HXXXbfccstht8LD44zD8ePHD7sJHh4HgjYiS6VSHMedTqdQKFD0lrvIyzSUXcBDAhNZJ1LjJqjN4mY4aGQymSiKaA/t7u7CdQDbCEkLR44cYUuQU45IGB7UidS5ZPY/VHe+NC7EiTw/OzoSpssN8/yrcv2jYfxAtnZxKWgk03/cmVbD+Y9kB+bMfD7f7XavzA6PBNO7ZvnzMpMXRfF6af23nylf6Uk+Hl0svVunxSTMvCA3bs7jKIreXk9uHsnDE3l+RZ4xmn1KhG3udDrIRGemk45tM/ywUqmANgRBQLdbsVjMZrOgi7D7cTyKIkzE1tYWk2rodqNxCUpDqrB6rrPZrCE2WD8s2YlZw36Q2Sqdz+dkR91uF+4mLIwVFR209482NwxuphKhU6VSKUkSIyOeWrzoIGAvCNIJ49h0TXAkU4HqYFpzuRxVsDHXzWbT9YAZMNGLLh0RyWazFBjgsIDz8CBnk8N1wF4ni3KlhnclSQL5EPxpeLWByarSd8hms/Aes8SW/qEwq33ZOjQD/iQI3lMLT4GeRsCPGiKGD7stHh6HD/wv5f2iHt9fgBGZJIkuUMhvgyCI49gkn6z+zdf3ge2og7VmsxkSGPQjjCmDBBh9ZDKZsFVo0mQy0QauZgvD4RBGsL7/fHc7/OpXwzgeXXxx/tnPXvaewrwLw/DFjdxVJVhU2eaoYwxBjgCe8pxo/JxoLCJxLLPZ7Px8uD7ujmYjEXllrici1XI1n3/Me3blotW7k1DfBHVmNQcAMXBLZ87nc+TQkzYg9EiHUZXLZR7X9Vim02mn00GSOk9GKoioOqeiDEp42+DbieMYf6KYjxk647OaTCZoUmog5WQygZsO3Z/NZoPBgGSAJnihUMBNKpXK3t4eHgEnQKlUqlark8lEu7OQOiUi+Xy+Xq9zvlDy1XXR0wSH2IakeaX0wKb6NKIoQp6Psd1RigeZP3orQT/deFFSwRnRQY94MTlNWJOp9WfB4tjBg4BvsQZ8s7oLfBFMsWAcNL8kbDzFG1OLzAJIJTKrWkQGgwFWNVzB+ubLaiWdNngK9LRDsVh8zWtec9it8PA4fPzVX/2VqQXp4XHowDbwKfdHkaWNzzqQRpyNZNisxjwl4jjWKmR665ofIN9EQ0rnKuAISqxqg0ZvPPMm5rmmO0ifQEv6/f5HPvIRNObuu+++7rrrjh49CoY2Ho8nkwkbPJ1OG42GiYwqlUo6wUkXgiwWi8PhMAxDmneZTGZ7exv3lIVxlmrmujQMySf6CLpJuhJFUTabpboxaYNmg8TjBV47HT28iE7Upjwz10EV+v0+svxxiRaS1vdxiQ1okj6CDzo8slwuYygQnKYbrK/VRHo+n8N8bzab2n84GAxgcCNIjMuV3RwMBjqxzeU/2gQfjUbr6+vj8RhZ+KCX4N64Z6PROHLkyGw2M+rSgHa7odJuLpfTam+yWAw6pG21F4WNRERf4uSA6VdGi+PJ/pkyWtunBN5i/gmVArARI9GGjphhZJqWHnB9FeYlk8kw38yN/ByPx+7PC2cf7BrZjJygQ4enQB4eHh4eHmcEut3u5uamLESuIBuVeqauxmPifFz65Jqn/ErHUKXGCIVhCOktEyGjjTnUBjFGc6lU0hveriSD3hJGsRQ+995779VG0h133HH22WfjDtlsdnd3l24EERkMBmaUkHEE20tXr0+SpNfrGbdAp9MBCeQRUTkMGq5VmsvlzEFQsl6vN51OoyiKosgk+biZKi5MpSbjdqMLyEBb28z5YVkYWSSSTSYTzhGoDi5BmgfOHA6HiIHUbMoNreSdjQkOtx4+G5/YbDbDgoHzik4zMs/VI2NM8MFgwCPQPUMjMXphGGIcxFHRQN+NO45sgSdzMaCDaLkorQg9vKmN5EHDwUxEnCzegjAMwfORywfZ6xWhZamDnCQJvXNu3tdgMGCRIgzjeDzGy1UqlZbFu2KyeLdkoduu353RaIQyR7xKe4/57YkTJ1b05XTCUyAPDw8PD48zAlrdCx9Y6cUAkTzmSGouvomA0uapiICrmK1is20M9xF8CGEYQnAZyOVyLKdYq9W0AYQEITAQV7MOeUekTCZ+j+fDRNMjkM1mq9UqasgECxEtN2KqWq1CJNqkl0DgmKQRbTCWKGueGlAPjecjoz1R6fKI7IJ+QBAEm5ubeIpLG1YAVi/XQKVSGQwGjNqCvha+oolP4Cvm/CDDBwsAdYpEZD6f05at1WrI9AiCYDwew5tHwWJE+mEMIXxHF2WpVOK8GFsfgZHoqct1RcW5xXGM5bSCeaLB8AEaE1z2r1Wz/nUA53w+d6XtTPYRb67JEvh/r9fjtTqlSidQmUZqpyIWht6zSI0li6JIMxCEiqGQEVh96uDgQv2n3m6AO4hOTmjfGcJP+srFDN+X3hPBxOFueInEkV5Anpsmh9p7DAH3ZV04FHgK5OHh4eHhcQZBW0j9fj+VAmFHVu/+Yq/aPROFOPWF5oRqtYqEHz7abJlj5x4iciZ837RNmzhQzcpms0jZd3th5Lyh14weXXjhheeee+7999+fJMnRo0df/OIX6wshTaY32hFmAxMfrjPu0ydJop0VupGGuuCrRqOxLAGjUCggWUXbrzQueWcE2lUqFdb50Q66ZQnuuvEiUqvVkDaDYaGMnijKB1vc9AJhhPrOrLypMRgMYP0jJXIymYD25HI5Q//Ai8QRUNack0RalA41uAG47mAwAPHQK2Q2m7Ec6grmOZ1OGbWF5oGNZLPZtbU1ZhaJ4+rhZ0ZtIRCL0nYGZAuyYD4w/Xd3d8H9QNjM8hgOh6gMi0YGQRBFEe+jV2mSJHgE9TP0QoqiiJdwNcqCUuIlSmX77vhDewN8LJ/PNxoNUyvZeH3pmaS22wqV1LW1ta2tLQ6saYYhh9p7zB0E4+Q8RHgK5OHh4eHhceYC2Q5wxcAMFZHJZMJaOiISBAE26SkwlSykk4Mg0OaRKdoDVCoVUCB3c5obwIDZ903dzDZn7knm5k7yTJEfSjP+h8MhpZC13PBb3vKW73znO/P5/MILL3SvGhWqf7GduWeeC+ZSDec/MR+8ZG1w/+7g+nHt4TgrgWQm0YtGvUHzrG92CpcUk2vXg/PyUigUbh8kN47L/5JknxuNri0NglksIv80L/5NvzgMspdlJ/92Y1UC+rJtbMNDwL5QOAUuIAyU6w0DtIVaKBRAhBAEhYOGeYLyUeJI9senmUlJ9R7M5/PZbLazszObzTSRnkwmerr17IOl6BI9GiBsmoRTXCGOYzxid3c3CAI6Xqi0JgslidQ769Mmk0mj0cAaRsP0momiSIdrsuV0MYGMdbtd/SppNBoNFh3CAp5Op7pOqMntkYWjDPIJwSLLnyzILIzpdArvqOs81C4X86fuxWAwIIvW7w7cniB40BIkaWw0GuYRLnACqzOZ40mSICrPvVDf1sTjYQGwBBk8QkEQrK2twTV96OUoPAXy8DgdgKrPdAH8mpRKJcQDHCQ0wsPD42kCbakUi8W9vT2tIAxl59lshi12fIBSNqUUaF0h77lcLjebTTgHWLRHA04e2sraaEbFntS2HaQXhfOPv7/fmiUiJ+Tze/LOZ+w7x4250nLD559//rKbf7hbvH8mIpIEspuEfzGonB9s/fV47eFZFjVPZ/nil7IXSCwicvswGG7Jbz1TCoXCJyb5zjwQkVumxfWg+Irg5EOz6KPDGkoQfSPO/8d7ev/zs56ACjMCnygpwWFnvyiyB2ns1JvoWqUIVRKRer1OtpAq0UYjm8fd2XF33GnRci/fAA4Q1m7CvKwQv5ZFSpWxgNHI0WikaTO9T6mt5XGt3uGepkfDrBl8hSNwQuKlKJVKmBRGcIHRuU8Hcdra2mLCDIHJRdCgng6OMM8nFTTvI/KXRASCb0jLCRYqcJlMhvVhTfykOPQ7NV4RyTnspiyKsXIcUgecuUZxHONM7VjDrdrtNgT9MpkMtN0Y4yf7K6gSlFjAJG5vb4PJ4z469+yw4CmQh8f3Fr1er91u6+h5/RU+5HK5o0ePrq+vn96meXh4nKGgFkIYhrAgk0V9esjyish8Pp9Op61WC5cYO8xE000mk2WKCLK/jImxk8xOrc5RSVVrQNYEqtYEQVD/0WtnC7vonwdy51COLxTURqORCdlCOvtZZ511yvG5H5F9iciisf84Ld0zXzQGT1T9uGckO7GcHM86s8etrtv68tqzW//pgX0OlnuTUxeNgHiDLIKOisWiCTTSwJlHjhxZccPUzBbNFlIl2vRB2OWFQqHb7ZLBQsxAF1wql8vj8Tg1YBLdgfsCSSlJmvi1i8lkov+Dw8LLZDLD4XA0Grllatyeyv61ZNQ7zJIbDodUzIM+AcoogaQh9As0A6lfIgJ3XKfT0V6X8XgMCpQ4eonwpppm870wjlB8i2LE+iBz8+hI0a8kCAllIVD+iOWJc7kcJP7cp1OB0OhqIF5xmWg1YhfBuGThNAaToRqELgoEH6Yh2BD0Q1imaZvpnV6lAOeC91lNqk8PDr8FHh4/qBgMBg8++CB/LuH2yWazMG4mk8lwOITwzmQyefDBB7e2tjY2NlAFz8PD42mItbW1UqmEHWIaPVpBOJfLaUsLtgi/0lvjyX59rWWCXQbuPrERfc7lcs1mE2a3uUmSJNg7x+MeE3nL7ktwZ4PcIoy33HLLV7/61fl83mq1Xve615EzmNCsxzoYSKz4jyTSDOK6zHYkI7KP/ABnZSXpbq9Np8XgyDB57OtLihKGYS4MRJm7wSyO42S1fVapVKrV6nQ6LZVKaBtz5XX8kvHPrMgFh0Czewk/TyYTozYB6IPdbpcqEUmS5HK5+XwOPbpMJgOJBTisUluFqyBRYHb0V6jYTadTM48kTuiR21N8MHVsSPZccbn19XUuOSgc0LWCDBySLtRcAp/hHYIgmM1mWsgBILdfrZeYLDTiUJopNZwMGT7VapU0GKIde3t71JHLZrM6hQavJ6LXmN6DvQMMBQaQg5bJZEh0+QjdBqxDitER5JaVSiWTyRjGpdUgtGrFbDarVCpuoVUIXaASl95qMcOCSMWdnR2kA0maCL6nQB4eP7DodDrI5RWRSqXSbDaXcZter7e9vb29vT0cDh944IF2u33BBRccuoPYw8Pj9AMZ2+ag2SqWxT40zI52uw3LD5UoaXJNp1Nu5Bv72/y8JEmCdAue02w2YQ/B9jLtgYCY23g0kjdBqEz3pr+vvviVOHJ2Ti5d8Cmt0JAkyWQyAf8Rka2trZtuuumnf/qnIWmQJAnUBTQZ+6H8+ObR49ZbNZi/IBo2gtn/PWgsCI48a7SZ1DfuGclZOXl1aRTHcSjy6vzeP0zKO/PMc0ry3zVFRF7dyn3rUaH9dsXgocFgQzs93Mqbw+EQtWjiOK7X6ySoHG2tpiUq0GgZKNCsCQBLZzLuEcNuqq8EC40EbrdhKjVvweWwgDXBCBYQRV3g89FiG4i3hGBDsr8m6c7Ojo6wSk1ikYWfBJkh4vAcERmNRrCVjfsFyw9LDrVodWv1E9lyY22Tw8h+VokXBPpmPIjdgUKhADKjfR1ah50HC4UCaTCGhbsDQRCAuXGykK3Hm/DNCsNQzzKWutHsBimdTqebm5tQiYRjB+sQbRbn1c7lcqw2KysLzorihGxetVrt9XqckSAIKHigx8Fd23RhIT2sVqulCgMeOjwF8vB46nHixIlHHnlERPL5/JEjR1ZHuKHW+8bGxokTJzqdTr/fv/fee88///wzYY/Ew8Pj0GEMF3AkXQ4Flh8qUbKmJzWUmcAAUy9wFBFgFtOOgSTawcvSE9Rb088dfvOWN5f3bpqU1guZH12Tv92RZxXk4qKEYfitWf7kLHNJNGmFsQ7fEpFHHnlkb2+PGmjQQ9MU6OfXkwvanZunpe4888zM9KcLXRHJB8mrarMTs0w/nr+gEv54fUNEdmJpRNLpjMZxIiIvjIYvjIYDCc9Zb0SZSEQuLcn/eCT+8H3dURK8LGm/7JlVTR76/b6uvImDevBRdhOyEzoXS0/fiigygtv/ENomW6ANCo0vWRLK6Ma2kdMy+Wc+n9OxkCx06sSJSWMSf7AQUpvP51tbW+zXaDRC+BnWmE53ofaDMYsLhYIeBPccaPcZ1xBC3drtdpIkOmlW56253io3t7ZQKFQqlclkYnwaKPaqmxHHcbvdLpfLrVYL+s7ueOrmodIrj+gXh6xmb28PhbPMOOvG6FnmUtea3ViE/Iy9iXK5zHeZEnBa1K5er7v8pN/vQ66jWCxC7AFsCjGTaAY0ObLZbKFQ6Pf7lC5ot9vmhqCmZhj1nygHpC85c9SxvY3l4fEU4+GHH0Zxw0qlcu655x7QkigWi+edd9729vYDDzzQ7/e/853veBbk4fE0hFazFUcrWUSCIEBGBC/RJju3gXUFFUS2ZDIZ6AgHQaC1pFJ3zQGYREgOWd1stJlZ0bSt8+dd/OeD6iyRu6fypd5jWTr/uiE708rNw0BEPjmRXyjuXrKxUa/XKZF86aWXInKJ94e1/e1vf3tra+uiiy5qtVrPqMj97dwska040xuFl2bG/9+4KiKBSCLh3WP5xlDe+QxpRCJORlNJ5joU56JK9I5jSAGvirKhYY+S7ezt7SEB3U1oQaWdUqkEjWZmXKyOf0vFKbmNpIUy5vP5vb09Pks/N1lUsXTL6boxXei+jiWL45g5LbwQVIr/u6U6GwlmmxAw31kDB7TceKgQPMYsI2b8gwHyQrfmEoLW8BR4S9BO7DPqZqQ2GILOGxsb5XJZv2Xw7Bk3V6o3g95L/Anm6aaKGerFzySW+mTjNONOBwpbIZ0pURJwogTxNHRRIzZpMpns7e01m81Wq4Vsw/F4vLW1BWcUMB6P8XrSR0SRDL2BIk4IKBgyBScRT7i7u2sibA8F3sDy8Hgq0ev1wH/W19fPOeecJ3p5s9kMguD++++HL+iCCy7wLMjD4+kDrWYbRRHk4PAVa6ROp1MTt5YKvcfM1I7ZbFYoFMIw1FpSsG94Mi2nbrdLE1CrkwGaRCHXQvb7FoDaVT9FOQRJHhMw+HRHpsnj59w8KV5anlx99dW33npru92+7LLLrrzyyna7re3CfD7/iU984utf/7qIfOpTn3rDG97wxfXjvPM9cW5rFslj/Ocx/PNA/s+/v/HkVz5/zjnnvOhFLzp69CgGodvtfulLX7r33nsvvPDCK6+88pnPfKbs11ambhs9aQBL0KTGekGPGBkUyMDhmJ88eZLFIpdO2BIgemp1KKOIwB5lzFLilLZclv2l7yAi6AK5qOyvayT7WROiLjlN2u/EcxCSh9xXmObIchmNRvAzQPs7CAKjjQFxM92MTqeDZBhNQbUPChNHjyK4qN6FrNVqbuZS6nsEQWejJs/4LhCAYrHY7XbpRcGDyDHYfVEvIAHCzD8ZIyeLslemPZowwNUj+ysm6ZbDNbS9vW2U9GV/AKoGRFaQccSJ0IVxtcZdkiTZbHY8HlOWHQOORR7HsR4BXE5dRDoSR6ORCXo8/fDWlYfHUwnEv5XL5SfBf4BGoxEEwX333TcYDB555JEnfR8PD4/vOzB7R0TiONZGIWqkQnlMW36udbUa4/HYzQVimJwscrLJatgwmDKsz8iQKl1IxDXdwtx+oz8USWS6v73zTHZjY6NWq1144YXIaWm327lcjlYXhHrBf4Avf/nLk6uP65vEQSCJmIG4/6GH8vP5/fffPxqNXvOa1wRBEIbhLbfccvfdd4vIt7/97eFweN1114mjrcznmmqb7CYQhqE2DbGVHkURCBXC5yBfwWKRbhoGiNay3S4WJA2CgKGGOpSRbkPWiUr2ixwwJV1rJYtTSFQzNJO5IcsFrOFFRG4P1yTkvyeTyXg8pnoHXA0oAIqDWHJMftMPFZFcLmeolDjOECBRNZd0pVQRoewbH8GQMzq1gjSFAyw55ObBJYuwN5a4EZHd3V10hF4UcTiGm7MEzGYzvGj405SddfuInYsgCBDUh4Pa12SAGDxx5L+1aIpeJ1EUoVOpQnMiwpJBZMLazVWtVqEliK7phsF9imasCAU8FHgK5OHxlOHRRx+FyfKMZzzjlCevQL1eP+eccx588MF2u91sNlNLGXp4ePzgYZmCMP+kEIKOaDL+GQAp3a6F5FrhTAAAtBazaUnqrrPZlQdtgLGeyWT2vvDJyg//qLqRiMgPZ4e9IPrm5LHt+ZeWY5FsLpf72te+dvvtt5fL5ec+97nMyA/DEKrT+qGTyeRlVfnygnwdy8T/P3tvGmzJWZ4JvrmdzLMvd6ldpdokobUEWgoQSILWADJuGzfgBgNjY0/THW5PmIkgxu2OCfePiZiYcUe4p2c6AhqHIzweB82ADQaDWQwSGKpUKtCChFRaUKmkUtWtu5x779ny5PrNj+eet9775Tm3rqpKVQLy+XHj3DyZX375ZZ5z3uddnvdGa/iP4Trb0VmZd195HjM8e/YsOKRlWc899xzP/NSpU51Oh8kPR9iKxSJXLDDVlKuBMEur1Zqfn+ft7ErnKg6tHQJ3C2VwqM00zXq9nk1eMkRDUpANGSWQd6RQKMzMzIRhCEc+In4yoiU5LSrHer0efrMgGcfvep7HGVZqvbQgzwoGNEcpQaiUUuj6QhlKo0YtcbQF4Zwuz/MQiOO3XNdF7IVpmGEY0GsGb+TiK+65pD3e2fXkcJ9hGDgXp9Lx81Yul6W6NBL5oEwoV0lqM/Kt1zo4ycvXtjC7oPO1neUVLhQK9Xodqn1QfczuxqWAvGKSB0ohdc/z0KgQAirYYazQHBFJYg8qKHdDMLDf74Nva6FCSVwnrc8VQU6BcuS4NPB9f25ujoi2bNkyqf/d5jE1NdVut/v9/tmzZ/fu3XspJpgjR47XO2B/jE06gqpYtgpFJm5JGIYxPT3d7XZhqMEYYhtO9r4cy7u4ASKfncZ5nZmG8QvTNJHvhEH6Tz78r4vtJ2KvaqYNI/lZUrjaCg/aQyL6kVU5HRnXO8H+KBwMqidOnPjKV76CA1988cXf+q3fkgXi09PT11xzzbPPPosd3vSmN91Qoj/eQcd6VLfp3qoZ+bSj3zseOS3H7MdpSUUrT/zDqdEkW60WVsl13X379oEFKaVmZ2eZ/7DVaxiGXDQal1dGozCF5tvOSnKFYWgItQD5Lks84y4sLy9D0GI4HCJRShtNtigFW5OdW6C+hfu7GcWtMAwhxoNsNO1diLNzWIlEiA/SBVmP/uzsrBYGlC19ZDRJSioPBgMY6BCd42MHgwFoFQxuJiqu61arVe6zqUaCgXwg5J5p1AyH1uuqc7jP930WCKFRv06+41p30YWFBeiRSGVCTYY+26zJdV0p3qit8Ab3CM1JJ+kusj5HuVzWmhEREfQhDVGHpp1IU1dPkiQIAohwlMtlcBgQYxaao1G1m/xoy2ZNGIFGD6FcmY0/IFcWOQXKkeNi8corr9i2ja8Dz/MuMgTE2LJlywsvvIBWD1LXMkeOHL+ogAmiZftAdQq2iKz3gOebfd4wYuCjhdGDToskjFc+FgeigF4zzlzXhY8ZTl+pTpY147KHwwZik9owjF1WtMtas1ZvstfMJsuybqMejcwh3/effPJJPqTb7Z48efLqq6/GFlzXhz/84WPHji0sLFx33XVwDO31aO9IJCxU6hoaXOMQERVKhTAMF2570z/5g7Nnz05PT992221YsXK5fO+993a73bm5udnZ2Xe841yEKttTRdaZZFdpLPPUakvYIMZbyAiqVqusDU3raSTUt3BsEATc95bWd/AsFApjO2BuAI3TJkmyvLyskQcNvDMYCwiJVqI29qoZ3EUKdjYPJWc+qVGmUkpeI87Oy76BfgBL8FWr1TiONbFpVKFAD03eVuTR8SBa0A/cNU3TbreLUA8RaTL0vD9zDKkfIP0aiNwi1TN74UxybNvW6seUkD0AY8TyItKC+BWsEblumNtgMECiXblcljeLi5dYwBrEWC5pr9dD/AcODuS8yf5gKIEGhsNhvV5XSmFl2DoCyuWy67qaAuSVQk6BcuS4WAwGA+68vnEL8FeFWq2G2s25ubmcAuXI8UuCZrPJ6Ukk7LnhcCh7dEDbDa8hv8st24fDYavVQv9lrYkHFLRh7cEdq4WV0Ja+1+u5rttoNLQaeunUdxyn2WzOz89nbV8ptoYMq2zijWw7g904Swoz0VrfLC4uViqV22+/nYiiKOr3+1Ilj0a9knhBms1mqVTas2cPrDoSZvrRo0cRsW80Gtddd66gSGro8UY10rCi9ZVO9Xod/0q5gkmF7Fg0YyROjWhvK0ixAAAgAElEQVSP4ziu67JFq0Z9VPiSQRs4V0p28GSFZWnEawuSBXPaKIpAIVjyLkmSrDmuNYppNBpoLoTqDrlQ4IrD4VCT+VJKIc3SdV0ErMbSNhTGDAYDeTncxZXrixCYwruT9AOgoMgESRObNgyD5RDAMPHUQWOa2RHibzK2SSIfkm8f+p/ikDiODSEQh/Sz4XCIlaGRkCNCgnBkQPiExalZIIEfCdSPQVMbC6stYBiGUMOn9SxU1nGlaYo10XgODyI/OBCw5gljQUzTZE6Vpmmn00HVk1QAxwrwOL1eD9eCVEaMDIbGwuWThBkuJ3IKlCPHxSKOY3zJ2rb98ssvJ0kyMzNzSUbeunUrCi7ZasmRI8cvPJCbxF0RiWg4HK6urkorJ4oi/ldrXwi703EctD1RQqcLxq4U2pY2txRFCIKg2+1C+QAcAGlF0vU7NkhiZJSCs4k3q6ur0gAyDOPw4cMvvfQSb9m3b9+WLVvkIBBgQFEQhyBKpZJt28g4kkYYqia0aWACzz77LMsqPPvss8eOHQOtIiI45jlvjY+anp6Ooqjdbsuh+HKwgPh3UlxIvpA3yLbter2OnCst9ZETxnCv4ennMaUIGxGBTW3mNwL7yPolFJZAxU7T/eNGMcwDWY2dpdLkZXY6Hdu2ZfqWpG3QypNskBeTDXSMg1w1pRRHz2jEplgsfqx+AD8bLNGhBYvYswCGifIw3Dt8xPAu7s4GOZ/9fh98UouGVSoVrt2VbYKxziAei4uL4EsczOHZQvRCBotofacgpqDY37Zt3/ehp4eqKujXa9zVNE2Zjyd5Dq1nL6h/Y8k+GoexKu3lcpkfYzwqWBmQbf4GWFxcHCv5faWQU6AcOS4K+F7Ga3h3Nq5ofFVAMzh4f3MKlCPHLwngPwZRSZJEE60GZHtBaVFJvzULiGE3vCVFexHqwbHw9Uq/O1f+wORi2Ss4s5eXl+M4hv3ElpbjOFqaDSC3IENGXsj09PQTTzwhLc577rknuyygc9JpzTNEeg+bsBtIyCwuLsp/ZQIPETWbTbjJEQo7ceJEpVKZnZ3F+LxuHOvwfV/WnaNnqHZG13Vl9pe8QTRyk4/NSER7yqydTaPKE7Av27ZLpZJSqt1uI1ENRUobdHOS8hJaTpqkQKhIodHzgIiE7MkDzixHYGE0IkK4id8aDodTU1Npmsr6JSKqVCoQm2aiDq4lTXDDMOS9hm5qVj9APhvZKyWRCIrKosFggFmZpil/x2UYUwMHQ/h08sb1+31+9iChxm9Bp4ElHyUD5EdCxkXlRwbBW5yU5RwQJISrwnVdXi4Eb4MgwNcC9Lu1zylyTdEgVUovYvLgP2Prl2hCMQ/kIriwTZIcZlz4sIxNNbxSyClQjhwXBem2ieP4qquuuoDODxsA9Y69Xu8SptjlyJHjEuKxxx775Cc/ucEOBw8e/LM/+7NNjsYSYbAVUP7BrTZ5N7a0giDQOqg4jgOPiUwWYv8u2yimaaJhS6lUguHO3uhJCUtIYwNDwJTiOIa/HAlvk779ZItVvgpjJAPQ7XYbjQZPlWuZNCOMi7x5C79GLxToobFmMadgSaPtmmuu+da3vsX/ykS4hx9++OjRo2EY3njjjdu3b//Sl76Ea3z66ad/+7d/G752XGD2Mjf2ardaLYTU8C/fIEDLSARqtRpLUGQHLJfLYEe9Xg/pUvwWmDNeZ7s5AdVqFUxv0noC2VNrzabCMJR9gYgoDMOlpSVUsGhrgstsNpuy3xQRgUjLkSW9z05MKzabtBv+RbBoLPGgUZHPYDCQNXXYB8lpY+tVjJEoefYzIrdYllWv10EaoeRGmYbF8hDJHLQ4CRgLq5/XajXf9xF14cAO7zwYDCBagBEQ0pEOAkTwuEFqHMfNZtP3fX4sZfBNXhcGnOTkRZIbWJzUDtHupnYLrixyCpQjx0VB1mtu2bKF9VIYiGL7vg+XGP8+IWEAv9aQuBkr/1KpVJaWlrJewBw5crxOsLKy8uCDD16SodI0ZeuQv1iCIJDmiOM49XodtpS0JhGEKRaL2WYjMDE1H7N0XSOTSorVwiLUHLqWZS0vL7M2F95CZkscx6wKBQuVeUKn0/lJL3kwKJ9SlmOQa1qHCvW3W+cUt17ph+23f+CUVffmXqj/5MG3XLM7iqJnnnmmWCzu27dPzmd+fn7VKHx9WHkq9kpGOlDmNVZwn9vbYsbYx/O8zy/S4S41zeSt9vBme9jtdpvNJifFua5713vf9+2o2p6++qq0Z+5Yq6c6ffr017/+dbw+cuTIzp07Yf4GO/Yfu+ZtR3+W3uLEv+oOtOwgTXl8UsN7y7IajUaSJJ1OB4l2oI48JU0p2PM8HopZq7w1OJb9+vKeyjSqsfrmgFRiYGQreeTIvFHefTWSSeA9oUCAx4nfMkQvI8nMiQgpi5LFYU9eW/kEqlG129icw2KxKLtU4bGsVCqTunBKK5yz/nBqtFXFWyAz4Op4+CFNjtPJNcSBzHNYG50hky1RblQoFDjbEFLskMLDWxA50ITy+Nplgqu8atnD1xiJYuOOQLNe02pfWVkBjwrDsNFojNWtxrmmp6cnSbpZljU9PY2bLmm5vO/ZG3plkVOgHDkuCsg6QFXi1q1beXtfYGzubPYrpizALi54XJRSvV7v4rW2c+TI8drhc5/7nPwSYFyknIm0b6rVKgcQZKcXpRQ03OSBSBbyPE/WsYwN76ANvDR9wJo0/oM6BFkCRESyPSjrFEcjoFzhb4fTHWURUazIT+kbsTflDa+3A+z8rbDys4JHRMMdB6Z27No2eO4v/uIvYIDu3r37N3/zNw3D4C/Sr/veE7FHRF1lEtHTiRuFxr+q9gqFwndW6Fsr1E5JKeqn1ufj+r5yWDZS3/dBgeD8/tH0G5aSAhGdNGufW6R/t4MGKX1hIVm898Oll58uPf8oEf2scXXn2nvdsy/2r709KdWI6EdRsWgoLfqDSiFZUj/2DiLe0uv1sLyykyaABDwaqS8wO0L21ySTUftl0ejQpHsNaGVgiC1oFIiFHDT+I+9+oVCAQJw005VSiFDxFq7ap1HWoia7DCaglOKoHda20+loZWNE1O/3pTQCAz+dQRDgM7KysrK0tAQno0xiLBQKUvMaVw0LHmEWx3GWlpZ4WCTmIfeMRj/HkGvD6SAmQUTQD+DOSGPB91rS8tXVVaQIsk4dIlR4unhtec6e53U6HW2jvECQT75HkAVnPqaRHOltgVQ6K90ppWT2WqfTyfp5JXBR/GXCIVkSHxaOKU3KNrxsyClQjhwXBYR3PM/bs2cPtvT7/bm5uQuI24AvEZHjOLOzs0hQhgKp7/s5BcqR43WOQ4cOsY7zhQEBGc27LwHxSU4VY6AeeqyAftbbgnplmZCGanjHcWB+QeQXWpfYRylVqVRgjEqvM4wqDimwW5pGEaQ0TU8mTkdZZKz1RQWeTdwbnBCHPBWfYxavkPfjZ19gB/zJkyePHz++fft2trzXdlZEI1LwfFwwas3PL9K3O2QocRKDnk8Kt9hDHi0Igo4yn48LfOzPhjTXD/580XqxsosqNNx5TVLw0lK9+4ZDRBRs3yfX7enYvZWIRkyPF3ODb2alFEsCSMCehs4BpMA2EHPDtXM4BWs+HA7HOtckNqgglWYuBu90OqjyZ8OUhY/jOJaqDxz5gUR1lopQho/1+/3hcMipklnZZTTA1QaB+MFY6bBsk1kAgRcWSaORZHaj0ZD6IoVCQRLXNE1RRsUkIZtTxyugRjV1OBeySeXOk2S+Gdq95rRSZOXJ9E6QIo41cb0Z6ASqv7C9VCqlacr69ZVKBe1xUbmHKp1qtYpFls2LWHmPgba5CGdxnJlDvpMuCuACJIRkaX1TJu3DcsVjQTkFypHjohBFked5+/fvNwxjeXl5ZWVFBvQveMxXXnlleXm52Ww2Go1ms1ksFqXLMEeOHL+Q4P4eMp2J30VOCwnZa5RB8z5BEKyurkrFW8q0e6/VanEcyxpxPhcHImALsuFLI5dtr9eT/MfzvHq9HoYhUyP5LpvL+0tmcah8tc7cudo6VxO/3w6fideMpNJgJVw6yyOARHFWHhHts4JnE5fEYDvtxPYHh7tVkvyHiBSFyiCR31UoFH7at+WxZVOd7fRejKd4i7/n5rg8opHrads+KzRGOhNsNNOG6Pf70oUvaacU3QqCoF6vo1knzFkuOuLcIRrxHxiRMj1SKVWr1VAxj52hmT42uRpgM9cQDVtRds9i6ySEjyGAcW5plZqZmcF90WQPiKhardq2DY+eMZICR6pkmqZMzDZjAWuphnJieKEpWWOjVsODNA2ZkyZtcdlslBmgzKlDZEbSKowJpdaxxVosqAAChteTnhlJZbUrhVC4NnIURYiucFAlGxMDDzRNc2VlBauhlOp2u/xZYJU2eWeljiIWs1arQRGbA0rZi+WZM9tHHAxi/bIp06RjrxRyCpQjx0UBqepRFJ06dUpmm1w8kLOxuLi4bdu2XAshR45fHsjKikqlUigUZHNJYHV1tVgsNhqN+fl5ZLxwYbRUvKVM3lGxWIQmcraEAIPQSMRJuoqhy6L5gGG6ySaJqD+BJ9gYSfqaRO+rR9/o2u3ENIlSorvKyUFjyNf4zkKvF5deIc9emS8+9t3Tp0/zlKanp3ft2iXn+c/c/jAwX0ocx1CRMrYa8buc7mAQNoxiXzNpFM0akbzMcrnc7A8o4PfpDYW4SOvM5Tfs2Prc2cWBW8QeZhI2XWcpNvZb4T2F3iMj5Rtu6iLDJllIbgDvOCdT4W6qkYiwLCtFWhRkxycl2kmTF3UjUlcNrRqiKNpAF45E752xE5bQbF9mZZSR+/M8DyQH9EArKPJ9/1Wpm8oVAInC04il0JSsuZOslpG4gUYRd0aikfA64qic5CYDR8jI0K6FmwLJK8VycQgF4SxwiewzI4ujpDA9uzw0V4j8fhgrfihJnfzMKqWkZh2zGnx+QSOjKMJd41BztVpFQGlSO2A+Kc8ccTCtKRNTID7FBomalwc5BcqR42LRbrfn5+cniehfJIIgOHnypO/7MzMzVzxxNkeOHK81NHMniiLIf0EAl7dD6CmO42KxCHrD9oQstQe0vCOpkKudTgnZXFrf0get7iXYstSaJGJPWWBwqFp4x1Shm1DVokiRY1iDQRXfmVEU7TCjt534wfce+Yk1WCtvOHDgQLFYLJfLN910k7yKXq+3w4w+UWyvpmbdTHtkVWhNtfkup//5pM5xG0V0kzPcbcdKkWzZefds6UcJPT0gItpVoA9Wh5GfvrUw+GFYIiLXoHdU48aZ9vdorbfbjcsnPnHw6iU/sIJ1ImacZKWFTTQUi0UZSZuenp6fn+eVJ0FENXOQqcKkRDutfF8TPjZED9B6vb4BB0D2I/+r7cnSyeVyWZM9YJoB0xksBfyEh0KMQhYmTSqX2gByBYIg6Pf7ePKr1aqmZA2/ALM1XhbLsibVUyFKQ6JfE/IvwEkgKMI7l8tlzgrja4HYGm9BjRDYC4tEp2kqu4tCooOH1XocIe+dxBMiJ8yZkFngeUD8jZ9PqUiBmfD+sj8YPr9pmjIV51BzsVgsFoscjJ0ELS1TKw/jdkDyFOfN5HytkVtUOXJcOJRS8/Pz8/Pz502QvciznD17Noqi2dnZS6u4nSNHjkuIT33qU2Ot1d/93d+96667NjmIZvEEQYA6QNaSksbccDicnZ3VAkSdTmdqaooy4KOkQm69Xge5kudFXYHsREmioTsmAOGW7Fm0uiAA35BVi4jIMdZOUSqV2HNcLpfBf2Cobd269eDBgzBhOdUHOssIN7XiOEkI/Aenu9kevmlH6cl+6vvDJWUdsMKrrDULDKZbGIYwnf+HsvdKvZoaxg1FSpLSchjcX+i+0fY7VvHQTCkchNM7G7cNTx1b7L+h5u7dPz0cDq1gzcOVFbAGw5FUQX5La5ISY0WWaSQGIFdMUgWY3ZrMtFa+r91WOcNerzfphwNEGjO0LAvdWn3fx5ojDIJ7urq6WqvVOp0ObpB261FkAp00niSSteSPoyRIm4G00bGl2+1iQLALTcl6OBxiGSEV4Hke0juhP8Hi7xI8SZnhtrCwgDvV6/VQlMtrniV7KL/RSv8po7knX+BRxGT4sfQ8D1yI23lJbowVME1zUkq8JjXO0CbAH2fZb6pcLmMyzJ2YELJrY2P+Q+L7gZdRvssPBjeSuuKFQJRToBw5LhhBECwsLGiN9l47tNttsKBL2Ho1R44clxBf/OIXx26/++67N0mBtKwhvEYPeyJqNptxHK+srLBZiXBNo9E4e/YsmxRIgtrA3e55nuu6KIVHGXqSJFw57ThOkiRI9KJRJ0ocBWc2jD/TNFdXV4fDIVzXUuIZJUMkrJxJ6VXYmYj27t27c+fOU6dOKaW2bdt29913c9AbRhvkwi3LggkoM6D4oqLe6nVpqpx14RQ2VVGWQES+7+8sGfgiZSXfKdPEGQ3X7fV6Lc95184GEVWrVVkDw21P5Hlll5XV1VXoceFdSWxg+2rRnnq9bpomDHreiDTC+fl5rtTH/CG0hXaWmK0MCOC2QhBZ6vFM4l00aoJJow45qKvRLlbOanZ2loWVtaFs287mKXAfTxwio4XnRdZGz2o9N5tNhD40woBLXllZ2bFjBw/I4u/ZScrPFIkV465B/BYkGdHkijdy6b+E67rMKICxH2r5WBqGAVltWk9iHcdB7hw4KmXIoRSHpPUOCMwNxEOGyOT+PBnmMBwNpk1Dfj9oChZgd7wI8hRXFjkFypHjAnH27NlLW/xzXnS73eFwuH///klx8Bw5clxB/Omf/ilXI0hcQAhokn2gcQn2qWv7Q0hq4xNJGw7JQjQyqWW3E1RLQ9apUqlwIQf4D2UknqHNjYogDPJk7P1k6M1Eybta1owwgPsJLST2tkZjMBj8wHdX3v3x/eHqm1WbewHJq+bkGVAy6XqP4xjC3JjPI1HxaFycNeJ7C/0TZvV45F7bpfvKobRxH+iYz3fp2iLd6w6CIHgqLf04tF2TfqNFM47daDS+tZQ8EhRuLqt32c53kvrpyLzBHr7JGcIo5AavWBOty4oUK9PUh8EB+CaiFEdKU1iWValUEJyhTKYQ8u7wmtueagGo7B3cIINaEp7zmqRImdv410ebDKQdUCivMerzQrPRPc+DzpjUeuZQGPiwGrUqyl6RGjVKwvSkdoJt27VajW+izPfTgPsCKx+NRLPyADKqU6vV0EqIMqV3vLN8LBF/kzugkE87i0YOudKPL5MrA5Ef2O/3UfAjB9Emo5Ri1W8GInsy6XFjILRLRPjGwEbbtqVACxQXpMDgFUROgXLkuBCcOXPmMvMfAGJxO3bsyFlQjhyvN7z//e+/SFHssTYBs44oirgZCBHJRi62bUvzBcLZFzyNLKGiDNWR1jOMJ60jJL4hq7ff+7lhnYioR08E9L9ftXbI3y/TV5cpUTRrOXu9xkO+QUTHqfn0cu+uf/iHQ4cOSUNZVtUjr6lQKMDKpFHOGNjCXw8bT8euIjpFzk+SYqyIiJ7y6eWw8C9Gpu3Xg+oPoxK2P2ebN9nm54Yuaoh+3KM/mg2+0Xcf8YmIXu7Sd/o0TD0iOh4XBmpNPI2DOZA4y/Icfg0HPBfxI82JrWFJaQDE4sZmNGn3BaLMkwJQqLBXShUKhQ3aUo1tgkkZe10qEEhI+xiBCDmZIAjwkKAUB4fw7Zs0pezFYjJo1FMoFBCxlKX5ruuWy2XEHo2MJqF8zRcrtRNovaRHsVhst9v4NBmGIT9HHDRDDx80Hda0DbSozszMDJv70mbAh5ob+IxddpTiZFdGPh6+7/u+z5pvMuVSjpZd9qzkXaFQ0FZvaWkJ17Jxp6MspOR6NvmQOyNd8fLmnALlyPGqsbi4CEmlK4JOp+M4zvbt2y+grjRHjhw/LzBG7TVgbzmOo6V+SZ5TKpVk7lOhUID6E3jCq60h9DxvrL6LpDrSekbR+dihqofeya+XInqsTwfL1E/W+A8ZNJ+YS/1z+59t7jryzf/3mWee+cM//EPeqFGyOI41sd3BYBAEga/Mp5JzvqFYHPSjHn1gS5n8fpqmj8bnjNonYy8gY01DwaBU0eeWjJeEK3wo4gGPR94NmQsMw1CTzuOl6HQ6sgg+SRL+V0JarlhJubZKdFvSwhokMpd4Mrh3uH2oPh+bzgRVLhoRNo17y4IQLhQBsNQoXmIFZMijaafgR+jCamXZRtcqr1CcAxm9OI5hRpfLZa2pDgBNZ8wTh9BIOyEIAulJlEl6U1NTY8WmIUAvY02aHoaWqjccDqvVKhOPqakpSKux6DmJBj6QocdGjI/Yl1ZaxjJrvIVfa5TPtu0N9Aayknc0qknDa6UUnwjy31ql0wbRIUiuh2FojvJLeQGzCuZXEDkFypHj1WFlZYUlfa4UlpaWbNvetm3bFZxDjhw5LjlkPUOxWOT2l9A000xJ6dOFgAErX3ueh+pBGkUqpBLxeZNbZLpd1kDH640dvcRdU9sLciMUERZiSvANqoiITEMlo65BZjAwo2BlJXjmmWeuvfZaIkLdBdvTCJJIsV1uc9RWzvpGPudQNlXc72JWM5FxckQcSkbqESdOERGtKGtS6UzdGPMO7OZ6va61Y4IgmNwyGAzGutJl2QZWslwuI3aUFetjgP2ODUBJopUkSafT0TTrpCoXEaHECGEQpRQfni1b5wQneVItkMWzHcvcpLYBMOlpZBs9iiJpykP0jKv/XddFmAtaanLmCJOym6Db7WKq5y10mSQ2zaud1cPgHWSqXpqmsk+XlhIGyBlC7I4Ev+UPL57zKIo4542nms334wVkp4m27ExFtOAeZAbHrglIY5b9TooOZW/QJAXzK4icAuXI8SqglJqbmxubOXCZcfbs2XK5vIEYa44cOX5OASOGe1/CytHCAq7rarEdqXytKdLCiUuZ9oWWZcGm0Qw+aXEao242GtWRLeSxZTgcwugpFoue50EyYeXbX7z6vl9fURYRvalC+zwioqtdmrXS+WTNBr3GDH6arF1L9ckf4AVrGGBMCABgHSQVlIXgO8yoRGmf1oaVdOht9lrOTxAE9xSDvwzW3P9vd/o32MFPY4/Jza2Wf9JyfxatBQSKZuqnJhEVDHWXO5jzPBKsABZktpWK7/tjTUlEeFgUi0Y3ly3mTqeDuv+sqb02n2KRRipkmEA2AKWFdLI/WExycHa8hqCZRjls22by3O12NVYGKKXQzNcYiV8jnUxqtVerVUTtJBVXmWaa2sjo7yk1h5CvJellEAR4vA3RQQhMYzgcQggOyyJlxFGRhVBJ9jZNQqVS6XQ6KHLjdch+DGW2quzTlX1ONID1aaIUvu97nqcxHyxFrVYDKZIqfPBToIuUZVl4NuSyb0BFZA8x13X5GYbCAdZWY7/FYjG7htoNgmg4f2w5CpddgcuMnALlyPEqcPbs2deo/88FYGlpSetakCNHjl8YQA2MRkYkhNpoJBeWdScDyH2SVpGE1r4QL8IwjONYDij1bQ3DmJqaStN0bNRIJn2x0ROGIVzXtm3TysJ/3Gs91qeqtcZ/gH+zlf5ufngmsW+whu+pRnbN+3Hbf+SrX+y89DMiuvXWW3fu3CkNqTAM0VxSC4W5rouEKPz7e6WVLwxr84lVpvQjjeH+Rvkpn7YmA284oJHFf5Pl/3G583xS2GVGLTMpFov/SzP96wXVjumg5d9X9BMj+PtB8aext9cK3+12Y8cbuNWby4ZNjW95HonwSBRF2VYqq6ur0tqTbKdQKEC0jYXIy+UyBNyYBSGhkY/CY8CBwazbC+HBOI7ZNEf8kHfIWqh81yTFkpoTtm3DtJWWugxqadclYy9MZhzHQTqZDHRIZJtpZqeaZWvtdpt3w8Y4jjUZBjwPYRgibQ9WvmVZ0PVO0zSKIpyaVSU2A8dx8FkYDoeg4tluoUjL5AeSW2yNbbmD7VJ93nVdsCAeEAKPzFQZ7BFAOEuNOu3EcWxZluu6UDnPVhNpzZS0hEDpSRkMBsyuNc0PBpwj2kYto0+zmi5Abu41Qk6BcuTYLHzfzzYHvIJYXV1tt9tjG4DkyJHj8uOhhx568cUXx751zz33vNrRqtVqr9fjWmr06DAMAz5dWBVarxgAGsFjx5ThHbW+vxD7qmmkbwvLDP71sfyHlXkty9KSvrizJ3CwTM8+++zhxcU3vOEN0DloJf4H3LXITBhS3Ujf2rBv/83fOHnyZLlcrlarkITGDjCkJNXB/MvlMvrZs1d71oh+v7g0uloaLPauhst/dIhSKgiCskG32KjrIMMwdnnmH+2Crem4bmV+fv5X3e6vumu1Vc2qOyIChsZtwjBcWlqSNjrqOnh52c7jjplEhLw+7LayssJWMl8XnwJ3c8uWLbL/jwat/h7FJ9y+ZmxOF/eYIiJWuJaaE6ix0SIVUtVAKeW6LgqNPM+TVWphGHJnIfS3DcOw3W7L1jd8Fjn+WGM6y9Zg5cuNHLZiTQhpgksrn9eKAVWJ7KoCY9s94UMhH28NcgIoUkIIRT4n+DhnpQ5p1F9VtipCWCZbryXDTZKUglRP6iCkNVMaS0VwLnmZiHZif/mIjj2cxe5l3ZScoed5m5dHf+2QU6AcOTaL5eXl108ICFhZWanX61dcViVHjhxE9KEPfWjs9kajMcmHOgno1w7ppNXVVYSDoiiCi31xcRGWHLdulN0zwUlQYoHR2HrT2hcyEFmSW8YaedJjLZV5URAvR4Dlip42Sqkvf/nLjz/+OBF961vf+shHPrJ7925WowKg+E9EuBwYW5ql67quLLvnZiOsH+A4zvLyMsfK2N7iDkiapDgPi3/R2QZEgo8FW+BD+MtWkgHtBS8pJpktlJLJe9qyc8RAGpqYRrfbXV5e1szxbKscrMnYXqUSzWYT+mbcd+i8Ba6ytqRcLoMBcqySFwHVR/i31+vZtq31M+WENy3YODY3TLK1SdBmHoYhX3VOsWMAACAASURBVDLeGgwGoJqaTtqkq2bxa/ybbfe0AWQ4tFar2baNFlvalPDvWKlDIoLUO4/JObEbXLUGTaSRAVLHi6BREag+wodSLBblowuizsEoGZTLRtLGrjBelMtl5DduMPnLhtxyypFjU+j3+6+rEBCAH8WZmZkrPZEcOX550Wg0LiDIszGkDSEVb4MgYP1rpRRUsDikwIyo0Wj0ej1Y/NKU4faFSB+Sp4N8mWZhS2gea2n4IouJTUZEHhYXF0HDTpw4Af4DHD58eHZ2Vhtcsh2tKwusJZRPOI6jlIqiCA15uJKee1OiJRGKyLXx6/U6F9iwPYqYCWiAYRgrKytyWQqFgkw8Y0OcD8/W+tdqNe4qaxjGBrGC7AhcF6QNi0xFTfwaBqhWf6+xCMdxoCGGDraYDGpFZGF9kiSacByKZLjFTaFQqNfrshdTEAQgwEhCKxaLsPu1mRPRYDAYS9Io02x3UugSjgCuNMuuGwi5vGppkVuWhRuX5T80qq0iwQ1AG7LNfIMgOK/QvNaitNvtIl2N1n+iuQYpS2NQCJRdiuwW7arxPPBurFwiRdi4noeVKvhjgnvNV414Jq9kp9PROvnImWuRNNzTSUuEBq+T3r3MyClQjhybwmAweD2oIGSxuLiYU6AcOa4gDh48+MADD1zaMVHigviGtHG5IohG5ghKBUgwokqlgv6kY0dGeMf3/dXVVWnKw3TbwOGteay1HWq1GhJ7UEAvpXu1fCdumQognw2FMWMJABEhpUeJ6nnQlWwlPdpcJkmytLTEi0YjO9gQ2gMAmEC/3x/rUwe5wvUih4pbcGZ3NgwD8+Si/GKxODZugFINBEC0pcheO8DGLnZYXV3F7xFqUVhVGZEfy7J4oVgZOYoi9uJ5nqf9nGWTDPv9Pt/xIAiQdM1UU4slIvUrSxto1F5zEknbOKNMjg/Wx3zJ8zxeZESipCYElr1arbZaLdmNh9fWNM1CocCyBNxeKcvA+Y7gARgrfjgJoOtjt/u+PxwOHceRUodQkJv0DPCxKGpCfA88Fkrokv+gngfdmbARXYx4EM7H832/WCxC5kEjWijAY17HH0+aEOchog0+TXyZG6zYZUZOgXLk2BS0jhyvH6DiczO/Ijly5Hido1QqFYvFKIp6vV6v14NxzzauYRiyMwkOgUueNtFqXfqDPc/rdrtsqSBxjvdEexntcM2skf+itSKiBHBvSxO5Xq/v3bv3hRdewL933nmnDBkVCgXIhbGbGSO/kjpHo2KkjDfG/u1B4LouV88fCUvHfXePZdxTiGgUg/pez358QNcWaYtDD/esYlw7ZPVaRkJE4JBjYwhYT18Z3w/Lc4m9w45XUzNSxhtt/4B9rpUkMzq2j1VG9JnZDmtbbwBEq3q9nhYc0Hz5tL7cgneQLT4LhcL09DSiPTD3oeCHHbRkQgDhDm1KWr6ZJnWNCpxJsQuEC3B32LyGuYz0RSZpr4pCaKjX67JiTQ6lvcVXBDHorPuy1WrJJDGN0WXz1gA06tkg85zJrXYTNSAaRqMavDiOUV8EjiozxxzHgUOBHzw8zN1u17IsKV2A6i9o8WGGqL/iM6LrLv/LgUpQo7EFhBpdycaOAA6OQYhlEv+Z1GD3CiKnQDlynB+DwSArSXlh+PSnP/2Zz3yGiD72sY998pOfvPgBlVIwlS5+qBw5clxZeJ5nmiYbLjDui8Wi67qcXqXWC/KiZwibHZNydaQSLvpLIliRpmm5XB4Oh7I4J47j5eVlTSxbS3XjMyJbjL2/lmU1Gg0WMQM+/OEPP/roowsLC9dcc83s7Kzv+5pK8tG48ugg3WOF9xT6RNQl6zN+C72DfhJ7j8/5QyO63kqjHx/9UX3f6Z03ENHzSeFMan/IWyWi/2/J+G6PiOipczTHe9p2/32j43keqsPltLV6hk8PphZSi4ieSVxoaf8k9v6g1p12nEFK31ihF7qVG+zhG+11JErz1qNL5ua/itE1kqMEzFvkyHixtLRkWVY2OGCMVCJItDql9a1IJSHJTp63wzxlfW2ufZdguQIOMWGoSqWC/EkczoYynwjP8KQmrZMwtl/QxrwiuxHK16AN/DdriENom5dFhlMMw5BLMVazQYLJLYnHDPFA9Hqi9bQqjmPEMLnZDgNfBVLzgI+VLVlZV4OZSbVa1YJyaqQXB0KoTYBDzbwz5gw/iAxa0oiD8ZioOuPFkfxNPgkIr11Yk9zXDjkFypHj/Ng4sPuqxjl8+DBeHzly5GMf+9gl0XMb25kuR44cP48YK5PFtoVmByO/SGZeTXKyyrrzOI6hkcV+dGn+2rYNj48mli27Z8qIChS3+EsSxpnnebwPdH5vv/32NE0XFxexXeoCf36Rvr1qk2A1TyXFRHzjPhoXiejpyKkP3e7+vbz9ydgbqk7RpKP9MVfdjo0Tdv2ge+7a1agEHFwO//4gKoP/rGF03u8PnK3p4p8H0ycii6hwPC743rloDK2vvmA2gs4zHA2bBMlIDcOAtN3i4qKs+8L4vMh8CVqAArxC+vtJGNlMtLQnhx8nGrV+IhFLWV1d1Q4xRnIFmm2NoCJe43D0gcEWSaE3z3/U+foFbRL9fp+r15RSjUYDlCa7Jz//8noR7kAfJ76EzShol0olfAr4crBK8/PzlPkID4dD13VZqo7v73lNDjCZ5eVlzixVIyVreFLkzsZIPRwPm+/7THjAc2Q6JTitXCjwOmj6IVuPl0hyfgix4MtK8kl+qrEmF3xDLzlyCpQjx/mhiRddMM6cOfPEE09A+/K555576KGHfuVXfuXih+31epq0f44cOX4egQ9yViaLbQu5s2EYoBCbybzSlHAHgwFqflA4RML8haEGaGLZ3GZE9ie1LEuTikGUCTaQaZppufadVVqJyY7Ca8hsGQlso0e7ybLp3FKiw91zx4LVVM3x9p+/52a7vxK6a17ngqHaVunGhjsdUn9co8WqRTTqsAlDll8Atm2fCNen/Ckig4hoVVlzqX0iOseOHgvdG0ZrKCkECd88L4Umk6W1f5G3WCkF05zNUNu2W60WAmu8TzYKBODnScoQ0yiFCREPpEouLy/zbMHQIK0Bc5kNYuyDiJ/kUY1GQzr1z61WJjAlVRNYLX2sensWkFmXLGtSv6DNQPYUIiLoUE/auV6vW5bF6R58i4fDYalUgvZdVl58ErTcRXxYkG4qbyXoAfhPNli3MdAvVT7MfGy/3280GiyMTiNfCY14SKvVGgwGURSxH+S8kTpJdSaJWARBwDVaOJfneUop7qiLs8dxzI/TlUVOgXLkOD8uVZjly1/+MhHdd99927dv/+xnP/vVr371klAgiAXlFChHjp939Pv9Xq9XqVTYaJifnwdRgSM2iiK2qNBqZpMjQw+KTTFUR6BoAd1IiAguZE2RGSXR2mg8GVnWL9PzDMOoVquO45T33/DvXjbXQjqGR8r7773la+zwb4L6Iz2PiL6wRDMO9UfFBSUjLZp0vervsws/i3WVZLO3Wn7pp0t3/Yu1uSnjv3Qq77PpXQ36r2f1S761mG5Lh0niyhQjlsZWo749TRWSYXPwh8y1QNA1dlCkdTUPdePcv1kDTlqctF4mK9v+hQ1N2Ka+7xcKBe4pFEXRwsIC31zOOAJDyKp+9/t9JHcxL42iaMuWLTwZuP85smRZVrVaxYCQEccL+STIS2s0GkweNshlYgU57v+TVW+fdCxWjGXWJdBGFlU9GxzO8H1/rHzZeW1ukIrsdqXUJvM1uI8Ql9IpIbzOquIyW4yE5COtr9LhfbQkRtzEQqEge+/InRESZGF0Wl/MrEZiDGhAJOe/yUjdWBELqIHLKBZyCPFtJi8Kz8nrIRaUU6AcOc4DbiN9kQjD8Gtf+xoR3X///bt27frsZz979OjR06dPb9++/eIH18oTc+TI8fMIZMwrpVqt1urqKvK10Kyj1WqxQDMsvE1ahIBlWdPT0whESI2sMAyl61frikMTekdCeA2vMUm2sEulkgxJVe/+1XMpbYqI6IdRecZKHonOxV4KwjTdY4V+Sp5Bv1tceSEppIbxTOT8MCwRkZXG1eNH3LMndy++vPTrf9AjCxGbr6/Qf9lD/22ROiPj3CT6t43+lrj3zKrzbJzucZLdBj2TuPOJ9YY0nDbpkagYE91sD60keYszeHxgDJwiEZlBP3XLZNBWI36rM7BJvbUwwNkLBt3lDl4czbNcLrO5bJom+J4mUkwjf7ns6wIBGy5Q4QDF6uqq1PpDyTsStJRSxREwJoxImR2XveNqvWYGCSObnxyZ4y370miNbuX4Wt0IDxUEQafTwXbf91FQJLUK+/0+VgOUPhuQkb2S5Bk5C6NcLk+KdjL7IpFwJQeBUOHYY3n+SZJUq1W8kExv7AcNbAfDgvCwrFwcx1rmCGdgIj5mmiZnvsFfwNeevZVjw27GqH8UjXqVyiASZ8Oi1RVmy7fMtm1NYH1j5qMFMMeCVeO0eqpCoYCcWBkIwvUiHLTBeS8DcgqUI8d5cEn4DxF94QtfWFlZueOOOw4dOmSa5pvf/OYjR45885vf/J3f+Z2LH/xSTTJHjhxXENL4k7010H0lSRLP82BIKaXY4y7V28b2s2fAiJEaWY7jSAMom3AlX0OL2bIsZA1hY7FYZG90sVgslUogbxD5NZz1ZpNBMRkJrbPqYkXv9gbfHhYTMn4aeyeTwu+XlmqU7jEDpdS+wvCNtr+YWNc5YffeN3e7N+7bt+9/XTUoXctYC1JKiUwxZEo0FfePRqWvBFUiopC2muW51Caib4RUMdI+mUrRt4Lq/zzdbyX9X6uGX1/sR0vz2545fP2b37b/2mv3qHA4tE3TTJRHIRFRpMgorhnusMXBeVAOAStZK56RwR8JxDo0fzlkwWRCmlKq3+/X63VN4gLK1GjfiS0w7vlG0Eijj0YyCUhJwhMFkz2Kom63m/3hwP4bd4DQ6kaIqNPpYCn4coIgYMrBvn+YvEzptWG12AieTNZ8J6J+vz+JAjGjkCPA+jcMo1gsbhxzkP1Mq9UqRNhAcZnhSDDbiaKo0+lAn3qDZjhQXwQhwWjsj+BWV4jUTSoB0ogQnkNWKdQOBCGUazU9PY36Ltd1NeIxVv6RiMBS4JGRAUx5UfxVM1aBgx+PZrOJOjftFp+33um1Rk6BcuQ4Dy4Vuzhy5AgR3XnnnTA4QIGOHDny0Y9+9MISnSWuuDclR44clwRcPTxWpBhNP0ulEteL8xZa74fewL9bqVRg/tq2rZmG0ozmLXixvLzMLSaXlpa4vSlMVYSSHMdBI04QgDiOw7OnzuXqGUSKDjmDStEz+udSz1Zi+kZ0zkPfU+axqPTOQo9GmTlbzXirGRNRs9lsNptRFN1hD/4xXLPwrnJpKaJ7avTl9lolz56CskkdxpiKyCTwH8yhp0zs5pPxj0Flr2F+bliiClFlemnf9b+2m4hIqWKapvNh+lB/VENF9E8D56ZKhYhc10VRuBq1zWm1WmoEGmkQy05K8v7yPrLIBwrOUv4YVi8s7Ox9LJfLqOfhtCveAtc77pTkYK1WC0VH2E7rORuEE1h4kJHNQNPqRnClY93/Us1M/khFUYS2V9qwksIhzLi4uCj3GVstIyvT5NIhcMGCDVIUXp5a9jM1DKPb7Q4Gg0ajsUF9nRTRRq0LdAKye3ItUKfTUSO9RPziI/URQtscvxp7pZIbY3GQZygDiRDT50XW6KJhGNwoTKsgGlsfBWqnbZRxQu2rRtuzWq1qD+309PTKygrHgl4neBUChTly/HLikrCLo0ePHjlypFqtHjp0CFsOHTo0NTV17NgxUKOLRB4FypHjFwa+78dxzMlClmVJ2wjvyo88G3Bae5OxvnxYbKZp1mq1qakpzQAql8uNRgN6uMVisdlsMgWSOshKKfZ5s9WOZCcptkZEzvbd4tz0Gy165/baslOWVnaQ8QXzdy5Iha/MV1JHGk/3FvpvcwYGESl6KaD/eIbe26RbSkQGkUEvBMaXo2ZIY4wtQ5EaCR6QQY8O6J8E+1qJ6fsdOhPS8vJyv9/3w3Xfq8HICvV9v91ua6X2IJxgAkSESJ08HE7xsaSUrdiZmZmsRwzxk2wRDhqS9nq9xcVFRJZc163VauzUz+oB4AXnv8kZoq+u3N+yLMuyHMfpdrsrKytalGOs5hhfKSQE5LuSddi2nZUu5GcPyhzYKCNgHNoaDAa4QbwOmtoHr1sQBNgZEnz879j15EuQem5joXHCQqGQVXzGXdAqfOTIuATkQMrVQA6hfNq1Bwm5c4gJ48LxaGm7TYqxcHwYCZxjNSTP2whe+6rhMyL4A4asLUij0cBtveLBH0YeBcqR43Lg8OHDaZoeOnTo+uuvx5YDBw4cOnToa1/72pEjR972trdd5PgbhOBz5MjxcwdkGbVaLZgR0heumUdEBDezZVla4Gisf1eGj1C6o+3guu7YpH824/CXLSfpJIIeNJvahmEknXVicTToxbXi7sI6q8shFa2nK7faQ8uyFmOKlfHTxPtuWE4UzZjJh7yVLWaslDJNs02WojUysxTRY316Ht+CigyDjg0LtxXjHw1NhJ4qFvUSvCnOpKif0KqhiAylCIv6/ywQEV1nl99u93fZ0XV2cDxeW427qulgVOsim6jQiDNoGWLQWcZuhUKB3fAc65AdaX3fL5VKtm1PTU0tLS1Jket+v49/NYVo6c4fq5zG90grINFoahZsr5NQA5LxRu0sUsYQF2tZltZFCtFCxB4nBViyz142tIUoDa0Xba9UKohaMAWV16JRmiRJlpaWaLSesp8p78OfI44dIayBFZYi8qC1WswE2XcIdlGGmFFGW5xGWoVYHBSMydWTuxUKhU6nw/yWH62xmZBjMbaTrDaZsRuZ+41tOIsBPc9rt9tjNc3RkVnb/woip0A5cpwHF680sLi4yFlwcvub3/xmUKC5ubmtW7dezClyObgcOX6RwKYGrFipNgZbjUs7iChJkuXl5enpaWmZGYaxtLTE2lzYMxs+2nwrz3K5zOYLq2MTkdYCqFwup2nKiT3hem/x3w4rXz+p7q8EpuGmI7tuykrmkjVrZK8V/qrbnTGiz/fraAdkGGtxm4XU+n5U/oC7CqOwRut8zFWLytY5ZTky6OnwnIXjmfTrTXrWp2N9IoOE7a/SQZ8KFXPdRjoeu8djt2io97jdG9x0LrGuMfoHguiBUc6PZpVyNY7MEIMdjN4yvM7Sph8OhxqBhIU9NTWFeirY3GxrajxnbAspucV1XTZVeZLD4VCrOJL7Q3SOMslXwKQHBqpf2m6aTnexWCwUCtn8t42r1yjDi6RUw3A4BAXCskBSQqN2XKGUHRmqhtVqtdFoQIyR31IjRWzugYMPoOu6jUaj2+1CUhxzDoIAhIQ/aGAjY7s54aOtxdBs2240Grw4tm1jQJlaiaOazWYQBHIRwjBcXV31PC9LFzcAsgcnNbBCW2TE2QqFgmEYeH7weDiOUy6XEWSDuobjOFw6tYGmuSGamKFd2MaTfK2RU6AcOc6DDToJbBJHjhx57rnndu7cyVlwwKFDhw4cOPDcc88dOXLkfe9738Wc4uInmSNHjtcJsg5a13W5mpyIYIWw6x1ZMegpBP/u0tISbEHf96MoQkl31kE+qY/qWGCQfr9fKBSkSQqKBcOrUqlEUQS7H+aRMzW7bhSDhsr4dt9h/mMQpYr+uLzwXOxcZcUtMyGiZxIP/IeIlDrXrvRM6jQaDYjavcUZPB27K8oioluLyT7P2uvSvHCs95NzEZ/FiG6rUj0ZHut7a7GjkWxBGvpGoXJuo0EstOAr44Gw/B9mh71eZ20m6+E4TqVS0dKiYN1KiecsM+EFzPaAAthPr/VckjwHxvfYwxnNZlPTD5Q3XSut8X2f90fOmLbDpAdm7HMFsx6DgP9kR9hk9Zo2OH8Q5M5SUk+C1SbGig1AFqJarfb7fVmmhQdYa6qLZUFNC8+ZdSlkNVS1WpX9tTBPDOL7fpIkkBXBhNFgB5eG85JovKulLCKKy/cFfxGqglzBZvyhUv5Ba2DFqFQqrutyBSDOyI80y9Bx1V+lUimVShs/sbS5JmaXDTkFypHjPLh4dnH48GEiOnXq1Hvf+96xO1w8Bbri3pQcOXJcPCqVyuzsLCgNdAXAKzTBKyIC08BrmEdsDnL6jTFqCd/pdLrdbqPRkEaVYRibbCvErt9CoZBV1oLBh+3StMLEOscebNx297mdFaVE3dScttLFxCQiRXSjNSwb6W3F5Omnj58JwwMHDszT+lDDyMC+pRC5rkdEhUKhFYafKi8+HbtlI71tW5OI3tukh3pjjiKi60uU9joqiBV5ROc4VXXxpWtrhWNr0x39FQcup1ZfnRM6k5NiLeyxiybXYZKUGWrox3aZJJFWNInnbHw4Q6NGslEsjcvRYq7CjaTkJXNBvAQ0BkBm5HNlmiZCBJME3LWSkoWFBcQfkiSZpMLM3XXwGi/AK8aeQkaBPM+zbVsT/IiiiIug5JqYpsnUhfkG1Nvk4bjR8pOFQJmMjmrUC+sMboD8OmMk36dJCMrX8ux8r7XbN/buaJDyDzRB9Z4vjcfXNCfQy5UnoJTq9Xq4HO2JRSbn5ts6XU7kZlOOHOfBRbKLp5566ryCB0eOHHniiSduuummCz5LHgXKkeMXAMg5ISIo2NIoy4UrCtj0QRIO2yWe5/GXgDQ1pKkE7yzbNPKQDSCjGRs0ZqGMstZaKtHD37nlg//yidaBlEwySSkyiPZb4Qen1Lf67smQ3lyhd1cKRIXPfOYzqNA4duzYO97/YaJzXGufHfZS80Y7eN/M2qU1Go2VlZUoim4oRLVabTgcDgYDW6mpF19ZuvoWkJmCSXfX6cdduqlM99cTf9nfYVLTSJbVWiCi2lv67Rm1f0v1sZeHkbOWOGT1V71qrZ+urdv1JWp5haW+HuiYtBTMXbMVKWMpytgukxIb8xzY9FyjMgkICfI+rVaLy42kDS2zp9BIClJvtm1D6ML3fSS5ZZkwN+KEQjQeBlYsmLRc2ZKSMAwR5SAiSEiz9cwpc4iPOY6zcRhTrhULPGANe72evPCs6BHOa5qm5IFq1OdU65vE8VWlFF8pR0cdx9EKjRhJkvAS1ev1MAwnFWgh+KkxIjkrFilJ05TbAWkYS5DOWxI29l8OeckdEIiWT6xlWdAepPN9e1wR5BQoR47zgCVfL+zwI0eOrK6u7t+//9Of/vTYDtOf+MQnHn744YceeuhiKFAeBcqR4xcGWjtmeMRZ/ZaIUDMtu51qZIZzbCTYXlGjzi3Z88Lvy2lLtL5Z6gaNWbQT8VStcnVldm+amETkkCqY6kYreE89ORZVHhlQquh7HbrZNb534uzTd/yGMgyn2y7/7LGzTz/+kTfWHk4qQUo324NOap4lZ1e95DjrZLKeiNyfxF4rMu4w+i0zOX78ePGfHqgvzfl7bjZ7qzc3vR9ZVy8ndKxHuwvGtURE9MFi50tBdTWx9lrhb22JDMPr9XrXP/bD56b3R82tlKZRa2s/pRmHTKL9dnSbsfqfHusskHud0b9/Z33S/eJ1830/KzaALMTzrtskQCZBGq+DwQC3D88J9CGazebYHwIOzUFrARunpqaQ48QTy1qokGxWSoFp8G0dDAaVSiV7RWx544xyh0lPDlevyY28dNxjtFwum6bJKXOdTmdmZkZmwaHOfqzJrpXoYD0dx5HxFkmB0PaXxRjxEUOiqRr1qAXZACmN41gyIhyIvDuOjnLunAY54V6vN8klgehKlv3WarUwDJeXl895HIZDTAY1S7xzGIaIJCMPTcpXaF2nJIrFIt8aZN6COo7lPyScL0zs4dQANvntcTmRm005cpwHpmkWi0V21bwqhGGILLg777xzLP8hottuu+3hhx9Gg6DzljBOwuswxJwjR44LA5zBbPHAamGpsXK5LE0lmcTCzv5arQbnq5bDY4jOLZq9JXvIDIfDVquFHWRDQyLq9/uT0udYWUuaR833fOhksnaiSBn/fqexw/EGqfH1k2siB6sJ/aezVq+4k4pERNHU9sHVN5547GuN73zl+mbz2muv/W/qaoxwfIF6SfrupolpPOpbnxvWiYhiesJsfqq0CNZXfepI9akjRHTyg59cjomIBil9fdW8ueYGQfCNoDKf2ET0dOL+MC7f5QyUUvvrxaUf/O1w5zWL934YU12I6Nfc7h3W4H87pXrNvUT0Q6LeyWfWFzat5VCxjz+rzGnbdpIkw+EwiiJuCPOqoBmvxWKRJdFIRNsgac1a0sBwOJRF+XEct9tt7kmqhV+gYsxxFUicszScDHQgtQnmLFYA04P8AyrQtKuQD54GVD2trKxo85FPESrQ5HatoadhGJx4piWS4aQoTOKrg2dTugkgM2CaJgpa5EzwEZPBOqmoptkGYRiyUh+Hy1AThdgghExkLRAvuKQcUCRHAiozB4iJ43sAI6PRE3+0Zc3SYDDgOeMxQI1Tt9vFFYE5B0EQhqH0ejAKhUKr1QLZK5VKSim+2GyG3tgesllSyh+H14PRklOgHDnOD9gfF3Dg4cOHH3nkEcpowUnccccdf/7nf/7oo48eOXLk3nvvvbDpbV7WKUeOHK9bdLvd4XDoOOt64BRHYKmxsWBnf6FQqNVqrVar0+loJR9skaAvEMx3VF/IHjJKKSTwEBErkmH7xvFw7LwuALJrn9zh8T5tbxo/9UfSAoqIqKf0i3rBbdWfOEZEP5lrn7z3AG8/vJK81e5Xq9U4jn+SnPNer6TW07F74MCBhx9+uL39Ooqj0ks/XfZqXPOzGJFdayz2hid754jf45F3lzMwDOONb3zjqZCeStd9i86l1jPL/V5jL295zmkxBcLtkJEErI+0a/GaWUSWomwG0njt9/sINPG72UoeBquZSe4RxzH/qyWh+b4fhuH09DT+zUqr8WXSKGzCKyCjENlHFO8uLS1NIoGGYXC73rEBTCJyHAcxT/TyTAAAIABJREFUKxj6fBYWrZYa3NpsiSjbAEeTkC4UCtIo11IHJSBdzSNrroQkScbqocmMR/4sz8/P8yIj0NdqtZiJEZH2kUdUSm6Ut0nzd8hllEmP+HTz4uC19Hpoy84buTRICwFZljXJw6stMjoy4dhsQ9vLj7w1ao4c58cFR29RBXTrrbduQIFuueWWO+64g3e+nNPLkSPH6wpRFK2ursZxjEgLfKv4gA+HQ6gajLUboJMLmyYMw8XFRTSTGUuZHMeZnp7u9/vdbjcMw16vJ5szspWDf7nqgwshJk2e4wbSPBo8+gO5z5fb9D++oBaDdaUXNummtumvSWz57UW5vW6kg8EgjmPP8zRR7LKRnjQrJz7wR+23/nr77g/MffRPrvfOsbXrS2QFfnn9Yswlzo/j4pDM/+q3jt74nu7Nd0shBOfEk8FKW+5figP4uRFP0HSQ1ahJC1NHhET48Avrsi2N1yRJ0jSVd2pSJQ+Na17JVARjovcuz98Y6QquXf76Shu8Zgs7CIKFhQVmgHIa2Y5JkgROukzHcVqt1vT09PT0dKvV0hrL2raN4AyPCcIjG57K/VmUnA/PxhzGdmIFOp3O4uLi0tKSJm6GT1a73V5cXOSFQkwGrxEqkYdMsvIxQ9QLKaUcx0HeGpJgpati0rG8blqaIo37qGrPhmRNtJ4LbQAZIRy7PQu5yOgKNfZRuVLIo0A5cpwfSD/IBvfPiwMHDnziE5/Ys2fPxjHfj3/84zfccMMF9/bZpKzTlcXGDuwcOXIwfN+fmppCu/c4jsErOBAdBAG76hnZ0nZk3cgtjuMopdC10/d9aY8Oh8NarZbtIUMTpI3HAsGKdYVAltU7/M3f++Sn/q5NShHkEIbKeKBj3F6Mj/k2EVmk3u4Ovhuc+xKrh93K8aO4HGvQORgtPObMEFHBUHe5A5zI87z7Gv7xpXQ5NYnoRnt4lRX9n4MptjdjMpbC9G2F4Hji3VA230LtTicyie5y1Q+CtfBRatKDUaVjeZyqR4p2WdGgP0gfffDF5x99kWj27c787luIyIijX5l1/OUijWxQNj3lIiil0NAW78rOP5v/hpetcorFIt8pqIfJrj62beNfxAnRTQg3WrsdGhVBuQtChTxzWm9e475DYJCd9zwOHk65RWZkyQXh19lmmkSERxFPF37L8PjJnT3P06JSrNzNSyHfxVLL7r2cFQbODxZdrVazN0V23RmbTkZEnE62sLCA9TdNs9VqgRjzzMeK2mFwlIfhrqGRDnQXs11fNeDZgDQCVtvzPKUUYlNxHGOGWlCrWq2ifkkOJW/lpBnK7dxmyjAMfg6N8wlLsgQ888lJKZGXHzkFypHj/ECY/gIo0Pvf//7N7Hbrrbfeeuutr35eRESlUul1ToFWV1dPnTpVLBb37t2Lb2EImCKpplQqFYvFXNEuRw4Gm26+70ONLeuq10wrbkPJyJq/juMgpBNFUafT0cqNDMPI9pDhwTdjvmv1FdCDIqIbS/Tl9rlWPIpoObX+O2vhV3bNzAVqr+qlYXBPJX3JqhAZVZu2D+O/rFZgMO3fv/++Zvp21V5MrGvtwCZljIShe3F6uzOglPbY4VVWdDp1FtJ1Js1iYv3rYvvd1C15pcFgTTbgPU7naOhFyjCIlKJ2Ys7RuovdZacvPvsjOvkU/i3+8Cvv2Lnlpch6V51u2T7zj8+sWxZYhHIlQSb5DqLnJgIFm0xX1lrlzMzM4GsT2V+DwQCmJ04KQosDwX9opJGgQZq50t8vVeY0kUAUlXHpEZvd2oDaC411o8SIx+e30AAnTVN+bllVmcY1dTUMQ+bIYSgmbDgpZN9RuE/rw27c1JX15RE1zUrb8VGT0smAJEna7TbfizRNfd+vVCogJCyWIEcOgmB1dRVT7fV6U1NTCIywZpqUPMGDpFEFjqRJkbrBYNBoNGq1GlT7+FzyW8IwDMRhWLi8UCgwX8IWdouokfZJq9XiFZZM1fM8HM4CgLQhmHbSBDnvK4WcAuXIsSm0Wq2FhYUrPYsxKBaLr9voynA4nJubgx+xUCg8++yzkxIhHMcpFovNZrPZbF7mSebI8boC6s7n5+cty5pkZWY/8ojVwEvNO5dKJVkgzvYQAkrScGFb7SJrlBE3QA03+7Cvdqlokj/KeTGITKJY0dWO2lkwiKrQv94+MpWiOP74xz9++vRpZNEMBoMtRrTFjogILM4wjO8sp59bXpvzfUbvTOp8JahqLX2us88VPKyd2jCI6E1e/JDvYI2uL9GbiumTfZPndiRw1c3vtK45NPu1T1uD7uKhf37S2koWPR/Qv+ro1AKkEVY1s00+IxYfE978GmZForm8yvd9qQqgHTg2kck0TRjlg8FgrPVpWZZt24gIjXVFae1BN+nCt227Wq3CUMZPgGRr2QY4fC5+SrOEnKNSPFSpVGLRas/zNiDqIKXcMgsYG5Vib8LYdDL2hMpKKm1BENvRhtVaZkG+Aq7VsWSAmwXx/pJMagDh0by0WUeJJlzu+76MAWZT+IbDIXgjnCbY7vs+hp0kvZ1Ftq0ZjXuALz9yCpTjtQK8O/yTnKapM0K5XH49iIG8KhSLxVar1W63z7/rZYTneTMzM1d6FmOglHrppZfYuQUFIX7XsixkMOOHmUYJ0J1OZ2FhYcuWLWMTAHLk+IUH9GrhyoWubnYfx3HiOJYF2UihSdPU8zz2qcOBPTaHTWNQ2QCFliw0yVjR+rdalgXzVKuseHGl56eiXlFRatAjafVAZljpod+xY0e1WkXIi21c/mb4btfEUGTQ96JyzVhXVGAS7beC93sdGsleyUSp61565GddZ3V2z9Xkf/zq7VVS893u45GnyDijbFJEihKv3D9wW/mFx/p7b+Fhv9+3b84sQqFQgGSoxk4XF9cU6tjfP3YNs0AbGf6Xq8bBPTi9De+6rouHATOBNp2MGcLUxtPCWgKGYfBRayuW0VXXzs4TADQ5tewlsO6cDCUFQVAulz3PQxAye6BmGGj/YiiQAWzZQBeeRNCJk7XQQ4kPt20boTM8wBghiqJSqYTEPy3zE58FMPxSqbS0tKQyittjoXUjBUBpJgVDZAQJjFHTZtRWhpt3MeTMs9mGJJTEs7RWjXTzUUalccUsucoCX1+WZUEwkIfd+KjLjJwC5bjEAO3pdrsbS6jhG6fZbGbD0K9bVKvVsY6ryw/+wqrX6xeso/3aYWFhYWFhwbIs/qlO09R13Varhd8/+VuFnIHBYNDr9ZaXlweDwYkTJ2q12o4dOy64OCpHjp9TBFHU84emQQYSx5Q6GTu77MgkKhaLse2e7Ay2R2EURT9dCQ5uqdmmidalT0bujJVstRLDMM4kVpHSgkFnArq1uZbDthjTSkjbCtTv99uDoK2cHWZERMvKqrjVxvpprK6upmnqK/NUPz5g9CZ9Sz+36ptBWDcpDMNnlvudmKaNqG6m8HGAViml+sOASFAgg4jIzHxxabZ+EARQ8Rpr4wbq3FChMkIYcCMr7v/Y0g/6PTnU9PQ0vC0vv/zyP37jH1yiWaIB0eFX7rj//vvfWUnuCtoPR8W/C2o8zpYdOw4d2PpXcoZqIhXk34UkSXAhfC1Qidj8Lx23ykHiGfdl4igTX4tSCj9JlmU1Gg0Uj0FtGeflWcEelbXvS0tLG7QSYkAvgQ9EolqxWATd7ff7kq1VKhUW75Zig1pqXxRFmjIETlEoFJAjvUFqt2xVBH05pBiMZenlcnlqakomayHzDZ5ZfC7gbgjDsNvttlotJq6maWaJq5Y4J7vrlEolTGzjejl5vegzK3/mtLAPv5aRIiaiNGIUpVLJdV2NAkmJahnD6fV6+CiBFfOz5Pu+PKMxElYJwxBtqeTgG18gHktkYzqOE0WR9uxhe6FQuOL9DHMKlOOSIUmSM2fOLC6uE/BBwAdOOHzx4ZMWhmG73W63247jbN++/fWc/tTv9yHEFASBZVkXpupzacHfgPPz891ut1qt1mq110lFkO/7Z86cUUrBasFGeM7a7fbWrVu1/bkkdGpqanp6em5urtvtdjqdMAz37t37cxctzJHjYvB/rZRn+lvw+gY7eDmxO8oqGuo3GnE/cb66SIly60aSkNFTZvFF9ZszZPXjv+rPhmQQ0VYrdkmhuN8wSCmafTH9/e3mN1focJeI6OaS2pLQd8OZRNG0Ec/a6VNRgfp0S5n+YCsR0WAwwFf0A2H5gaiSKJoZJv/WpR3rP4iDlP7zGXp+WCGq3FnwTyf2qWQtteythcH9hS6yaGD3TBvxdXZwPHZlotqbS6mmSYtfCi6HkJ/9rDfknhp9eRSSf2thULXNbwzWDL5DbmCTitYPBbu81+u9+OKLcpzHH3/8/vvvR6zszij5bkTdkR340YP7txfoJ3P0+Mib9/Y6jU3kzfrFuBoHExhbnLMBoFEGDUA5OExJXEuapouLi5rCQbPZZOEZrR0nyypIz1S73d6Ym3F0CweidBP/QsSs1+vB3QnGi5vO+mwo69eEv7R4iGEYs7OzXHG0gRKA1qoIgUqQrlqtNtZllk3W8jzP8zys0tmzZ3k7GJ1GXEulUlbujPWyIdKAnzBuzDpWXZpbZuFfGUOTARYZ35ONRLVngIharZZ2XXL8Wq0mQ1JaDAdTZQ6Js1iWhcvPalqAgHH0bGz/Hwlui0RCpoU5PF6kaTq2u+5lxpj2rjl+UfH4448/8cQT5XL5fe973yUffHFxcW5uDo+7aZrT09OVSqVSqYyN/vu+3+/3V1ZWkLOxffv22dnZ7G5XHGfOnFlYWIC2aRiGFyCHcBnARaKe51177bVXejo6wIXwDYis9PMecubMGfwyeZ73mrKgL33pS/1+/6abbrrlllvOv3eOHK8ZnnzyyZtuuomI/vnfPDRz8E7injkjC2E4f9qb3kKmxaICa9vPnkqGfnn3ATmaUmQapGhNgWD5kR8033gXv2VQSoapjUNEz//f/+GVv/9rmAR2pX7XFx7m080/8JVn/vRToxGUYRhX//b/tOuDn5h0OT/6N+/tvXCciE6fPm0Yxvbt25VSO977W9Nve7c3s23w8gsv/MWf9k8+h3yq9TNXLDM1KXOM7bPWoXdO3X73yk8ePvvAV4ho+i33Td1xz8oTD5/9zt/J/XkoDB7HsaYb0Ww2+VyFqdlt7/mXhu0sPPCV/snncNS2+z9U2n2gffQ7K48eHgwGp06duuqqq+RXmRrXLklLSLuAis2xw5JQottYm1jbQWbBaYlPr7zyimVZO3bs0OxUGqfpvMG1aClzY0+dPQoeUu1EY3WWJy1I9pBer3f69Ondu3dvnEqgnVTmyMnJy+vdIBtNHgIrXx678eSzAEvh25Gm6alTp2zbhhtRqxTiQ2SMSG4fe+qxt3KD/MaxH9jsNDbZ7ceyrJdeemk4HP7e7/3eZz/72c0ccsmRR4FyXAKcOHECLdhM09y+fXtWsFUDvP5Ib1hZWcnynzRN0e8sCAL8xQeYmxggvI6sqtfmmoiI6vV6HMedTocbzMHbhH+vLEqlEudCIHNg27Ztr/VJkVYOUU7cEfbwwSWGglSZCWAYxqu9R9u2bSuXyy+88MJwOHzhhRf27duX68Xl+CUC21fCtPBmt+vvYvuWnSo5F5dG5McwRnspIqLGnmvlDmuxl4wVt+fOu2ZO/RSvrZ37yLR4t5kb31S/4440TbmtR/XgHevHJGkWXn/XvVG9SESdTseyrEOHDsVxrOaesf72+TiO7TS9plWh1q00oaJ6kq0MBSoaZWRF/iJ9/29KRNsOHjQMg/xF9eAXSoaxXahrIiWPi+Bh4548eZL95eVy+aqrrlr3DfPsQ0Q0u6VJW+5Ya3P5ylP0ylMVoqsPHpyfnz916tT1118vf+a0IvvsVWxGNUsDQg3ZpAPDMNish3cJr8euJKpN1pZr3CSBlZUVz/NuvvlmWh+I4NoYbf9J5+Jog3YHuUWs3Agj3rIsWNXyWojIdV38ssgmSGCwkxiIXOSXX3759OnTN95448YJJhgQXMW2bdlfdez1yranG0BSKTyBNOEhOS/41HEcL3QCc/bG+t49SpFrxjsLy6Zp8k/t6WFlNS7s8Ho1O8RUkyQZqsKZqOlZyTCME2XscpcdYx0rxrPkp87LftWzkqu81U5Aj3e3WIba5S6142rFHA5TB6dbSUpLaXPG9WcLa/G6NE3nwlpPFa8q+zU7xBwaVv/ssDgX1lPD2OfO73bXVVCnykiVYRrKNFS73R674JcNOQXKcbF4+eWXQQlarda2bdtelbXquu6WLVv43zRNO51Ou93mmLIGGc+FMgEyzuv1eqPRuOTCaKVSaWVlhTNZDcM4cOBAqVQ6ffr0/Pz8pT3Xq0K1Wt2xY0e/33/llVfglOr1eghYvRb1M0EQtNvtXq+ntZ+T4IYGgOM4zWaz1WpdGEet1Wp79+4FC5qbm9u1a9cFTj1Hjp9TKLJMStRaLGifR/MRdZNz74IgXe1S3bIfH33yxnw6FV0103pZGNJ1I1lVlhwEePd9/2z+LW93KSkb6T4r/PIwXlRrFsJdu7fO/ue/eu7ky6Vo8I6tlWrBfjQpfdFfG980VCKKZBxD/eknPmrTR4joAx/4QKFQ+Mu//EtOi11eXuaqDKVUqVTaZJGMzPsiomKxaBiGpjApjWx2h2tOKyQvHT169Pjx47t3777jjjug5T1WsYBlphkPPvjggw8++Cd/8ieHDh3CFhS+yoviF57nWZaFypnNXCPj/2fvzQPkqKr98XNr6a7et9kzWQkJCQkQCAgoISAqmyzuPPWnPDdUUPJc3sPnez6+/HigovI08sXlsfhQUNDgY0lYlCBbIAECwZBlQibLzPQsve9d1VXfP073mdu3eiaTmcmC9uePpKfq1q1bt7qrzueecz6H1MPImUC7nE4n1tAELhhM07QDBkJXKpVEIoFWOKsXVHjve98bCoVWr14NIDqv2tra8vl8Op2eyF2jRBoefr8fReFYfeker9fLjxmLnOJnl8tFUZQOhyMUCvEKcpIkYUABX3NJkiReGeiPf/zj008/feONN86bN49mcqwCEsViEesI4+l0Xac5F643l8uhC1G4Fh6KoggiB21tbYwxivQD7rYKGTLMpjNBwhIbtw/cP3SHBWxzLSzTseTM333rApyfT3/3ofWPbwGAV9Pt9//7pRe+45hUKrX5rZFLvvOQUTHpp75fWfjYf17aGa5Ogsfj8Xq9G7cPvOuau42KCQDLj1v+8vZ+HHtvKcJfV6zrxF39KQCADNzwj2dfdcEiXde/evtfnv/LTgB4PQcrT5q9fvMeYTZeNmZ3n3TeL699N9Ldd1zz6x37USAfwj6tq/stIXXiMKNJgZqYEgYGBmKxGAB0dHTY0zwmjkKhEI/HE4nEwWbaYDH1VCo1MDCAySTTlWCHfdL7jzE2d+5cDHdua2vjtfwPM1wuV1tbG7pcDMOIRqOo1JlMJpPJ5PRGFeZyuaGhobHUe8aBrutDQ0NDQ0Mejwe50MESVL/fP3PmzH379sVisZaWlnHEdppo4m8NDBwSLNDgjXyVpbxVrLptnBIc54TBCkTLAAC95dF8GpmBW4ZMBcACCSxHRS9JqsXYPqNqfzMGxyp6AIwhU85actqUdItVI+IYPJEEAAcAMAuekjzLlEI3GH0VhVnwXF6BPIBvJgC8nCudXs6f5i5/OGI9GGc6QMViTmaZALrFwAKdsZ0V5yK5CABYUpOoCwX2QC29oeESCV8YVJZlFOASjM5yudzS0uJ2uyuVimmaaD3zQVz0mQxr7EGW5UAgcPbZZ5988snUGykUCyPho5jIJgaAfD6PquUejwflCuiK+Ktzu90HXBMkqS4U+rMsy+l0UtA1Dpivhcob8Xgt9j6x5I5Ql1OWZdQbwG5RSg51ieypJnR2lF8T7hrfLV9Gkxet9ng8WKwTbXqS9UPwtXcRGEGA9zqbzdKQMCOfGBFeHao4kLY7rgPanYcotEMj5+sO8aCCp3g6gUjjxqGhIU3T6DVEZIwXQwcAh8MRDAb5FVLUtCgWi+hlIm+kQH6oW6/XyzN2+gbe/r+vWDWRFNzy7Bv9z28deOfxXbujyf95fAsd8t+Pbj73xBkAcPcTbyKxqS11WCPpwq//vP26K95h1UokY8+1ZrBp2wCNpW6BBKDKfwAA4ObfPP+Z8+bvHc7c/5edtLHGf1jt8Coeer6n/KUVjMGDG/bu2J+gBvFM0ZFqXCTjsKFJgZqYPIaGhjBno7W1ddL8R9f1gYGBqYtN67oejUaHhoYikUhra+tUEkgMw+jv76chhUKhVCrV2dlJSq+KoiALEmLKDwMURWltbaUVuPb2dsMwZFlub2/v7+8vl8v9/f2pVKqrq2uK6gipVGpoaGh8Wb+JAAV8otFoZ2dnJBI58AEcIpHI8PBwsVgcGhqaPXv2FEfSRBNvFzALylaN/9TKiSJKJrxWAABiLmDW9lUsyNRWkCxgRbn+GWiBBbBTVy1Qq8cL/1IzBmDBZt31MVdqi6HV0juqp6yozufA+VwezlEsvZazVKIuJAALnih5FrmLUCtmQsar4CLweDx2hiCoh1VPXmM11BVyJ1mWZVnOZDK4fI4sgtbgBZuYvArQqLBSQ1DZGcEmRoscR4iBdmAzZx0OxwH5Dy/VRZMjJJ0iz8ExTCSgjneYoIuA+ud7tiyLYvlYDcJSF86qsC7JB18Jwt8oWs1fBc4AL+vH3wUBFJdlX3ETtlCMHJJGGr9wlL3sj13NGdUXhAwo4XpxBpDr8irzqDCBUmxEeoVYCafTSUsADofD5/NhfVL+t+D1epF6uVwuIdAOq075fL5CCbfXzUNZrwBAWa9XmyhXey6WhQVlBgAVC0KhEH+ZtZ6hvn/712yUfeWKummBbtTfpippEu+daVllo+JU5UyOJzw44baTHF4cpRUVm3hbAJc6QqHQjBkzJnF4qVQaGBjYsWPHNBbbMU1zeHh4165dk/auxuPxbdu24ZD8fv9xxx03e/bspUuXCuV3XC5Xd3e3fQnzkOqLMMba29up3gJixowZHR0dwWBw0aJFOMhcLrdz586+vr7JDSafz+/du3f37t1T5z8EwzD27dtHOWMTB3q0EonE4WebTTRxRDCayQMAZiNTBABqhkbdT5yzXhr88ll9z2OZOmx0/72FQMUCRvLTrLqXAQCDN4us7hDcZQEADJrKv2bav5Nt67rym8IoUCNUVVW/34/1YYaGhmKxGF/VfnQsXIAQAFiWhakRGMCDuzC+CFMiMTJK8NjwcDqdaHxTGc2xrH8E2u6oNz0W9xC2o68AxdkatufRsDQnen7oT0ytdLlc6Gk5YJ+8gDK6UBo2E65XURSrBtpIWmFCS6IEvH4a72/B2IF0Oj0yMkIuLKfTiVLIB1yg5H3+eAi/BSvVAFc5h3gptcER2imo/dQOh4Ock/avjcvlwvHjKZBBYVwDDsntdgeDQfpKY2kmvn8+KK5cLjPGhKQgdExhn1atUB5w3/lCoRCLxT7x7sXCyOe0+2d3+PfHiwtnhi84bR5tv/yMuW63uy+eP2tJA8PsA2cvfeq1vZt2DADAS1v3bt21/6S5o1ltHSFh5ZQ13PXlS5dJDIZGYqceO3rs/O46y4RwxqJOpyqncuWOiCfkqzOZwv4jXNKj6QVqYpIYHh7Gp0xXV9cBG9uBujpCJPd0oVQq7d+/H4vrTTz+qlgs9vf345qcoOvQ8MWjadqcOXOGhoZ4CnewOa9jwb4c5fF42traxqkZyhibMWNGIBDo7+/P5/PDw8PpdLqzs5MCxyeCfD7P5wpPL1KpVDqdbmlp6ezsnOB9CYfDfX19lUolk8nYw1SaaOJvD3WmKXmBLDjwo0WMQBl13YBNsWC0c6u+sdCEcUfVfD7oJrIsUAFoAVm1LIMxi2NWBrDQeZcXtm7iemMowmtZViKRIAcIulMMw8DylLzVLmiU8b4LREOhTmqMsVVkg/IZLMFgkJeNzufzDoejYS5lqVTCYjsNU3qEwpEoGoGqpyg6bD+EBjmWyihOUaVSmQhhsHfbcLugy9wwtJjnnMhRAYC/BMZYuVyOxWJOp5PmitULf2PBUOCo0cE+uk3TdDgc+C8e63A4wuEw1kqiCDpM68pmsxgLl0qlHA4HKhjhkhmlDOH3YSw1Z1RLp1hN8ls6HA6/349qTBTnVi6XhTvCTwXYvg/CexzLJeFn/Ebpuh6LxWRZ1jSNp5F0OH4TXnhjD7MqFpMBwO1U9IrZO5h556r7AWD5go63oin6Aa/6+bM/fPD1vYMpAFAkZpgWAKiKpBsmAJx97a+qZ5ekCmk2SMzlUPIlI5rIBTzOdB5/MkxiFjmZnZqyaHbLm3tGAOAvr+2/89HX8lXvk4UrCT19cU2Vj5sV6Y9lhlIFerC8uD36ye89/qfX9gsPoJltPle6WReoibcn0M3S0tIyCbWudDrd29t7UAKRk0AsFsvlcrNnz55IGsnQ0FB/fz9+DofDXV1dE8kp0jRtxowZqqoODQ1Nr/9HeG4Gg8G2tjYheLohvF7vggULBgcHBwYGSqVSb29vKBTq6uo64G3CpbtoNHpIHVmWZQ0PD+fz+WOOOWaCLCgUCo2MjBydiuRNNDH9sFERxrgYFKsabAbAR6bwrauHWNSSjdG2prVQ15jrnzVkTbUPJ3rgT6nRTnXWyPdkgeekM0f/six8EGHlEMH3gmVJeJrBx7+RDQoAZIaSQp0duCSP2lypVApLYfKdY6k3/hB7lJRlWbFYjGxiipgi+Hw+l8vFF8+hIVGtnobDo+ulyyTvygHrrowP1BLAz+hCwc/oK3M6nRgxiHn/6DIyDIOPv7Isi/gPAGiaRgJFdJlY9pS/g+VyOZVKeTwecnHQXGE85ATTdHldBMuyiLWqqmp/iwk+LlTl4UMKscISs+mA460slUp4Ia2trWiQ6LqeTCb53rxeL94pJOcYDodMviE75SvbogfVmkiSAAAgAElEQVSPvmYCvcc0Nvq28GEX9LXHvd/5nxd/sfYNYNVvb75UF+G2aUcUD6JJQ/4DAEaNwSD/qfUOYEFl1ABjFdPKFnXclcrRj2KU/wDAnoEkbd/SO8ydfzQRrqhXNu8SlaJM0/rT5n22ebL2DWVG9h2ZhGpCkwI1MRnE43H8VR9Q/9qOwcHBwcHBQ81/EMVicc+ePZ2dnYLzJJVKFQoFzF/K5XL9/f349HE4HF1dXQflNpFl2efzDQ8PwyGIgsOntqZpM2fOPChNofb29kAgMDAwkEqlEokEZgfhzdqzZ489rwYzqVDZ4jAgl8vt3bu3vb19IuwUiV+TAjXx9wJy5tRcN1X2wmr8xIQ6h4/FHVWDZY0yHDywLgSOjfbGrPrGEjATUOCtweOstikkw0ci0FOAt8heMsWRI/J/fRkuWA4AkiShvAFwBROh3uNdLBYFEiJJEiaRm6aJy+2Yf4LlQTVN4wWIKT0dk1hwkSWXy6Hdmc/nTdOkd4H9kWK3aImlQG09nveTWLXKLS0tLbh+r6oqGdAwRpwbgXJssE+v1+t0OhumoxwU7A4TdJUgL8LJIZE0gdhQlj96vXBC6ALL5TJlPSFxCgaDvCxQsVhEp42gKIDJMOjo0HUda1qMNX4iDIwx1FGgrwSWypBlmSqWCi4XgcvxStz8eBKJBN8M5RYwVZW/Keh+QZZrmmYymaTKoZhwZS+BiggEAjjJKDQXDodRcUFVVZQp509Bo+LvOyZcYcicZVm86kAdGi6CjLlbyCy06p8j9R/H63kq3086KQOAXPHgSgZPO5q5QE1MBvi4DwQCB7VYZVlWNBqNRqOHh/8gUFWZIi4AIJfL9fb24rpdf3//zp07kf+0trYuWrTooPgPAKTT6V27dmmaho+waazjiUtNAFAqlSaR2qRp2ty5c2fOnKkoClZV27VrFwrH7dq1i29ZqVQGBwcPG/9BJJPJgYGBiaQbIU3Sdf1gK6w30cTbF4wSb6S6Ij8NwtUkcMq1MDluFwNw1pZN6oxqTlZKAvhml9UtG8BAZtZspfKhMHyoBXxy/SEWOCXQJAAAlcFMJ5zqhQfj9SNh4OAyhfBTcW9P7vUXcD8KuOFnenEIy0YoYsantpumieqXaBBnMhm0IE3TRClqn8+H1jDal1QFlcxcnupgWgWSAWFRqaHvhXf7CBJexBbwXywFLjiaxn8/8nvp3SHwH13XicJNHKqq+nw+j8fDGMOEHF5ijsK67Gt2SB1RwYznCXiB5NGi3BtBFhX5qtvtJtbh9/spNwkdHeVyOZvNjpMUyqvw8X+id6hUKuXzeTov1QZEziC8UNBPJfSPHkjh8kl7g+iWxWnBoSY4z9uxWz6KMpFI4NXF4/HBwUGacBxwuVxGr6CQatVwZRMFvgOBAEXZtAaFtUIuY48wzopF3WKJrRPgWckEex6jnwMfUtdYkaYncWDSaFKgJiYDfCIfrLkfj8cPdZxVQxQKhX379uHTqlgs9vb2qqpqWda2bdtQ0cHtds+fP3/GjBkHu/yWTCZ3796NsjCWZTkcjtmzZ7e2th5sFQg7gsEgJVlZljU4ONjX1zeJfiKRyKJFi3B9K5PJbN++3eFwoOABtYnH40dEmz+dTu/bt++AMuhYAASajqAm/p5gobQAg1O9th31T1BmQckEywJh4dZicIGWh1rezmj7mmgBAKgAyUKxv6IAQAXYHkN+Mgn3x6rK2vwxZROKJnhkMAH2leDxJDychLfqf5Flq3reanydBdqs+XNv/k3akoRi9pqm+Xw+VEzmt3s8HjTBeUMTpY3R7cDnkeMCuaZpLS0tra2tvJgYb6HyT2NMRk8mk4VCgXdEYLSVIMyA4+RfWOjI4vfanQDBYNDlcgmaDQ2Bk6CqKmbD298++XweC7LZ9WAqlUoqlRocHBQcGgJQXty+XXBnCbvAZuIjFEXB1H9FURoKSHg8Hv6MSLcEFxOCF7mGeqZHHh5sQAzK7h3CPwOBQFtbW2trq30e7L4mlAsXLpYfEl0jVotCdY1CoZDNZnk5Cn6WMplMJpNBaoeFBPlMHqj3LJmmiWoZuCJA3xaeD/PDDofDXq/3yvcIWgiCb4f+H8uAYQCgyrLP5ewIe6Uq8WAyxaJbAACaqoS8DuEo/n+EIjOHwls4jdzQ4w1m9KCO8JR0a6eOZiBcE5MBPkQOigIVi8XJGfHTAl3Xd+/ePWfOnD179vj9/lgsRutqnZ2dfHnWiQMzmqDmE2OMtbW1eTwej8cTiUSSySSG2x1Un6h/6vP5gsEgYwzldPBFMjw8bFlWd3f3wY5TluWZM2cGAoG+vj4MfZYkKZFIqKra2dk5PDx8BO9LsVjct2/f3LlzJ9J4uqQmmmjiaIcFIIFlAZiwMVO3nQEwBib9KdXLFdSzoOeKTh+YBcY8YM5S9LSkhWRQJNiUrTYuAfx30sU75ZOV0QFUP9BgLMjxota8P4rPO6rF1FkAYIHsD23Uc5f5xR+v2+12u9187VFFUVRVFRwLSFoaThIpRJumSVFefGQXOhA8Hg/vc8BD0ul0a2tra2srFqLBpXqoeQMwiQgANE3DzvE5TIPx+XzhcNgwDEz9d7lcaLbyFY0mEiKBkzDWXv71kcvleEJFgW3lcjmTyQgyoQjkFXi9fCEavign1FvzwgTaH7kYi6jrOi8ChBFuLpeLppGAAXX2eqk89SVdaagV62xpaRkeHsZoEcy9QS1pfsB8Kik6u4QaslDTzuYnhP92CSyOhoTXWC6XsTHe91KpFIlEMLwNj6LSRjzlEy5T2IIjLBQK2BsA8DLipmnit5GvOqVpmtfr/cbHV/QMZu9Y+zo0gHXy/PZvffxMh2R0hZz3PvGaQ/M88drAph2DAODVVEzy8Wjqwzd9dMUJs7Dq7uMv7w35nKcuaL/w3x/e3DMIAHPag09977KBeO4jN67dP5IFgJPnt935jfd9+64ND72wg3+yXPfRUy84dfa7/3lNoWwAgCyz664487hZLTf++jkUS6CngCQx07QAYNHM8A++cNaTr/aVKtAR9lxwcteLbw6cfGzbl/9xzf5Gl3TY0KRATUwGSIEaiuc0RKFQ2L9//+GMf7OjWCz29PRomhaLxSiq27Ksgy1WQ/D5fFh5mlxbpIKqaRrWiqXKraVSaazMXVVVZVn2+/1+vx9DF2iX1+ulCg+hUGgcObgDolgslkoliqoHgKGhoVKpxIcIHhGkUqnh4WFBc7yJJv6uwRovrQIDi5doY9DoiTKKYbO6WJsC+QQ5c5K74PV6vzvI1QWyoLETtv4sjQeDW8y6yDpRp4EBADjcbre78fqFIGRMpjCMkVpJEVyoQQz1ZXBIUQBbooWqaZrD4chkMvy5AKBcLmOIHdjcHbgLP2N5U7L4+XI39PDEmpuGYTTkUROBruvlchk1A8jbwM8ACjNgvVFe9hqPxac6GtC0NIkSzPxkejwel8uFOSrCAISkIGhUvZTfxRMbSuW3S1xYlkX1UmVZpnnmHR12podTQRvz+bymaVSjCWz+Nyx51DDmjf9TmDcMEacT0ZCoWK2gw4FMzOfzCVEwWJ4IOA0Dop3YuZD0ZY0hlIf6dUJdLPwWSZL0i69f/Mx9t2Ra3pGVWzRNPaYj+JVLT/jpw6+/uG1gOJW/8nsPz2n3X3XRkq9dscKyrGsuZ89vHSjrlbNPmPHmvsRg2rj0XYtcTuWff/yHu5/cni+DYbGSUWGMvWtJ99rvfgwsWPvSruM++z9GxZwR8X7xoqXnnzr71AXtAPDLa1d+MJ194c0By2KqLKmq/NOHXv/luq2Xnjn/oRd25Uq6WbHuWvtKqVgqGdacVvdQqtwW8rxzafcFp82/7F0LX3yzr1Q2dF2/6bcbX+0ZPP+0edFE7v/86pmzlnTN7Zy8PTNdaFKgJg4a9OCbYLgXZkNOY5GZSYP0+K2aRCYWmZ5cbxjojOV3JEnCoA6hjaqqLS0tJBpRqVQyZeMXMQUAPhHUW5zy+EJtPp8vFouheGsikZictwrR1tamaRqqsdEdTCaTU8++nTqGh4cxJqThXtK0nYT2YBNNvF1hz/lphLACcZ7EWJyMdb1HaEfFubiczmQy+0r1HgNWr/zW8LxjDcYCYKAUs4bmBajVHbLlLC1xs7HcI5TOzvtYquOyPZd48xqTA51OJ2/X8lG1+N4hyYRAIGAYhhB2S8pyQla98KhpmIojbMSlfaEBqjZjeBW/S9iIbhB6FGOZUdQTI605zEURasXiZ0VRSqUSsUf0G1g18T2Cy+VCmxuVx7PZ7PhByA0TaQjBYDCXy5VKJZr8bDZL9IA/aUNHh6D7xx+CEY8ClUJPF9ZX1XW9VCoNDw+73e7xK4Bj5CSyNYqu5PfSZ7/fT0mn/LIg0hin08nTFSH+hXcz8iFwPP/kZ5I+42UKdpTwLSKm9MDTb+7znFbUA6Dr2aI+ksxfG00OJ/MAsG84AwBbemNf/unTIElvvLnr8dcGwj5Xa0v4/md3/uN7j39r//Cl394yI6z96sltNM0AzLLgmS37//f5nQu7wz/+w0bcsXck838f2XLqce0A8NL2wdd2DT/716pYbsmolAwTf+H3rd9W68jaH6uS2PRwHgB6B1O9g6nPXLQsnil4XI7v/ub5p1/fU9JNAHjg6epRf968P5PXJ75GcIjQpEBNHDRQKKZcLpdKpfEfQIh0On2YU+3HAj5VVVWdMWPGwcoeNAQKT0ONYBywvSzLTqe8vQQAoGmyeqDfXyAQCIVCM2fOxPdrNBqdM2fOpEeLjiYAKBaLWDeJr3p+BFEul/v7+4899tiGD0QKcZmKUGwTTbzNwP0uKS+o+gfX5gMRyBT13yZVPo3ZAdZxSmmGpK8tjy4rzJHLAKDr+iKX9UaB8T2P8hY2qog9U9LNXKpfi1ioyV1DiFUWK6WEKTk1jQHM0+A0yXp465Y+Lby83R9XfU+gNVjrRx/qm9UZyozhHvF6vZlMBr0H48+H3+83TZNPiUGtsHGSSzFhxjRN9GZEIhGMu0PzFM1WxpjL5fL5fChkDI0CvO2LL/l8XhhwQzqBQUcA4HQ66Y2DGzGLCTeSPhvUXATJZDIQCDgcDntJaFYvTIfqzMK04IU4nU6Px4OLj263m19jwhKxGFyNW/CO8MRDCL3jYVlWOp0W7hpjLJ/Pq6pKqnEYHccX0kHiJxj9LpeLxo+ZnzyzQuDypSzLkiTRcmo2m1VVFYu6UskjYXJkWaa7wN9HITxP13WkQAKFQ/IzvqWObsZyuYwR5nSl/MywmsI1BRyWSqWGt0Zg47lcrlAoPLG5/5M3PwJKndGC/EfAl3/yFH7YNazDW2kAWPPcW9z+BkJvv3n8jRx/1RYAwD/+4En8Sxav3f5za/zLPXfVPQ23EzbuGFR3DY/f5lCjSYGamAwwUnYiiS66rg8ODh6GIY0P/skeCoWmhf8Ui0W8NIx5m3qHdjDGUMC6o6Njz549yWQymUxOffAYp7d37157iPaRQqFQiMfjDTXW8T3R5D9N/P1AAgCwTCy4ARBgoChW3GAA0CIZgVJuj8NvWOxsH5ykFKNG5mSH9zVdqwADBkFTv8iVW6yUAKAoKc+UXIYFJ6rFGZJRsKSU5LgswgojsKsIXQ6IgL61rFSAWQBSpSwrsm7KjMGxcvnTrgS44WUj82fDnzRAk6BYgaBcOU0pHKOUZ0i6J+IcqbA5TgDw/X+nL+0pwDwXSACqBI8nwTABJCjt7039752l467lr44PM1NVNRwO53I53ohHuxbfL2g1qqqKxjTfDxrWfBmchigUChTQhXn8GJ5ElCOfz/Ni3JgEwj+LUMSZD2QoFos4YDJq7c9SjFjDz5gkg6FcRHiwkE4gEBDMZQAwDCMejze0vPnGmqZhdDS6gCh2i07qdDrb29sty7LnUzFOy5sSnwQXxFgxAqj1TIOhZpjr4na7MZCsUCigxgAKyhWLRQoho6BxAPB4POjIcjgc+MVAGmAnM1BPUSzLQl+WZVnoYDRNU1VVmnZMT6I/dV3HbwJGbfDy5UTSBLo7wWhGjGEDAL74rNvtpoqrqJZEg+cLBOXzefSV0WwQG0eYpnnfU1sPOIaJocF6QaZUNk379uqiS+VQ5S8wALNkHGELpEmBmpgMsFaa8LhsCApsPbLgXxtDQ0OhUGgiFWnGx8DAAAA4nc5DxH94hEIh1FeIRqPTwt9SqdTBCq0eagwPD2O+qbAdwxLGqTDYRBN/M9BY1SVjAQOABXJ5wFLTJgODAcBsPdlnyCOugFQqrjSHP3HMzAcG4IlCa8UCDawKAFiQZOpj0dzyBf4durq5qFUsUBi8pmuv6RquAHcU4Ysd4Jagvwx3DavVXB4GluIwABiDOch/AIogbdRdqQoAQNEEYJA05cfKXqaDh1mFHKtY0KHCe4LwcAISBrgl+EgLLNTgBRkSFrgYDD1xf37zcw7HN8cJMwMAt9vNVxf1+Xy0mo4PBJRxQ6FnWjsncxnL4MiyjGoKQlo8+RxQR9uqL1lDtvs45WgAADWv+VGN433CvSRFwGoVZgAA7XViX+ixoT9JtAA9BkL2LPpV+JVHcj2hI4V3ENFJy+VyOp2mSkr8iw+3xONxTIkhs5uuLpVKBYNBe7wWXgU/MPqMaTk0vTTzVFwVaiVHiZcahqEoCj/bsizzXhr0dOFn/suDwYFWTXHbNE18TaBbDwAcDodQ5wdq6n8AYP8uQT2pI7bMg3KxsOypsBcTnwzDQNcQ5vbgkGRZpl2CUVSpVPhQSSznyvvo2kVR7HFQH7RqD2G1+YFM0+Qa0QFsjPbj9ehxyrlSRZakAxEn1qifI4AmBWpiMsCn1QG9QJVKBWuGHm1IJBJTpEBYbxQAOjs7p2lQB0BHRwdGcUSj0SmSrmKxyC+AHSUolUrJZJJfHQSAfD6PX7OpSEE00cTbBUWL+TiTY4fh4O2EPUoQVAAA06E9o7ctzcETBa1iATAoWqPtRoIz7tuzf7evO2EAABi1IDcUzo7qsDYJ7wnALwchbQKzajk8NfRWHA8UA7Pk8oil7KuoAKK5YpqQY8yCam9r4pCtADDIm/D7GPhlwPMWTAi+76PZ59a63W5c2Oaro/LgPRK4ci9YosgWSqWS2+1GtwZvdquqSpZxW1tbMpnk+QxFa1OhTD5hg7uomsyeTXCMQPZ0Q/6DpWko40iQIsCXptPp5N1HlmVRGglmvdu9SZS5ira7QIFwLzpS+PQePCmG0vGVlIQXn1BLVLi6crmMhWihPl6L/EV2N5HT6axUKnw9JaFPvOpyuex2uy3LisfjGFCnKEo4HGaMYf0fbCzLcigU4r8w6JFDvifcCKLZ6XQaJzkWi9G7kr8LCKS1wiUIwgbC7TBNk7Q3isViw9KovIYEkkz7LoFy26mUQHe/dMmyP23u2zOYAgCvy5Et0IKCPbBNqtvCQGzJN7fs6tU2WiJ+0+v75wYQ9rnimQJMyHE0rorLYUSTAjUxGZAUTzwebyjHiaAn0dEGjD6fSno9hsAFAoFp8clMBC6Xq6OjA2vLBoPBqQSGYRj3NI5tupBKpQQKhBTa5XKNIx3bRBN/S2CCGlvdvtGPFdX5k2hto82ieMnVbdUnp4zm/DD4aw42ZKqHCvwH8aqhvWpojNUGI9T8oEMsAKvKf7D/TAUynNHo6JxlaZ6RkZFIJOL3+8dJ+OGNRYEj8WauEDXUEMFgEI1XwzBIOBsAsNLLWMKkDoejUqk0FByzj6QhifJ4POjOwrce2tCYvoIeA5R9w2wZ3ldDH9AvIfAHjHbjQ8KI55COM0ql+f3+YrFIhV/xpHySEpFA2iLcEQzQsjuvoH7mNU3DSHjhcFRcwAC/sbxkxM1M00yn03SxhmGk0+lAICC44wzDQK+RVRMf93q9VGOUvxx8J6I7Szg7fxeE8dDhSEvoehuOn3omWs5/T/BwRVHQ58bTLdyFJZVwqOgukyTJ5/M1/F3gdowPPLG19a3ffPmY0y4Kt3e9kp+LA2z8ywfz5GNa45m8xJS3BlHXoSpRzV909U8GQa8zmS2L/ZDSYz3aQx5FlvtG0qPn5w6MZ/Kce4cBWGCB161mC42MjYZjP+xoUqAmJgOHw4EyZX19feNQoKPQ1YAoFApj1VKYCKLRKL5mDpsLCNHR0ZFIJEql0sDAwNyJ1dJpCF559qhCMpnM5XK0akvVx5uS2U38/UA0vQ5kK1S5DdeyjkRZAIzbwgAsyHAdWlwz21AmYKWwA4xx7k33JCtll00CeBxgsv5YyzRC1FDjQTGmKIq9WSgUisfjZN3iwgpamZj1jmXTyK7FepcYvOTz+WjhCQPDGGNOp9PtdvMqZ7yfB1kNOl6o+g0fCEcDs2qi3ih6hjUMcBfyHBoJzw/xUUnp/gAQDAYFaU3emcATQoQsy7S6xBjz+XyWZVE9HPvMowMHFckVRcnlckQpnU4nro1qmmYYxjgasJj5k81mKWQR5wTdOEL9H2RKuAXFx51OJ10UCa/hHYQaS+HJKjYY/3VP0up2vxYvZkiTT0SImtFdIFpLKU/CDcLCShiTWalUstksv/DHnw41uGmXX+9vVehPBlD/s625dL77ubNPOqY1ka8s+NQvqjsYnDK/877vXL7xzf3/cOP/0o91+YL2z55//FU//jP9gD/1vhM+e9FJpy3seOiZN6Lx3NW3Pc13/sD1Hzzz+O4Xtrz1rmvvq3tc1HmTONkWBqfMb3t6Sx/XrM4ZFfFpsRQcQTQpUBOTBFb/rFQqiURCWLlH8DKdk8Ptt9/+s5/9bKy9H//4x7/+9a9PuvNJUyAMRQOA9vb2w5+j39nZ2dvbm0qlJq2LkE6np3Jfli1bJmxpb2/v6upavHjx+9///oULF066Z0Q2myUKRNlWkyarTTTxtgRPKQRDlFtjBTvbqf7LWUZoKdXaMBurqRostlwAVrNYLGEMdrJkZz9sdDCSN7BRz11ykEu+oVAIi34K+sgUNUTFW6gsaUP5aWH1HaOtsEwNKR0LUmn84ZhFA1yBTsp6D4fDmI4/PDzscDgwfQVPQYnvGNaFFIiMYAqyEhxB5HpyOp2SJFFmTqFQcDqdmUwGBTzRq6MoSjAYxIQZPjQOpep42sY7E+wsVNd1SZIwjaq1tRWHhAktOJn8sA3DoLAO9MbgDOAWnpuNE2Hh9Xop3R/ZDk0FTr5Q/0fw2mGOFl4UlawFgGKxODQ0hJecyWSInBBBGms8NMl2VkNTCjUxw9bWVvLC8eyxYQZUuVzGyrD8DUqn05hiJDTDEfJFgZD4CTaGS9K/+sHT/uv3LwGAW1POOaH7kZd6q/sYAMCnzz/h3FMXAoCipD93wZJfrH0DADxO9ZYvvXteZ3BeZ/DFbVE83KOp//6J089Y1HnfX3rWb94LAEvntt127fmaQwGAC89clM/nn3szeu9T27HzFSfOOvP4bgA4Y+m8S09p++PLQ6PDYgAA71o669ktewFAUSTDMHGEX738pI6w57dP76g1q6uX6kz5Yke0NmqTAjUxSfh8vlAolEgkBgYGgsFgIpEQ7FS+6NhRiEQi0dXVNYlYOOQ/TqfzMLuAEMFgMBAIpFKp/v7+yVGgiej4HRQGBwcHBwdfffXVX//615/73Oe+9KUvTaW3TCaD5Y9isdhhzrZqoomjAcxW8LRBaFztz4YuI4si1erpit07hBvr5KDY6P4G/YON/wBAo1A6vrEBMIncS4fDEYlEkEvwqUSMMb54C3oGSPgLJeZwl331HQD4MjXjo1wu83XkSqWSz+fDC/F4PJIkYXImtuTX1HjtB1I2E3w+yF7Qc4I8hH8ZCVo1VMyNOsGKN5Qqyfdsp22CM4HvFpfDUEuArH+n00lUED1j6JTgC+agZDYvXJbP5+ks/HYh+FDTtJGRERotPx6s9YTF9Mgd11AGEK+LPwvOMF6yIGMtVPVpCD68jd9OVBa3IyfHXSg1MfEC8XiW8Y0iPggQ88QKhQK/xGxZ1vc+v/JjKxe8sWvg3SfN1Bzy1r3x/kRJc2pvRRMrTpj9jkVdAJDNZguFwvWffMdHzz52dzR9wWnHdLZXFQ5/+KXzPn3+CTv3xy98x3yXUwGAP/3gE+s37ynrlfeeOo9OhN+Be779wW9cMfirdZtXntD9nlOPob2//+5n1j27+fWdfZIW2tQztGBG+MoLT5zXGXz9raGd++PvPWXOG28NbN87ctHpx/q9rhUnzLrq4hP+8EzP7HZfJOD+4MqlT760rVjSV57YffHF/z3x2TsUaFKgJiaP9vb2RCJRLpf7+vpisZhhGG1tbbSXMhqniK6urkceeWRauhJQLBYPlgKhLDUcUbu8s7MT9dwGBgYmMYxpEei7/vrrL7nkEvycTCZ37979s5/97MUXX/zFL35xyimnvOMd75h0z7quY0x2X18fAITD4cOWbdVEE0cD7KzDqkXyn+godrsdJpOCCjyahJRQiqbeQQRQR1dWuI0tRSlhSXW7LOiQ9H5LtSw4qAphJzvLW8uOopAwYHEMjWNf57a6ZHmSNRCpdCmfDWhnCLRF1/WhoSGfz+dwOAT3SENrtaHviE6N5vtYngTeBMfCNbjAz8sfoww31Fe/QWkB0zTRUsciE3zP9qqmhmHY/SH2h7mqqriRaBtW2mlYx5yfH4zIQt8Reh4wIg7DER0Oh6qqAj3AynL8FvLnCJrOfBu+dpAAdH1EIhHg3HG8Ijkv3UY984GFdMk4VFRTOKALCGrS6uPnLwnXBTWXFFQr/o3KYSNUVcVT0y7B7yc0g/pKwbiF9xFhYdlYLDanRZsVno29LZ4VXnFyC39/MZQOPy+eFV48K6yqdb++E+a1nTCvjd+y8qTZ+IFX/0Ptu04f++aHTgKAZDKJavX4TT55QdfJC7oA4MuXLaPfJvV8xtK5Zyytxuo7nc4VodCKkxfQF/6cZXOOBqFgqJYfaKKJSUHTtK6uLgAYGRlhjAn1T6fd2zDtmIiotwB0Abojd18AACAASURBVPn9/iNol2NVHwAYHBycxCRP4qrHRzAYXLZs2Q9/+EP03jzzzDNT6Q0Lxu3ZswctCfyCNdHE3yMoeg1D6Bm8pmuvZq1E2fpdDFIGOBi0SpUQq4wWNq0d0iEb1S0AKsC3ZkC/qSRMSeyfwYCpAoBUC+MPSKbCLJ7XyNxaKdIkB1iGaX3Gl56lNE7XcZlGqGbDF3e85itlksnk+NV7DgrEECiTHuq1CuyJKA2t23Q6PTIyEovFGqat8mkhsiyjJ4FXF+Bta8ZYLpfD3lDlGerVnD0eTzAYdLlcgUAAvSVoDqLqWiKRGB4epuc52v34WVEU1IrgY7Qw554fKmae+Hw+KnKKpnYsFsP+G14gzSEA5HK5UqmUSqXQPM3lckRUUM2Zd+U5HI50Oi2Y8tQVPzOCth56tPAOYn0efi8yPdQsxdg/APB6ve3t7W1tbYIvizxCRC1wGCSwXqlUJvito5JEAlDlb5yj6DNmYaEet9vt9nq95L1B+SJBIRDhdDqFEkk4DCGQD7iwGj6KEpPHBH5LQX2EifhgK5VKLBbDb0smk0HtO97AkCQJnbFEjHEMEzdC6JvAz8aRRZMCNTF5xGKxaDSKq1y4+kKvB9M0//Yo0ODg4BFRQbCjo6MDF5+Qkk0c5XJ52ikQwu12L168GAB27949xa76+vpwnmfPnn3AvOcmmvhbgwWArINL47Fqf/ZX5A15VrEAAMoWpCz5RJ/ksL3JBysKWFVZJx1gTQJ6inX9o9QBAzCtOr9R2pQMi1kw6hSqWGDU/sTB6MBe153/N+2/zJlerhQkm9OpICmJGlPQFpz4dJrxtvXUQQyBMuahPovDLsmFViDGj+EWvmhmQ49KLpejxlgpCK1DqL07vF4v2f2WZZEbAQt0BoNBVVWpHijUBAMEU1sQrabGbrebCF4ikbD7W/gtjLFAIIAWudfrRZuYj0Arl8t2modzYieHOC082cMZ4FmcUBoIarwUOQzODNQyo6DepjdN0+PxtLS0tLa2CiFqkiShoBzeEWJuSIpSqRR/1V6vF18QjDHyp2ma1lApe3yQSjXvUIJGb0ziG4JLCrf4/X508WHEJg2eRBoELUEU1eA7QZlZns/jjWgoVYcRlfzhmH3Et+SrIKLCnv3yc7kcUnf8E1OShAHbYwXJ1dZgQscFz/CPLJrmRROTRyQSyWQyFEwMAENDQ7hsjx7bIzy+A4FGaFlWMpmUJGmc4jOowwYA7e3tUy+rOnWQLsJYchQAYJrmyMgI/9KlghuHAvv27QMA9AVNBQ6Ho1gszp49+yh5SjbRxGFFLX8GAIAr2lNVMqipzuKfZQvWp23rqfXKtMBgm309io0KHoyidgpm1WUfMY6JSTU+ZlqwOh8xARrHwnEYtKqWRqFQmC51e6/Xq2maEHrAIx6PezweVIVGpQEsQQO1ODShaKa9II9gLPKMiPKOsEo4buQfrZVKhYShxyogYz8Lyguhz4esTxwe8SvLsqh8EFrq2J6W2F0ul8vlEiSnofbwpz8LhQKmV9mzU9CopeI/wKlQYIoIL+ZGcDgcNMMejycQCGD9dByhvewSCehRXBxjDHW96aTIPDErhuaB/B6FQoGUCTRNI7rFG+UTlCzCeEhoZOjz5A2/J06nk5cpPyB4cT+BPzQMzrR7ddxuN31/LJsOOIJq4PIDxohQ/JNS45xOJx/GQiWD7SMRrp3OTrcM0/OwTT6fx37QyYO6dtiSZEt4vbv29vapFCaZFjQpUBNTwpw5c/r7+4eGqtogyWQSKdAkFgYOP7LZLK7qpdNpSZJQaWCsxsh/HA7HFMuSThdIF2FgYGAsCiRJ0uDgYDQaRQ1Tn89nf81PCyqVyh133NHT0wMAF1544RR7UxTlpJNOmo5xNdHE2xPkl+GsLIv/zyaE3fBosTHtrofYgU01jnfz8D2bfAtBEZc7y2KlagLa3wu4+i54bCaCQqEgRLs5nU5ZllElDDgJL+QG2WyWD+tyuVy8ejU0MkYFDsBTBVT0EnJseNuUj1bCs9uf0qhzbZdvRpOUgr6IMxCf4QPYsMIMVrrjK8xIkqRpmiBLQHtJT8KuAQ01rW1UY+NVKNCARs1r4RCfz4diBvgnVjfC2UOFA6/Xi8QJbGWXwuEwikbgLeCXJnHYqPBGE5VKpcLhMDnxUB4DT42iF8FgEO1+rFMEBwImvUDtrjWcE5fLRW3w1BMn83y9WqHzhhxACN6TJGlXf+Lib/1uR9vH3izArE/eKUtsQXfo4+9e/OpbsTXPbDvvlLn/58qz50QcRIzvfnLb6j++NpIumKYVCbizhfIHz1pw5XkLfrhm89qNvWct6brgtPkPbXjrlZ3Rj6xc9MMvnvvvv9pw/192KLJcKOkup1oo6QtntXzwXfNe3BZdu7G3I+RJZotz2v1fvuSES06ftz+Wv+UPr615Ztu5y2Zff+XKU1vV2/748o9//1ImX/7kuxeu+sAynKi7nnjzh79/JZktaw75ixcvXfWBZes371n9x1e27I65nEr/SM6omMab/ROcw0OEJgVqYqro6uqSZXlgYIAxRql70xhtNTIy8rnPfU7YGIlEbr755in2jE4SeqkoikJcTgB64QHA4/Fgsc5Jo2gxgFYAGBkZ0aUpKebRC6Onp2csjaOWlpaRkZFSqZRMJhOJREMn+CRw5513PvTQQ/g5n8/39/cnk8lIJPKVr3xl+fLlU+y8YV32Jpo42tDb29vb20t/trS0zJkzZ+LVb8aBXbq6tqORRratDV8CqI5NWSI5qeuHcc3GOt1YR1FzVr/RArOUb/MYAMAYE/y6VIwFuCIqY4GXt+YV4aqnZszj8aiqipU0aXu5XMaVciH/HtfySf25YdFMgQMUCgU+V4d0nCmFHXWxTdNEE593uWM81ViK22DTYsZsGeoZ17CwohF5EvDfcrmMvIL03/jxY5Y//slPPk1RQ1cGDdvtdqOhXygU4vE4bsxmsy6XS3jF2yOs+Aa6rgcCgdbWVqHsEoGffEEUW1VVXkIaaiEnDQPDUPRCURQc9kRYCsniCV0JjiAhuqxUKk2QAmEaFf3JO4J4UspD+K46HI6PXvfbHftiAMwCqJhWxbTe6I1dd8cz+PNc++KuTL58/7feh+1f3z1y3R3P0eHReBYA7n78jWff2LerPwUAf968/9m/9pd1EwDuWPvajr1Dz/51gNrnSgYAvLIz+kpPFPvfN5wBgC29sat+/NTlZy+55Q8v/O6prQDw2Mbd6Vz5v6557zU/fgyP/f4DryyaFT5/+ezXd498687ncWO2aOL2b9/9Qn+sbtnCPGQxKRNEkwI1MQ1ob2/3+Xy9vb2oxtPd3T2NctjlcnnTpk3CxqnXn4Fa9DZ9HhwcPOAhiUSiYV7pxFFmMnhbAWBwcDBnNU4mPlhks1nSGrLDqlWdm8YERMH4AwBZllesWIHpQFPEoQvVa6KJacRdd911/fXXCxtbWlrmz58/f/78z3zmMytXrpxEt3ZR7NoOGyEZh6LQLmpgcyuBPRAO6viSvegqALj3vFnsmGU6PXVUZ6xHCwNJc28G5f0B016Xkw+/4ZWv7BDkrQVrG0t1k24bT4HI2na5XLSdnE68+nNDaJrG1xSinBM+AAlLGOXz+VKphC8+VVXRJcV73QUKJChu45AoHwlLA2HPuEVRlLa2tqGhIf7xSAFmFifbzY8fpRewmCk6l5BZNYyqIhiGQTcCY9qJcFqWhY47QYetUCj4/X5SAMdYKX7wFPY2zmwjZFnmRbHBpv1ApZkE7xBM6t2B4gH8JCBLoUQXRVFQAx1fstgS2fv4pB0hcEWXy0V3eaxIb+E7rGna5p5GSb/ctT67ZZ8lqVApA8D61/saNAZ4q3901QD5D+LlnWOs6jaay5e2Da55Zhv9+cLWvgf+so1v8KfN+85fPvvpLaJ75/fP7RL4z9GAJgVqYnrgdruPO+647du3x+Px7u7uabRi29vb77jjDmHjtATa8U86AHC5XA290qVSCZ9ifHHoSaMEEj5ZfD6fD6bBJ4PRBbTuJQDld+i1hAuoUz/pqlWrzjvvPPwci8V6enoeffTRNWvWPPbYYzfddNOKFSum0vnRXE6qiSYEaJp2+umn4+doNNrT07Nhw4YNGzbcc889K1euvOGGG971rncdVIcNS/0ANLJIGj1lJT4+rRFcEhTM6tGsvhMG0KUCk2B/qVHRVQZgQei53yfOvCw/Z4m9QKrF6hlXzSNU0PV8vqTrutvtxkeoxQkuHxBC9c9cLieopKDuM372eDx8ESF6YvMuHfTUjSOHTSdCkibLcjAYxFQTfDqhlBzax263m5LpEeiL8Pv9/HqZwO4ExW1FUTA9Sdd1RVH4kGx0FuGwvV4v1tbEXeFwOB6PjyPbDbWIOPR1IGFAdTtUmiZSR8DXBH5GWQLBN8J/5okQpkURJUMCg5czCdcokiW8R+gXoshDpHl4U9DHQq8MJBilUmni8oP0chSygKj4LLUMBoPJZHJ8z54dAp9xu90ej6dcLmOgoGVZdiIkfIdLpdK8zuCu/gaihYQT5rW2t4Sy2WypVHrX0lnwW3HVGAC623z7hqosSJakSm3SjpsVfrWncfyLHScv6DzvlLlrX9yFfy6d23r+qcd8794XqMHpx3UAwPJj24QDLz59/nN/HUhmp00WclrQpEBNTBskSVq0aBH+2qdRyEuW5UOkjKwoyuLFi03THB4ejsVisizPmzdPaFMul7du3QoAbW1t0zKMggmwGwBg1qxZoemYpFQqtXv3bsMwQqGQsChlGMa2bduwonlLS4vD4chms5ixM0UEg0Gaja6urqVLl1566aU33njjH/7wh7vvvnvRokWtra2T7ny6ovWaaOIwoKOj46mnnuK39PT03H333bfccsv69evPOeecjRs3Tim3zRb5xrhSpHaXUVXhzRptABYwjhedqeYUWXks76zyHzbaiQXwzgC8NwB7E5nbelIj4e7RfhmABW2xPYY/4hjYnZ+zRBynEEeHCnIMGMAypajrhq7rpVKppaUFANLptMB/+Ooo44O0yCxOGphv4PV6+fRxAoV1wdip4QTKEcek/Hw+7/f7+WJ3lUoFi2Oiv4I/1rIs8pxgD3b1MBwn5gJZloVyc+jr0HU9lUrhqAS9uJaWFk3TkLq4XC4kM6jTMH4BULxYqyYVnUqlfD5fe3u7ZVl2Iop2P3IJe6oSAGCZVD5ODAMNeJeUYRhY2daufD0WBFLK36NwOIyUgF/pw5g3nG0UvSBlv4lTIKxyI6gUQE08kKdAgsITYyydTqMkxjiiCw05ua7rOE4cuT0JORAI+P1+xlgmk8nn8z/50tkfv3ldIks0m4V82gfeOe+1XcObdg4t7A5+++NnAACS5AvOiPzLP5z5g99u0CsmAGiqUtSNFUtnfO2jZ978m+df2Np3/OyWlcvmPLqhZ3c0uWLpjFuvWvHvv9rw8Iu7Hapc1iv4b0vAfcW7j9+0rf+FrX0+tyOTL0cCruv+4cyOsOc7n1qRzBRf2Nq3ZE7r9VeeffaJs/75ijNufeClkl755LuP+9BZx1qWdcaijmsuPfG2h7dUKiYAfP7iZZ+/5FRVddx4z3O7o0mvy5ktHBJl2oNFkwI1Mc2Y4GvsaACVJmhvbx9LxwxVEFRVPeJC2GMhEAiEQqFEIjEwMEDRIAhFUZYsqbNUDh27kCTprLPO+sMf/vDKK6/s2bNnKhSoKQTXxNsa8+fPv+GGG7785S+fddZZPT09V1555caNGye+KtSiwOVh6C2BwzLWDesVp6uO5zCwAIJSxQKWMiWLl7RmoAEUMXqtxpSI27jAMhkzDP1PJQ8AKFbFALlKVEwIylaywoDB70ZgfRpmMG2OKxvjk4ksAAbDLbOti7+IjxgHgzNd5Uil+GDRX2FcMw4MYODH32r71lehJvCVy+XsJTU1TRsrmxFqOTZ4CC7S83JkjDFcwEJHDW83K4pSLBYZY5qm8U8VQQ47mUzaWRCvwAa1Jf+GKmGVSkVwXJumSe4CdFw0fKYJEguCehuqCAh6cehd4aPdSP9t/BRKu2sdE/pR6o1/a6CDrqWlhScGvJMEa9fIspxMJonzYDKVUEmWvxeBQAA1EsYiDAIpFe6Rw+EQYvzshwCAIPw9kWgUj8ejKAqeolgsjpPGLITMEXfFL8Y4OrHEZ/iu6HOxWBT2ErLZLDKlk+a1/PXnn1hx/geWzOv42R33OFRJgQqmMA3Ec51hD33BMJr0xs+s/P//ceXQSCyeyoV9znimFPY5vV7vxWd8qm8kM6PFBwA/vua9AyNpp2Toun7H195rSmpryJ/Ol/xuJ/6LHWJ7fsupCzuf/cmn9g+ng65qpaBv/8M7vnLx4rJRcaoy1L4t1310+b98ZHlJrwQC/qDfCwBXXnDilRecOJIqtARcfSMZALj0wj++vHHvAe/RoUOTAjVxSIDy/NNYC+9Q4IC5MSg5DQCdnZ3TmEgz7ejo6EgkEuVyeWBgYHxX1cHKLh0UFixYgB/6+6ck8/K2kBNsoonx0dHR8f3vf//yyy/fvHnzLbfc8i//8i8TPHDEgD8m4DQvpA3Fqcl507KA8a4VYJAyZSFIDT8VOVUDhVkzmf5WxcEkAAsK2ImsYkuDcb8yBkmLoTsILBgqwxCo4Oqs6x8l4CyQWFUUu2zBiwX1WNn8oCv1dNkzaIrmhEOy4q9uMPU6ga9isYi6vbx5PZYJSKBsEApSwiV56gcdNU6nk7ebyZzNZrP8Wrs9cT+VStFeEhfm26AMGm/+8h9QAYi0CniRA/xzeHjY4/EIXho+o0YIMAOAeDwuyzKvLWRPpqIxYDyYnV1gRRrUjEbfEe3iL5DPyyevFy9fxkeLoV3u9XojkcjIyAjOQD6f1zSNd0khHaUrjcVieEbMmBLCtu01mgT2ZdcytR+CYZb8zZ3gWxvrOGH6Fs223S0py7LgfuTnefxSGUJ7fpw4+bquY8oWnRQjRflzSZbxVqnt989s0/XK1j3D8zu8l5w+Z/3GbY+/sv+YOZ1fuOTUDr/yas/gb5/eaYLscTn3RJOJTK4z7L728mURv4Y37pEXepOFSjZf7hvOvO+0eR9ZuahSqfzPE2+UDfNj5y72u52Pbuh5c++IblTCfvfHzl2MfIn4z13rXuvpS/z5lV3ZbP7z5y88a9mxj77UWzahXNYz+fKsNt9lZ857advgjr7Ee06eNb8rGPR7Av66r31LwAUAM1p8969/M507wr6gJgVq4lAB11SO9CjGwzjrjgh0Afn9/nA4fFhGNEk4nc6Ojo5oNDo0NMTXQbNDURRS9J92YF0gAGgYWDJxTFflkCaaOLK47LLLli9fvmnTpueee+7ArTkM6fBwNYuEEaXhBanHDITjDC3dYnsstRoUx2p+oUaiCLSB7wobC4eMxuBZAAAFi71uaK8bmsZE7w+zoGwy74lneE88Y18lPlPWAcDhcODDhwxcp9PJF5GcIMjjwS/z80Uh7erG6NXBYpoohy3sJRpGsWfYD1qlGM5EqjP8eTF1B71bJJZtb5bL5bB2DX8VDVvSn6iAh9kgmHdkGAbfA1ZZofYCuygWixS5J8tyOBxOpVJURhY9GLgoxnuQSAYAaoY7iS6Qh4eiBPn8mUwmYxiGLMt+v9/lcpFkuZ3DFAoFXdeLxaLD4cAiqvYaTRifRuNxOp2oIY5Mb6yyTh6Phw9WnAgo/jCbzUYikUgkUigU+HI3BOpckiQqzYQ4WBVTfpwej4dXpUOqjFlhwHGnzW+N7IxcYhXYl360lvr51zueK1dMAIAtI7c9tOUT5x53z5/rxAkQv3921x3/dN75y2e/c9Vvdw2MiiLc9dhrv3jk1b7h9PZ9cQD4zp1/OevEWb9/+k3KE/zOnX95+eef6YpUOcziT9+OLRFf/eUmxl4Wvrrf+dWLRd0AgBt+s/GOfzrvY+ed2HAGsCuzb0riUlPH20989pxzzmGM3XrrrUd6IE0cAEd/RNz4yzZDQ0NI4Y6SQkDjo6OjA9f/kLaNBVVVD1Fd13K5/NOf/hQAZFk+/vjjJ92PLMuH1FXVRBOHE4sWLQKAKcpIIhrG9Fgi9ahDBZjFRvNzxgkLsuy1gA50CI2JVbX+uWHU9/ZGRQMAxlgwGOTdFBi/NJHyiIITgB4RvPmlaRptbyipUiqV0NDETHfebOXZCO9GsCwrEAhgTZhKpUKjdbvdmIrjcrkikQhjzOv12l95vLPIsiykK7qu53K5crlM4hA4AK/XS1oRuBETbJAklEqlXC4Xj8eJhuXzefLVQM1W5iOs0KFB6UzACdlZtZI7/PD42XA6nUSlLMvCqxacSAIRRZeFYRjpdNo0Tf4e2QkevlvL5TLeEeGGYvoQZs4oiuL3+zGsDk9RKBSy2axwCP6paVpraysGnsEEQDGZGF2Zz+dRl6Jh4CJ1HolEWlpaaH4w12sip7N3hf0Iah9g8xqpqnrnkzusarXjUVT5Tw2/+8uO2kfxd3vrms1f+/kzuwbSQg9/fqWXWM1QMvf7p9/Ea6It//rLpwDg0Q09V9ywhuc/1dPYHhDIfxDfu/+V3/z5zZ8//Go6XwKA/lj2xnue+8z3Hzn5sz+3d3VE8DfiBbr11luTyeSnP/3pOXPmHA39NAFH/Vo+sxWp4IFBZQDQ2tp6lF8IobOzc/fu3el0Oh6Pj+O2wkzWKZ5r8+bN9LlcLg8NDT3yyCMY//aFL3whEolMumdej6iJJt7uwFfJrl27stnstJQMqoKXiZOgWvBHGk3aqTOBBGfOWIpz/J+scT/AGpza4g/EYdSfwi+PenuwfCemXtCEFAoFtObRRYPV5elwobIKNsDEEorOIjEAKvWD/EGYNkzZRxOflzfg3wVCkFKlUuGLF+FZXC6XYGSj6wDqjVeybnFjPp8nbWU8qaD+jM4TrO5Kzo14PE4OAcuycrmcruuhUIhnOFDvvaHB01FQ8+GQS0eoT8oDO/H5fC6XyzAMDMDLZDJUrofuQqFQECISaZ6xKhFdPkUfEB9D6LpeqVSQlGYyGXLIYDYUXYigIY7y3w3LOqECnuCWoaKuArUQ6jIdsHQ4BjpioheyX5of4XQ0sLHMDBynMAzE0NAQxkDS3G4fyD3wNLp3BMnFup9o2eBSBuvAtu2Lv757ZIyFlNFm9ga/enzLU6/t2TeYHrvZmNr82/bFP3vLowDwtZ8+cfy8tk3bByzLIhfT0YC3n6mB0jpCpM3111+fTCZXrlw5ReoyXf00AQDo9D9q1b0CgcA4zuuBgQFc+jpqVRDsIF2EaDQqrHHyGEe7ZuJYs2bNmjVrhI2RSOSzn/3sxz72san0PBX61EQTPJYtW5ZMJnfv3j1Wg1WrVt16661PPfXU5Ar4TAQoMhmNRkdGRqZKgRqyF16BrUF6UG2DfRfZIbzVZHH0xt5PfXtBpAG3K5JloEeotqXct/v9Z81V2eiSuc/n41Pbqc4pWvylUglDkugJJmSo4xNM0zTkEmjQkwXMl/oxDMMwDCRLuEVVVeoWa/5gAgbPHLAxahVQxBfuQv0usIGCqQQmgBFTvEuKX+/HjBpSfyYvh9APMQF+GJj1LlR7E9wRfI1RRVFSqRQvaeD1eiuVSjabxews/nKoT0VRMAsrFovxvikqFhQMBnF4uq7ztemQXPER17quRyIRDL3LZDJCySD0xvBTxx+bz+dDoZCgtQDcvTZNEykolQvHwSBdTKVSfKgb/2ZknK63cI/sfAm47yr2piiK/X1qb4NfAEmSSBACFwLodHYvGX7NQqEQ+tOuu/tRS1zDoF/juL/82vayMRb3YLaHgtjJKP+p7rfqu7GfVOwkXzY2bhuoG/nRwYPefhToRz/60ZEeQhMTgtvt9nq9gkLLQWH58uUAYNeBmRaME22VTqdJBeFgY3yPLEgXIRqNjqWL4PP5hJp9B4UvfOEL9o2okX366adPPfpxggEMTTTxtsDOnTsBoLu7e/KLKTVbwcMgZ1bTbCwAYDZTBADsOTwAKxw5U3E8mx9d8scG1HO1cW3j+AvFAKCauktVsxWwaoJyaBfNVPQFDuPPBRcNu9izNfq9r6hPPokem4ZKJ2QNk1GIIUlUvYfED6pnV1UA8Hg8xWKRJAoymYx97R/lqupGXu/34FfiEZVKhfdXgI2A2cEL3KEiAnGebDY7VpoTGt8jIyMoZJfNZvlrFGxigVkhSG2Z9mJ6Dz2EscYoylKjv4sGk8vl3G438h86HREk4e1A3InGhmcsFApIaAHA4XDYpZ/5o1BCGpkSOqCwZJDD4aB6r7wkA38szudY8t9YpZTcdKFQKJ1OI4UoFovxeJzvh75XCFVV+ZM6nU4hNUj4RvHfVcuy0uk01pxo2EaYPbooft7Gh2ma2HmhRITQ/usUt6iypFfsgaDEOYSVDzEAttam0WOAQXeLDyS2fygzFl8CYC6nwg14jHEeBfwHpoUCGYaxf//+7u7u6Q1f2b9/PwB0d3cfsOUEgeNUFGXqfWJXLS0tE1/Vw1O/LbJKphF+v3+KFAhZ0LTD6XSOU9cZQ+B8Pt9RroJgh9Pp7OzsHBgYGEcXQZKkSCQyNDTRUmgCrrrqqqmNcTz4/f6mInYT0wUsZThOg2nxiI6P3t5eAJg/f/7kM9xqtkJEhbwJFlSJB1b7sRshSGZqEgjWF0KFOR7Ht/urQnCoZ8DqJRasWkpP48wf/hQMmAW6pOqV6hgAgDFgDBjA/ooaK3IcwwLtmMVtX76BQrmwPA4ue2PwEqk52xfjgVM9xlUb3rzGos98Ywy+oj9JDEAQI7abnujt4QW1oVGSAwCoqmq3cxoqGVRnq95F4/V6UVFNELLz+/0HJR1EumGBQEDTNP5LjhFifGNsaV/zKpfLwklptMJKFu9rEjTi6HQkSIB5PhQIR64hWZbJsVMsFlVVxdpNdI/4lCE7A4RG8t/oOOK9KOVyGWkSHdvwe8VPDpaIxf75XZp8KQAAIABJREFUq7DzJUp/4mMLUWGCd74JNJunl8K8YVjjOJEy1NWn33fCb5/aOlYzHifNa3vPyd3ff+AV2x6ahIYkSqrfZfcjVzs4dVGX5lDu/dNfGzWrPnTagq49g0SBGIBZx3j4ONsjjcmvcBuGccsttyxbtszlcs2dO9flci1btuyBBx7g23z3u99ljC1YsOCxxx7jtyeTyU9+8pOMsQ984AN9fX38rocffviMM87w+XwzZ86cOXOmqqrvec97HnzwQWpwxRVXzJ07l+QQ7rrrrnPOOQd/yatWrTqnhptvvhkbbN68+Ytf/OLcuXNVVZ07d+7MmTN9Pt9ZZ53FJzNMpB/Efffdt3TpUrxkn8+3aNGihsIMc+fOnTt37oYNG7Zt23b55Zd3dnbOnDnziiuu+M1vfsMYO+aYY7Zv324/at26dYyx7u7uLVu2HGD23yZAZZgjPYpR0EO2YeE8xPDwML4F36Z8tb29He2AcZSp/X7/0Sk83XQBNXE4gW+BQ/pL37FjBwBMLgROsBD2lhpRlPrwFpdcO7JKctj+QuX1klqpre02XPK1f27caGwfkVUjXQXbbvcJZzybq9KGfD6fSCQKhUKxWEwmk/F4fGRkJJ1O82oEAMAYc7lcvOpxpVLx+XyUmZnJZDKZjGAoC4/0ht4bO7HJ5XIjIyOxWIye/A2BnoeGC2eoi8CPnD7XzYPb7Xa7MQJNSJsBACyqw7fnH9ECreKH4XQ6+QPH8sMfUHaPfHT2EqsCe2ecijedDkPOcKhYAzeVSqEAhsvlCgQCwhsHa4PysXPCaIF7X/ORhKZpIktJp9N444Qbzcc6Aogs1G6QeL3e9vb2trY2njryR5mmqes6fVdJGpuApXsISKvoM3Von7dEIpHL5XD8eBSWvgUArP5Ek/beU+c995NPqWYjnmxZF5w2D6D6ky8ZlVUfWHbn197z8XMXfvWysSoyC98ETOnjHUe2n3HtiDXPbH9t19AY9KU67WEfv7Qkch2nU2kwhCOESfpt9u/f/+EPf3jDhg2api1fvnzOnDk9PT2bNm368Ic/fPXVV//kJz/BZldfffWOHTvuuOOO1atXL1y4kBJsVq9efc899yxevPjqq6+eMWMGbjQM44orrkAS1dLSsnLlSkVRenp6nnzyye7u7ssuuwybRaNRXFdDJJPJ3t5epNHRaJSWQ2KxGH548MEHb7/99mAwuHz58vnz50ej0c2bNz/77LOnnnrqvffe+6EPfWiC/QDANddcs3r1agDo6Og4/fTTt23btm3btlWrVj322GNr1qzh159whJs3b77++uuj0eiSJUvmz5+vadqFF1545plnPv/882vXrl24cKEwq2vXrgWACy+8cOnSpZO7L0cbUC10nPfKYQYtN6ZSqWQy6XQ6XS4XY2zWrFnYQNd1UkF4+7ojUBchk8mMpYvwJngNX6srGT38YxsHjDF7kewmmjgorF+/fv369fi5t7c3mUz+x3/8h71ZLpd744031q1bFwwGpzHWQMCTTz65adMmAHjnO985icOteuNB9PfQXml0h10IbVNRPclVXYplglDBuAuxzKq5m5hVJU8NQ2Mo7g7GZFGD1qilwQcFGYZBNq7L5XI6nSgY4PP5JEkiH0VDVWW+f947RHsbCmc7HA7eLcCn+mC1Iu666ioXBQKBcULaIpEIpr+73W7MSMlms0JRFzK+PR4PHzuHlgMfNI5HYaQfhrHxY8N6pvwAKEKM1crL4GXypUg9Hg8mzFDnguHOanVaDcMQCq16vd5MJqPrOt4aKgbKk6WGroxCoRCJRJBB8RlNNH6+1hPB5XJ5vV4+QwmVLVRVxVI5AOB0Oon58AQJ/WNer1fgk5glhXfHPk6oMRNN03hqjeoUfDIYjlmIJLf36fV6iegODw+TIwgPxHkj2Wu6CpxMvo6qruvkMnVrqi6hkWkBMIcinXhMu8/j/NxFy363fmt1M8Cbe2PPvTn8vlNmve+UWVv3xv/rwc10CDfAqltmRovv51+78Ae/Wru9L9WX5hsgW2vsFt7aO1z7SN3WBcW92jP0v9df9OfXB3/28OZCqe6LcfqijnU3ffjxV/Z/77cbTEPfsVVOH5yG+TRjkhToG9/4xoYNG0466aR77733uOOOw43r1q378Ic/vHr16osuuuj8888HAI/Hgyzo4YcfXrhw4S233AIA999//+rVq2VZvvrqq88991zq85ZbbnnggQcURbnpppu+/vWv0/aenp5t2xoonSOuvfbaa6+9NhQKJZPJe++9157VumTJknvvvfeyyy4jilIsFv/t3/7tlltuWbVq1cUXX4zbD9jPj370o9WrVx977LH/9E//RLFAt99++80337xu3bof//jH3/zmN4VDrrnmmpUrV7766qu4yoiK/hdeeCFSoGuuuYZfF9m1a9e6desA4IILLhh37t9mQNWdo4QF0YMMH5q4GClJ0owZM/BeDAwMYETE20gFwQ7SRRgYGBB0ETbn4LEk7CzCCY7ICji6KFBnZ+dE5HGbaGIcrF+//vrrr+e3CH/yUBTlO9/5znQKtXFIJpOrVq0CgCVLlvBvtINAvcltQb29UdvLOE22ks1kGWTaY8nqXtGgEQSl6jkWJ2pQ7zzimlE8SwNTiWu2WBEdMkJ0EAAUi0V6TciyjDoBY1WG4buSJKm1tRVqzIfioGRZJlMV6xFZllUul0dGRijHg0/BF2K9aLskScFg8IAuFH7JDFf0k8kkHcUzNKjJ1mGpomKxiFn14XA4kUggk8EoMgzNwlArChWzPyRdLheW2UFWmUgkwuEwkhbgigWhCgVa8FATX6bpxYpGwMXmUf+qqobDYTwwk8nw1JTXluArvdJ9pM841bwnhKaX7hfWJ0WTLBgMooeELgovE4/CDCioMVWKk0SeSXp9Ho8HnUL4YZw7SFfU0tKC5NDhcKBsA047fzoq1IuwP0BQhUJRFCQwKO+G3wE+8pM/hJ8rViu+RDlOxWIx4Cb/HgOAc06ceefXzvP5fG63+7k3qhX58Nc4qzPS3t5uWVamzPhDOB5U/fOUBZ3nn3aMPjj7xt9t7ktzbjoLgIHf7UjlyvUHAgBoDrlYroz2Y+s/7NOWH9tx5vGz/vL6/ld21pkZ71k2K5/PX/rOYz949iIAOPPMu16I7m50Kw4TJkOB1q9ff99993m93jVr1vDKaeeff/6//uu/Xnfddddddx1SIABYtmzZTTfddM455/zgBz84/fTTL7744v/8z/8cHBw8//zzv/jFL9Kx0Wj0xhtvBIAbbrhBeFvMnz9//vz5kxgngvw8BE3Tvv/9769fv37Tpk0PPvjgRASsisXibbfdBgAXXXQRnwtx1VVXRaPR66+//qabbvr85z8v6NSdffbZ9957b0tLC/6JMcQXXnjhbbfd9vjjjz/66KPvf//7qfG6det27Nhxzjnn/I1RILfb3draunfv3iM9kCosy6LyfChwiaIr+HDH1Mm3nQqCHZ2dnclkUtd10kX4ax4eS8LWGhUNu1TTH5bSR4U2PwA4HA76pTTRxKRx0v9j78vjpKiu/U9V9b7M9D4zzADDoqzqaBBciKBGRdFEEk0k8iJEjVtM5EV/apKnRn1JNC/BqEk0img0T9Q8RUFBRVncFWUQcAYdYEBgZnp635fqrt8fZ/rM7VvdzbANaPr7x3x6qm7dunWruvp87znne1pa5s6di59XrFgRi8XUPwEAYLPZhg8ffv755x/Ij0s5+Hy+Rx999J577gmFQhqN5pFHHtm3RFnO3aP+l9letFJbNpStVN4yu27LhusXpwwU+XYUEASwiKAIEJP79xIBg+LGhHG1BkgraOxyVXdKUot4PI41TDnVY0pVZ4Hcg9uFXiMMJRJFUZZljDfjcjxQC451yGBeEDtI/HXgTppIJFC52Gw2l8wo0+v1JGqMcg5er5ekwFArlShHOBzW6XSoXsBqZAMTn0bes5IzRuyRhApYD0MymaRkFezN5/OpuR9BLSZOB7K+I7aeLCuQTd1yUuMkv8Za/6gordfrOYqi0WioJX6gzhVV8Vm8g/l8PhKJYKEh1GRDYqm+lgrAAk0AEA6HydHEnc5kMul0Opxzq9VK0W5YqZb8aQR87HECybSQJMlkMuF8CqVKdCCnpX9tRtGV+sJnOAoATAbNVTMnQuHO/uy7Jy5994sdPWEQYO6MYyeNacA+Rw/1/Px7k//8fx/2dVF8nw16af7FkwFg4sSJZ7Ru+dyfDqdpWQVmTh4xeUzd7U++Xziw/w3y8+9N+euLH0cT6UKnCtf/dRcci1f9i++fdOl/96exjBvq+PE546GgcVL2Hgwi9mcQjz32GABceeWVauXos84669Zbb+3u7k6lUvRemDp16l133XXrrbdeeeWVM2bMaG1tra+vf/LJJ9kDV69eHYvFbDbbDTfcsD/XMWD4fD5cWGppaVm3bh0bU1cBnZ2dHR0dAHDzzTdzu2644YY//vGPoVDo7bffPv/889ldJ598stqqO/74488777xHH310+fLlHAUCgHPPPXcQMnQHGTabLRKJHIguwkHEkCFD6urqsEwHbvH7/X6/3+124xar1fo10GXW6XQNDQ179uzxer0+k2NNyrChb8kPTrXCDBs06CBudH6ZSexTGu4hgiRJjY2NX3XaWcWRgAsvvJCiplEUe9GiRYf0jN3d3aeffjp+jsViHR0d9K5raWm56667TjrppH3rsUK+DvAcQynONC5bokMp/C1et+3fKzBtQNW4cIgCEC2jJSmUl5L7NJw5Rq/gT1skEiGvTjqdptx6fryKgpYxJaJQZBTuQk8Rchg2rqxvMIIABUU4WZZZRsGdCFlWNptlw7r8fj+xIEVRfD4fspdUKoVmMblckL2UfHfZ7Xa02kmgjKTAcrkcS1GA0XJQy2aYTCYS42YL4AAj30xEjpNWQ3AUTj1dHMqZpxRHh/9yfIxLSSLXGbpEdDod1jtiOxQEATkAVjpir4h1N+FFabVaUh6n68J1TI5XQyHQoySXQ+TzeWSbNOE0Trx80spThx3qdDpsjF4d3I6VaqHUwwyF8kd4I0iLHGkh6mSonVTcXUulUvWxTya6Mpde8bMzW4YadP3EeNQQ+7b/vW7Ze1+4beYp44qUYO+5ctq3Jzdt6wq3jHKv3+o/88SjIonMyo+3NzgsF04dY9Rr8Ip+/pP/+M7ZnR90hEcOq0/nJIMmP+koDwB8d+qov7z4aVOd7ehh7pMnNK1p3TFlfOPIBttvr5j+wPProsn0TT84+aGXPokm0/9x9jGvfLDV5w+edcKw4R4r3sRLzhh/5jeaV67bnslmDWJu+nF9IcesS/DwYn8oECZLtLW1lYyxhkK6DgXIAcBVV121efPmp556avHixSNGjHjggQc4bvDee+8BwMyZMw8FAWhvb//LX/6yevXqzs5OLv1ux44dA+nhgw8+AICxY8eqE2cxlLy9vZ3TdYCCprMaRIHa2tqwdvjrr7++fPnyoUOHfs1cQAhRFB0OB6VLHkbYbDakN6NGjdq+fXs4HG5sbPR6vdlstre3L7wVYyq+BvB4PJ+Fku8rtR3+vu/UZAvMsMGwwi8sJl/u3r275Ct7MOF0OqtZQFUcdCxfvnwQ6pKlUinKPgIAg8EwduzY5ubmq666isjYAaJEYdNSiUB92zmwTIaKqKptD3VEnFiJDvUNqRAJJwDzL9uJAiDAFlk3TkqFw2G32+12u1G4GZ0zuVwOC2KybyH0AOBnshfRWCTLSafTlbQWWNOK1tE5U5jNiddoNFarFdNmaOmWig4B41fB3rgUGlAp0bFAR5C6pqe6JVrAXAIP7pIkCSvqsN4hYBxf0WiUNZeRHELBY1PSw6CeK7pSRVEq6DWzlJVlShjXx7aMxWImkykej5OHymaz4Uyqq6lipaNIJEKC1BxZ0mq1mF3DFYRF06KcrEI5k6OkjjY7TnLiEc0zGAxEyIntIAfGIVE5KWKhVMUICnwmEolgaB/rvFIUJRKJoKwFm/yDY6BSUQCQz+dtmtT5U0YoirJwxebn390q55Sjh7r0Ok3bDp8gCKdObGp0WZvc1hsX/Ou1T3aeMNrjcrs/3eY9doTrjdZdyXS2xqgJJuRHXl6fzuZe+aAjmZEdZs3l54xvrqtpbm5ubu6LIczn879/cvUTK9uzudwQp2WHP9HgqnXX6Hf1BB59+ROzQZeW89Nbhv/y0lMB4PrvTgKAj7Z0fdi2J5HKTGhOjRpiX75u55L3tjW6rD/77omzz5zwrzVt/1y5ceFrn+Xy+ZH1tVfMmDCywXYkrDXvDwXCzJwVK1ag46Ikuru7WQpkt9u/853vPPXUUwAwatSomTNncu0xAOlQqIctWbJk1qxZAIDKDTabDdlXa2tra2vrAJfA8YtU7te0vr6+vb2dk5gDgHJW3Xnnnfetb31r5cqVr7zyClKgFStW5HK5c889d+LEiQO+sq8SampqnE5nd/fhTD4RBKGuro7e2iNGjNizZ4/D4XC5XN3d3T09Pbh9x44dHo/H4/EcCUsU+40v0/BqCN6XhuO/E7SZb3t0o1Q/0y6XK5lMspofgw+tVvu1oZ1VHFE41KKOc+fOZbNGNRpNc3PzgYsr9BOeAvFQ1FIEIoACogD54u2ioOQVjqwwfSr9W/o+KAxXIXDuIPYQdkhMS4U7sMCFFAEEgGapj4EgWyDjHitvyrIcjUbZ9y3rCYlGo2T10kY0iOlfNotdEAQ0XrmVHXQcaTQai8XCra9Tkj1GdqG3QZIkKjqkDt9igfIA5VRGkexxNT0lSWIT+vV6PXZOI6EEnpJzksvlWJ8YMPZ3TU0NTq/VajUajbIs6/V6DO2j3z6aLtafg+4UTlgCQcSMsmLIyUaZLZwsG1IaKsyKwAqnSC85jQEkh3RF3FRrNBq9Xo/lWTkaDEx9JPXkV3Zn0VDZPDQcJ7oEMZ+KMtOoAXuxgiCUMyPZ9KFcLufz+Uo2Q2BKWCgUouQfh8Nht9tJTQGBU/TTv655/u0O3LJxe3+3n3ze/dqHHWM8mpc+6QWAzXt2AuwEAd5Y35cs9OJ726jxju4+IYJX1+348P4fAIBer8ccqhsfepPC53b0RAFg+QdbH1n28fttXXT4yo+3t3b0PHPbLADY449Nvf4JOZcHgGdXt93942m/fmwNNnt+7ZYF133rB3f2F1JfvWH3ax/v/PD+H6hXEwYf+0OBbDbbrl27fve731XIouF+e1577bVf/epX+HnNmjUPP/wwV2CR/aofRIRCoXnz5gHA7373uxtuuIFdqrnpppvUpKUccEGi3FIKltFUK7xxqUEEvV5/3nnnrVy5EkURurq6UAvua+kCItTX1+dyOXK2DD4aGho4jk3FQ/H3gxJku7q6ent7kQgN/jgPEN0ZWBGCt6N9/44Skscmdjen0iOaxpUUwW9sbIzH44crHE4UxVGjRlVVEKo4dJBl+aGHHlqzZk1HR0dHR8cDDzyAyULd3d0PPfRQfX39fpe6asaF04ONfoOHl2hiGwEA5BU+8E0CKI406mtc0npXFBChr77qQB3BpdxHfAicUPQxvPqllvOn4L9arTaRSKAXiH5P0eamADmBUS7GVXP1KDjJLzaLnWrRkNcICmaoLMuyLJtMJjTxccWdzfwRBAFNczqKZS8sKK8D9QwAIJVKOZ3OkjZ3yZqeGICHLAJJFCWpItgEHhasv4LGQNeIJ8K5RYZJ7fV6Pdok3HRhS61WW27hD4kZyz0I6XQae6DEJ84NwjYmU95isRgMBr/fz2YHcQKAbI4W3lOlIKGBDVgajCpqyKVZt0m5YlyVAx8o7o5EIAAAPZbow1HrlRNVpkGqz0Uzo55GQRAwhYmbW6yexDok0znx27cv/ejzHvWoceFhy65gx27VnvLXCiDs8sVe+3jH2d8YTk/vQy99om72UTu/hP2vNW2RxHk1Jv3/rWmTmWKsj7/2KX3e449e/adXuAPxjOdNGVVhZIOD/aFAI0aM2LRpUyAQGPjb/w9/+MPnn38+adKkH/zgBzfddNONN9545plnsnmoKAON+qEHES+//HIoFDrrrLNuueUWbhfW3inHUjiccMIJALBhwwZ2KYWADoR9WnG85ppr7rzzzjfeeOPNN98EgLa2tvr6ei6V6OsHlFkbfBak0Wgq8JloNIpukCFDhtjtdq/X29PTI8vynj17kAh9VXwUfhlWhGBVQWJynBHOscHRGqmtLZ5VFNJF4CCK4tChQ3t6ejB/FADatI5x2cGQSTCZTPX19V+/5Lcqjhy0trbOnj27pKZofX39E088sWvXrksuuWSAPwSDgVKBaqzmgVOjBGShlOgAAECWXEAC2JPhoKG2r1GxyAEU1N6KZOIEwH6Vfuo0gNFCsQuoeOSJ7Z/3PPE/cP5zmPBAEUSY3IKBEqhVwJqtaGJiXSC1vUiFQVnkcjnUNKP6lVAwSVnbHSPZamtrSW6L65+sdrKz0fbldJCtVqvH40kmk2i5UrBcyRAydU1PhMlkSqfTlDlGmVEIDBTk7A22VhLrm6IPsiyjaB7OLds+nU4nEgmkVZT0z02UevCk3cya73Q6DF2zWCxqVww3MCgO81G71zi+ZLfb0+k0xgRyLjicxmw26/f7LRYLdisIAktaKkRWc7lDWq3WYDBQlhc3TqwCxJJAtiuW1XDbS56X28vpQ3D9p9NpnFiNRoMMOWYc/k5qYrwE/4GCcxZAgBz/vVWHz9JHrJQMWo30u2fWdXTHLjptnMdmSmdlvgeSyGfgsBo0kHvg+Y/uI8UFUACEbCbH/AfBWPEqhgIgQDSZveeZD3d6I6WuZfCwP/nHkydPBoAnn3yyXPwlh9///vcrV660WCxPP/30jTfeOGPGjFgsdvHFF7NPISaMYsWe/RgS2tbqhHv88qOXhoXP58P0Hu6Qcv00NzejoYaxfCyWLFmC8V0tLeWqUJWAwWDAlciFCxcuXLgQAObOnXuESGQcOoii6PF4BjkAVKvV1tfXV/DnYG6bxWJxuVySJDU0NEyYMAFpTzab3b17d1tb2+ENFdsrIjl41g837+jjP6MNcF09/GIITDT16SIAgNfrLed3NpvN9fX1tbW1CsCLplFr9IeqTAoLg8FQV1dXrYVaxaED/tC0t7ePHj36D3/4wx/+8AeuwVVXXSXL8rJlyw7L8EpDABDgaD0Y+2lOXwybBpR5xuBZmkhZZqKASchfagidqE1erA/f6ErNiG81x4P9v/MKkJq2XcxN0SQUBVg6pRR8UBoBLjKErzYGTtUmZuhjQ6QyKVWsBSEACCCyvEkA/9q+uTUajSaTiRUuS6VS8Xgc1Wjo1YTbueCuvlOJYrn6pMhnqOIq67cxGo3Ib2mFPpVKJRIJcjqpC8gU5rzfFSAIAvEfdCxgLVfyBpTsip+qUntZB5QgCGQDCIKAJr7P52MtJbY9dUg5PNSM5pDcSnhdahUERVECgQCyUM4RkUwmuWoWLJOkjRgjBwC1tbX4+84WilUKQMVq7BMdKWhTsV2hwh4mqaJgWk1NjU6nQ9ELdhgkAUfS3njr8RI4QTwONGCE1WrNZrNarRaZqt1uR9dZOBxGvxZb9RVUIhA0JHaeWXAxDuwcKopis9lYPs/OBmkGYnzadfev3GE5OZ5HelYmSl+AUnvz3O6ijwLoNOLlC9544MUNyz/Yevkfll3+Py+X7D/fn4/Yh3q76bu3P3/DX17v7A71dwfgD0eZ/0qc+tgRrvkPv/XH/1u/28f7vgYZ+0OBfvrTnzY1NXV3d990003q9JhUKsUGmD3yyCN33HGHw+H4+9//jm6fO++8c8qUKa2trb/+9a+p2aRJkzBzdP78+eqMkb2KiY0aNQoANm3axG3HfKR169axu2RZvvLKK0v2Wa4fl8uFUnX//d//zQ4vFAr913/9FwBceOGFbO7TQIChgEuWLFmyZAn9+7WHVqttamoqWWP7UADzfyqoLff29uKvL1sISKvVNjY2jh8/Hg9Mp9Nffvnlli1bMGPtiEIyDy8E4P/tgNdCAADD9fCTOrilEY5nYjY9Hg8uayHZKwmTyeRuGr7UcnRGkMzKIVetEEWxoaGhKoFQxSHFfffd19HRcf7557e1td14441qfRpcevv4448Px+jKQgJo0uU0QjHTEWCCJj1ayhyjSY3WZtnt/RDhNG28M6fblNW/mTHfF3e+aRl5QoPdnAhxjQVF+bYm+G1DdII2zZYYwk5AAL0Ir2asH8jGTbJ+RdoSUHhV6KIMIuZwjSBI+SxuFHK5hu/8yPnty6DAHLhlPirywxIPZBdQHMWkKAoGO4miqJb5IoufQqqUgnhxbW2tWnA5FouVVFgGVcaRyWRiO4diGxcT1vsuXKPZj2radI14CtQjxYUhhanSg22odA8UJ8yow7pwDrPZLFf8Rx0YRuWDAAAD8/Bzb29vJBKJRCKBQKCCnh6CrWEqSVJNTQ1JYEOBM+TzeZ/Ph336fD6qBMoO3mAwYFFRJDxYyxWdMzabzWg0YlIQ6y/CU6dSKZQlSCQSeBacNLYlZr36fD4utDKZTAYCgVgslkwmRVHUaDREp9H5o35EuZm3Wq30W4ZbiLBptVqbzWa1WrHkkcPhMJlMLGFmpbe5+0hfBAD4z7+ufPzVDdiq76+gAMBxI93zZ3GL7wqAUkxhymU1923PyPlUpt+S9wbjgPr3pQSvAfL0+bOdgdc/KVHvJKYuT8asjIii8M2ja9nAucOI/cwFWrBgwezZsx966KG333778ssvx4i4jo6OLVu2LF68+KKLLkId0rVr1z744IPpdPqWW26ZPXs2Hn7iiSf+9Kc/3bJly4MPPjhmzBjM1QGABQsWYK2eY4455rrrrps4caJGo+no6HjxxRdHjx5dWdj0zDPPXLZs2Z///Od0Oo00ZvTo0VOnTp00adLYsWPb29svuOCCOXPmTJs2rbOzc+HChZs2bZrhOC9gAAAgAElEQVQxY4ZazqFcPwBw8803L168uKOj4/jjj//FL34xduzYjo6Ohx9+uL293WKxqNcX94qxY8decMEFS5cuBYCrr776UMSUH5kQBGH48OFms3nPnj15dTHzgwdJkoYNG1bBzpZlGQmt0+lU/3rpdLqmpiaXy+X1egOBQDKZ3Llzp8/n83g8R0LYjKzA8iC8GoZUHgBgiA7OscGpZYR8Ghoatm3bhiF/Jb1wARn+5hUVg8mfUYZmD61v2mQyNTc3q0NZqqji4AJd/X/729/KOdhRuuDwyrRwOE5KjdTF34ya1exig2yYqUTNQv7qmvgrWdubzNd0uDZfq2QmaVI9OfGdrAkAkvm+9c23wnBKne3dMJdZJCwLQUONbYusA+gzmfqSCRQAgFgOAMT1OSMelcoLAHB6LRxrgjf9GV9W7FI0fLScAKBABgBELW5XREljczlnXd6py9TpdABgMpnC4TCorD2Wh1CAFtYFisViGNuWSqWIjWAtUYqI47wxBOI5tbW1lIzOSXXh4VjZk3Md2O12tatHKAg9p9NpvV5P1n8ul+vp6dHpdCUFjstBXfsIVHoAeBWsiJkoiiiogPLWCiNRgDAYDIFAgLscg8GgfutyfDKdTms0GhJkYy+ZBRuyxepK5/N5dO6pf9lR9wL7xNJMWF0HVddAJXHBXi8UhPuAqYBEUIf50MgTiQT6uFDGmgbPXgg7S4lEgngmXiPeZY41oQsOb73BYKDYQryPOp2OmGc2m81kMiaTidK6kNdBKY0NzMiiC9Tr9YlEAkW6H176Cc9kFAEANmzr9dg5FbFCRJwKDKFRiv5TTV5fgKwC0D9XFETXXyhZFIV8vlT8a1koAEI+rzy1ZuvA2h9y7Gfk1UUXXdTc3Hz99de///77WACb4HK5vvGNbwBAT0/Pgw8++Omnn15yySXXXXcd22bOnDlbtmy5++67H3jggaOOOgo5RnNz88aNG6+55pply5Zx9byxQQVcffXVa9asWbJkyd13341b5s6dO3XqVIPB8PTTT8+aNauzs/Puu+/GvRaLZfny5StXrlRToHL9AIDNZnv++ecffPDBxx577KabbqJD5s2bd+211+5ffb2ZM2ciBfp6CyGUhMvl0uv1uNR00DvXaDTb/LlzTjq6XDYkoqurC+OGWRcQB4PBMGzYMLfb3dPTEwqFEolEZ2enxWLxeDyHMYhrRQheDfUV6HBr4BwbTK/oUKmpqbHb7cFgsLu72263cyEZezLw126wSrA9DSAIQy0Gi2TBMNcdvfFL//TWMzee1ug8CIIlWP/U5XJVSwBVMQhob293uVwVJNqQGh0hJcsQG3KGPRkzQLGJUvj8ctp6hi5+tNnc7evbiHt2ZEUAw6eyoV6S1bbNx7FCwEfB8lEA/CaXn4nhUApmD+8RYrpaFYbVEQBFV5QVUJxlJLCVUgvHbk6JU/rOUjqVAi14q9WK0sD95xdFsptZ2xczXgDAbDZTdSB1sRH6zJahVK+146qQ2WxmywGxzijK9ddqtfjMxOPxUCjEJggpBfXtaDS6T+U42dpHCHXBVmDqKQFAPp+vra1FSQlM0M9kMtlsFmPGtFptIBBQkxDuwlGOnGuGV8eG2+HpaAZwWrCQK1a2odVDJC1EL4mYiaKIdjzlTeHZ2fKseAnBYJAiREi0DfuRZbkk1QGATCaj/kHBs2SzWVLYY+cBOSrK3yEnB8aFyE4XsjV1z1AgP0R36T4i/6FHMRKJsJWjWLlt9o4g70UKjWJ6rEh3Vi5dx0mSxKEu5I170TQ57bhhgUhy0/beQuMK6E8r0mqkwqlLHDLUU0OyciwK1Eg9pL6ewymotyjdsQESp0OI/U8+mTRp0nvvvdfa2tre3t7R0SHLclNTU3Nz8/Tp0/Fb5HQ677333nvvvddms6lXzW+//fbLL78cigUJmpqali5din22t7cbDIbm5uapU6eyv2ELFiwIhUKcz8RgMLzwwgu7du3q6OjAaqfESVpaWjZu3LhkyZKOjg6bzTZp0qSWlhaLxdLU1DR9+nROw6BCPwBw/PHHL1y48Jprrtm0aVNnZ6fL5Zo0adKkSZPUS4yrVq0CgL06dvDNW19ff95551Vu+bWE1Wo1m83d3d3oFj9Y3Wby4kOvdq5Y19l+8oQKzWKxGGb4NDQ07DULy2g0Njc3Y0XwUCgUi8VisZjFYqmrq6tQQuFQ4I0wvBqCgAwAYNfAOTb41sCiyYYMGRIOh7PZbFdXV2NjI23flob794BDgo4UCACQh+836HUwsru7e80nHb9Y9HE6q2RV+ZX7AYPB0NjYOMjTVcW/M+x2O1uRUE111q9fDwBTpkw5DIMbCEi0oMArNuQMGxKG6zJQp4W2RAkboyenEXCBmKFP6XxfPwoUq7dxLIs5I/ZQxGfy/aZR2fGy4gpMu8Z8PBRS0KXDtif+QyZ1Pp9H5QB8J5csbcnajvF4XK/Xo7uATdNXA8to4g8NS5NY/z9rELPbqcgpMQFEyQKj7CM3cFD5IzSCuYKtbIgaBzS7WVGZTCZT8veUE56JxWKccwPDzADAaDRiISbcjnlcNAPUngudIO0KVn/CYDBQXB+puiHUgXwopY2TzDltMEISeYLaK0U+K/bU3Ha2PTp/kGeShCAxLmqG8ujcdgpQzOVyyOtQeZzoEP5lk6YSiQTr4LLb7aFQSO1ZyuVyWDtLq9XSc4iHS6KYyxMVYYLKBOGVDztFQWASdRSulUmvvf+66RdMGfHnFzcWKBAwjfubMv30bR4/3LVha4/qEPqn8I0rfuk4rYZ0Vo4ksoUzsO+FvtdInUmZfaLtH21KbwkONXg40Pz7lpaWcjIAWCSh7InL763QJ1RUHWhqaiq54GexWObMmcNtrKBnWq4fBNKecnsRbLGICnj44YcB4KqrrvraCyGUgyiKQ4YMcbvdPp9P7bjfV+h0OqfTabLalv1udVcgdtuiNfdedWa5xpgYg5mXA+wfI7hisZjX641EIkiEampqPB4P+4I7RFgbgVdD0JMFALBIcI4NZtgG6n6GgiwEytzZbDb69frtLrBI0JvrC+yv1YBBBABxS0/m2oc/mny0+63NXc2efY5xZ2GxWNxudzXzp4pBxnHHHffoo4++99575MnnGnzyyScAMPA3wGGAAiDyvOI1v+zUggKaIntE6RMkKFFESAFBBEXhTZFyZ1QY/1JR54UwuXI0iOtcEpScIqAodjoN6HPgUup1Op3NZovH46QUh7LUkiTZbLaBRJRx7oKSbaLRqFoMRpIku93OchUMFctkMlz+PTCmf0lHFntqjUazr/wHAJD/AONHYqMMOHNZkqTKgcQsFcSxmUwmjgLh6diW9KOg1+vNZjOGdVEQ115Dl9WUhkTAFUWhqDatVltbW1s5+iMSiXAsjnUYqtvjhLOMFG0q9L3gIRSJRzwWC5u63W5kMuzhRqMRHwav18ueiDpB4LOKGh6pVAplx3U6HcXOlXsgOeFBdhc+fuyWXC73g9PHP/n6RgAoJi1KVs51B9kHm+c/AJBIZ6/40+uSKObySvEbQOmLfC20zxeP5LpZk97euJPagsB/7ftVEBRgT9kbThai6Zjg2iIIG7yCrAQPuxuoGo5y2LBixYqVK1caDIb9rkrxtYFWq21oaBg3blxTU9N+SCSLouhwOEaPHj1+/Pi6ujqrSX/nj6cBwB+f/eDjz0sLAPT29qK3ukIIXDlYLJaRI0eOHDkSX+6RSAR9hoeuztd7UbhjF/yjF3qyoBfh2w64dxicuy/8B+HxePDHjNVFeHQU/LIRsgoAgEaAY0wAAC+9+/nZNz091GNd2bprmKe2sbFxPyp3iaJot9vHjBkzevToKv+pYvAxbdo0AJg/f37JULeVK1f+/ve/NxgMM2bMGPShVQJnNfHmgwCxHATSWEQS6G8RReE6EYpblu26vx8m4L94O/T1099/GVrVoMnf64x8Nm9azxP/U9RNIWsFP2i1WlEUWaU4VgaALR9kMpkcDodOp+PSJ0oqBCBI3TiZTKr9AKx2GUEURYPBUIHDsEFrWq3W5XKZzWbM1Mfx7N9yGCsnjX4kdi9HPyono7KNBUEwGo0ej0ftfseZZGeMNe5RmlwQBDYii4aK2mvcIFktaZ1O53a7bTYbkhASVYNCvFxJ/x4md2UyGbZGqjptDFmHw+GgtWNyGwJDeACAakBptVpKo+LIVSaToZKg1EMymQyFQliMld3OTiONjdqgHgMA1NbWcqlZsVgsFAqxtY+gFP9hh8qe6JFfzLj4m0fRBhqReg6L9jPI5fMq/k5MqnijAACgkaSHXvp4w1Yvs7G8xVFiT2FT6eUSBUDY3Ct6E4eZBP2bOh8OI9rb2++5556Ojg6U/77xxhsPdQnzrwpEUcREEVmW4wVg6Tp1Y51OZzQa9Xq9wWCg9yzhx+cet/jNzW980nn7428t++33uWMxbxUAnE7nfntvampqampqwuGw1+vFuPBQKGS320l+7aBgXRxWBKEzDQAgQp/nx7zPK4z9aGho2Lp1KwYBki7C0iDICpgliOdgag089frGa+9bceKYhg+27AGACSPdCCyCgctdXNlvglarRVVTXDsstwZWRRWDgDlz5jzzzDPLli1DiR00HH0+35IlS15++eVHH30UAG6//fb9y+Q8RJgopXryIBADUYfTK9ANmq58vwuI/ZJJoOQwdI58QRW/gnzoWnFiD3deq5ifqJPfT+kE8jWhv0gAUYA8LUArAAJ4s/BBSqtkM6DVAgDGd6HHhjXEEomE0WikTB61DIDFYtFoNGg7iqJIEVkIFEUgh0bfSBUFAGpra2k1XZIkLpCspLRxSciyzIoioG2N2mX4iqMfkf2IfyOwIXZqPxJV3cGRYNVUbKMoCqo8GwwGWkC0Wq1YI1Wn01mt1pJXarFYMJqLtrDNUIUCCsLT9KOG2mv4OZ1Osx5UnU7ncDgwQYhbMsM5JMLAKsiZzWatVptOp/HmYj9UkVYpLpvDDpIVTFMUhT0FFHigXq93uVz5fD4UCtHlcPOgLTyfDocDBeiojbpP5OS4fmo2m1OpVC6XY/kMnkUQBJfLFQ6HsR5uJBKhlKR8Pm8ymTQaDVsLi64IywQTA8SuJEkKBoPx9KFTalWKXhMKAICck1XvDmVvpIsalG/J4giwDqoUaLDR3d39+OOPA8Do0aMvvfRSVhm8CoRGo6mtrUW/AZbu7u7uxreJRqMZOXKkwWDYaz79nfOmvfFJ5/IPOp56fdOcsyayu7q6umRZRl3mAxwqjjMYDHq93mQyGQwGg8Gg0+n0eDyVlRj2itY4vBqCLworg9+qhXPtUHsA5AdhtVodDkcgEOjq6rLZbJIkbUzAe1EAgIscIAjw+qsf/7+H39BK0gfte/CQP179LfyAZROoq2w2m06nZ93xoiAIv/zhyadMaMQ13QMdYhVVHDz87W9/C4VCb7/99q233opbWDGbiy66SF01+/Biqi6x05j9KKXlrYhCnJugFFw6AJAHgS3EI4BNyPtyUt+KraBiUBREU/jrEXPenKQofVrY/YpRSh+r6e9KgUhefD+l6zt1sfmSLzAi2pUTxFdiOq1WSyn1KAKWy+U4Lwda6olEgtNqQ4NebXOz4gRIQhwORywWy2azZDViaBMF1GGSD+1VFCWfz0cikXL0oDAJfTUxAcBoNGKuPOaNmEwmtYgox1uSySRJvWFjXDlCbQAAiEajyWQSFQUsFgvqU5fzI6H+QSQSkWVZlmWiHzRCMq/xvACAS1HILtS/R+jCovhzYiAIljGyOhNsik4ul/N6vTh+vFnowcAQcYPBQNOLgnt0IDvDeAc5N5fFYiEKV7ImKd4aTh3b6XQiGTYajSVFNRD5fB5roRLlwO2ZTIYkB4FJDaKzp9NpzAG2WCw0IWwcJjBOwng8jk8pFx6C9BXvC1Is3I7PAH5m1TtwnhVFqbcfBEUiHgqAAG6bqTfE6+zxpKiyF4g/hHEB8QcRR6qYVjhYqAbCDTZOOumk7du3f/nll1988cUdd9zxb5sFNECgmEw8HqclFpPJNBA9sZPGN/7suycCwG2L1mTl/hdlLBZDddSBqCAMEBjuNWzYMPwZ8Pv9bW1tu3bt2r/Ups0J+NMeeLC7j/9Mr4XfD4dLXAeB/yAaGhrwJwHD4V7wAwCMN8E3a2CqFWpM+h+dfezUY4fi+8ls0DXXl45hQw3T1g7vG590YgBDlf9UcaShqanprbfeevLJJ0866SSyMCwWy0knnbR06dLnnnvuCHwDp0UNgMp0KFCU4nXj4n8V8OclgSNOBGRQQlHPvXkJSYvANlb63FD9jcnDwwbIqeJnODYREzQj71viuOBHUNBwi8fjqVSKfVGg+YuvdIURdybvCmdzp9NpewFYtBT3smvqbBY7BtQZDAa32221Wo1GI50imUyy8gwYxcRletA7HAvFAFNstCQymUwgEEDVHKQrqHOQTqf9fj/Gj/n9fjwXEiTMSJEkyeFwuFwup9NZbvmM3EQ0FbIss+PBkqB03ng8jkVyQqFQOTk1h8OBxUC5gktsRLper2d9L/iB7H4cP7ER9HgoisJOr8FgKPlFY3tmYTQaXS6X2+12OByYR8q5ldAYYB8kvV6P7JHKCrHgLsdqtVqt1pqaGlarGhN78F+Op9FnKqsqCAJWH1IKKu1arRYLuWJLtXg3AsfGVk9Cgsr9emKFqNraWqzSDgBXzJigzcUL+7lJ6/vXZNCMHGJj945qsFmMWvarKrITLoAkiQ//7IyZx/Eaht87bezJExqpGQA4agxr7/vRz7934oi6Wrul7xEVRXG0x9BQIw1zGfU6DX83mf9+M3daz/PzfzPvtONHexw1fWupRt1BMmv2F0fc2/9rD5S5O9yj+CoBXyW0XhKPxwdYge7OedOeWfXZjp7wbYvW/O7K03Ej1gAxm830ZjlYcDgcDofD7/d7vd50Ou3z+Xw+n9vt9ng8A+QGnyfh1TBsKLzlTrXCDBs0HOzyOaSL4PP5PtZ5dmZ0AHBhoVbtnLMmTj1m6NjLHgIQJFGcMm7IQT59FVUMOubMmYOKOPj1P5Jjj59M26eyZgQto+YZB85eUbINlw4kALDeGxVZKhkL17+51Aoul2kgKKCpdThnXf6ZHJqg7acomUzGarXSMrwgCHq9HuXCaMWdbFPO5sZ6LEhIqAgPl1iC0mH0L6k5YwgTMhk8F5bBAYBsNstqECMJKSfCBgUfOBYsQlscbd9IJIIOLk7AgMtGw0U9dksmk6mcg1RyKrhOJEnipoKdc1mWS/IQQRDQsxQKhXQ6HcpSowMnnU7jJFNjdF+oo6Bx/GwaDx5OyTOs2h4UFB0qB6Lj9WJQHMco8MIpokyr1VbWGmUvR6/Xkx43XS+rOY7jZ4Px2K4wGgUfQtqIoSvc4NWzhIF/+JmVfEApPJwlaqDRaCjBLJPJNNfVHOV/ydh0/G2/vDEYTW/ZE4zGMpeeOTaeym7vjoxpru8OJs+bMtqo16xu3dEbivsDoROO8gz3WAHgoy98Or1Rp5V8/uA3JzYsXPFZLJ01aKSUnLvq3IkGnTRlzIXvb+ps6/R+/8yWd9t6XDbTuadMAIDVrTvWbtjZ5DYbtNKsb44zGnRjGgw3f+9YAPhsZ2B7d+Scbwz3uJ2shfPA8+t6/MErZ0x4+cPtnT2RpjpbdyB1xfnHj2ywAcCv55z66zmnyrK89K1NmWzuf371wrre7RVu3KFGlQJVcaQD0y7pV83n8w2QAllNujvnTbvqT6/cu/i9H5wxvmVUnc/nw3WpAw+BKwen0+l0Ont7e71ebzab7e3txWqqHo+nws/b9jS8GoJ1hRXJyRaYYYNhBxRJVwkejycUCnWn5JejWgA4qxZGMiIUty1ak5VzjS5ro9N61QUnHKpBVFHFoONIJj+IeF74JA41EkS4ahz4gcr7ALOdzWkuQ5CMIiTzxYFwbA94uNivfF2S/7BxbnzikMgMQAFOyO7znH6Ctt80Z3XGaAsU8nMURSElMSi2uTHzJxwOk3haOByuqanh1pj0en02myX7kjwAkUgEdREoignD4YquUlGwT0yt4ZgMAfM/2S1ms1mn03GpNaxXgbWkMZyBpSsDWSbjpgIAsNIOwWg0lhswlEqDQbCmPMlSY+o/8QoK6sPIRqzNyjqgKKOGmAMUCzMYDAYsnIpcdJ9CBkpelL6AgfTAXg7LdvB6JUnC8kp0mzDHGIMwuftYUhmPo0nZbJYNcgMASZIsFgt5vYgrcsfGYjFZlqlILgD4fD72ofJIgROPrgOAs78xjDaOH+YwGo2nHjMc/53eMhy7wpwlURTPmXI0rhQEgwYAuHzGeCjQVLquU44defIxI7Bninif3jL8uOE1+KBGwkE5a8LcJ0VRJgx3HjvSw3piEdd/d5Isy4lE4gfTx9IXOZPJ9Pb2kiS9wWA49+SxyWTyj4c7W7hKgao40hGNRrFqBH7YJ+G1K2a2LF712ar1nbc9tub533wX14APRAVhgHC73S6Xy+v19vb2yrLc09NDRIgzUnZlYEUI3i/8kB1vhhk2GLXPqnj7jIaGhhd3y3kQasX8LGd/YOGy977458pNAHDnvGlzZxx7yMdRRRVVqBDJleEYrA9HKfbVCMx2FZJ5EAAUsUTmswigUJZRhU5EAAAtgEzNCAVSJBDtKe6hTsyqla9YoK1GwNR/tPIlSXK5XJjQgnYzK56Wy+WCwSCunWMnWq0Ws4DIUYBve1q2p5FwAsd9lyIIyIJ0Oh1rtWNSOzUjY456i8fjFouFatdw3aq3oHYCru6xGSkVwE5FOp0OBALqsyAtUVRVkjQaTTlV68q3BgAwuI6GjR9YWWc29ozSeFgei+B478DBlWMCAI1GU1kWD+9sIBBQZ3yVo4Ks3AImVuHzxiUF+Xw+1BIk5Wso1gkEAKx8ym5BVyFt5IQWWKDgEKZXcQ43sQD1JYiiGAgEUBUDr9disRgMBrwR2IYIKl2vUCyeTg8kEdRwOMzOPH7mYiCtViv39Go0Gq5wPBsqiUGSgiBgBKZ6BgYTVQpUxZGOUaNGAcD27dsBwGaz7asD5855p31zfefL73c8vOT9U0dbRFEcnJVgQRDq6uo8Hk9PT4/X683lcl1dXT6fz+ryALgBoFeGFwPwdoH8HGOCc2ww9qCJye0F20TrFi0AwOTUHinfAIVX2G2L1gLA2SeOrPKfKr7qWLJkSWtra4UGGJbc3Nw8evToI6g6UEH5oB9qTsJ6friNLIR+4qSoWJMCBdpDHp6S/RQ0GKbVwJ4sfJFknEXsWcoXHUooEmtsqTUziYpQAk84HMblcLSuWBMTDWKOftTV1aGiAK2RUaRTySFpNBqTyVShOg2WsySrnaVV5aAoCo6BHQBCKJQPos9s3N0+uURwKkrqvJOeslCovFRbW4tejgrcg5P5Vs9YSQFrFuwNRdWcfD4/kJTdAYK1+FG2odzlYECjoij4GNA8Y8gcq2+BQFoSj8dJh42AoX1chR8U0sBno7a2NhQK4VPKPdLEndgHhj6XrFIFDKPGIXHrAsAQb9qiFIo+oTYdFPTf0d9FoXQEIqh0OHViNBoxhQxdo+iMreBURGBCGr088/k8K1COIJ0SFnt9qAYHVQpUxVcMlX+E1DhlQtNPZ0168IV19zyzbskvpzc2NAxm1r4gCPX19W632+v19vT0ZLPZ7u5usLgB4N7dfW3GGeEcG0w8BHIvFfBCAABgmBwdk/Z1dQHWAv79/76LpaDvmjdtUEdTRRWHAE888cSSJUsG0tJqtf7whz/84Q9/eNpppx3qUe0dIkNC1Mk/AojQp0ANADaNEpIF2gVQ0KdmyA8KFairmpLIkyKoyh4WmJJWAKMEOoDTakAvQGu8eISo0KCUjr8jtiUzfKBCBgiZjGgLohVoMpm4NA+kGZwDB48tl4MOANyyPZYKRWJDA2OZVTweZ5PUucpCaOSxhh0KLaD1TzIAGL+AogVqyxU/JBKJ/SibVk5PWafT4STgGj+m31SoT4DBgVBw5mAsH7eoz8lXqMXZ0uk0V9CP+E8ikcAMHHX4OkpWDMQPwN5WVL1DMsCNM5/PYwFWJCrAPBXJZBL1Elj+g1SKiv9wjAWv2maz4SWgyc42IDaFDIori0RuSYQkSTQn3FOK3kg1Xyo5qnw+zwr0IdvRaDRE+bgULA7I1nK5XCAQIGKJMhIajcbv97Nzrtfr1XlQ3PBImUOv1+MXVinIMNKdpS+LenoPO6oUqIqvP+6cN+1/V27cHUg8snLb325qGfwBSJLU0NDgcrm29fjWRPu/dM0aeaZLc/yAMpsOJl4Owq4MAMAFtTIkwefz2Ww2b1T+r8fWAMAvvj9l0phDlStVRRWDhpkzZ9psthUrVnR3d1sslqampvr6+lQq1dnZiTGxM2bMkGW5s7Ozs7Pz4YcffuaZZ9ra2g5/vhCX6sOgSQ+700BL4m4NHC0k3wET2ziXBwH9NritwFKob5F0C4SiBqj/puRBEPsYkQKQVSCTBUGA5wMAQr8qQx+9Ufp7KBqzAsDEyx2v6Qtdw3LJ6is2Go2sOBtreGHhIAyNQ28GFh9j3SAUYsTV/2F9GlgIAaXPMG8HAFwuF9qO6G7y+/2k94UcDAoKxVBs/SMxk2UZvQcYNYe7zGazRqNBux8VArAIqSAIqDgnSRJqP2B7lMgbeIQYq9zQN9+CgOo+GLZHQ6VT4ByqyQZb9pTVcONoJ2vQlwzfKudqI3cHijGwTI8SuvR6feWQNii+raIoRiIRPNZgMLB9kqQ1CUWwo1WrOOh0OkwBggK3QTbChSaaTCaj0djb28s68ThvUiqV4hxBOp0OPTNI8ywWC8pRoAoCq7DHDbUkySQZQyimYUajEZ+ccilY5ebTarVi6SetVqvRaFjXELWhVQOloPdNrhs2fA7Pnk6nSVIPZRgpFg6XBvD5wWtBUb7KgxwcVClQFV9/yCXrQk0AACAASURBVKnY1ecc9dt/bfr7ivZrvuc9dqRn8MeQzMOKqPbVTINceDtNS+86JuozJA0Bj8fh4CUpDx16s7AkCABwjg2Od9q/iPri8Xh3d/ftz2zOK8pQd81dP54+aIOpoopDhyuuuCIWiz311FO33377DTfcwFpaq1evvummmzo7O1etWlVfX79p06Z58+atW7du/vz5Tz/99GEcczmgX2cXhaUIAAoEctDPf6BASOgjU0SIIBZ2UT9KHkAsbFdAEPiwO5Fi5BiX1F7SR/qHpPiXPOb5j/OhEESEC8ZQXBWHaEMul1NHyFChGyiUBuJcQLSizMqO6fV6so/J10G7sOAM8hMyGS0WCzIrpVAHBrez5WIQmUymcmgZ2ouYyy6KosViIWsVe+bErAdIgcjRQVsEQUDDHQvIkuuAGuDnZDJptVrZOTcYDNw0khGspkxUDCeTybBSZug7wokyGAycr4l1naVSqZqaGvw3GAzSXUZ98MqXj7dVKBR0omQwjj0SaSH6x8lRsFQKhQ04m95gMJT0mAmCQGwZB8z5NNRRf1RbFk+NoWUsUaFLE0WR1cpjVRmAYURdgXjAeLQuZ1UU5dPtvg87glOPGTbtuLo9/tjza9ttZu2MExox82fLnujKZZtOmdA07bhhuDeWyigK4BbsFtU+HntlfTAcHdVQs/SDzkw2972po3f7Yq981Dm8rmaI2/bNY4dPO25YMpnc1Rt5etWWtzZ+aTdrfn5hy5J3t27eGZxzxpgzW4Zu2+175o2N3ZHcieOaLj7tKL227xbs7An9deE7sVT2ltknNdr1qVTqzdZdH3d4FUUZN8w5cVTD6lc+O2VCU4WbPjioUqAqjnTs2rWLlhMymcyuXbswamuAwCSc75087M3Nvvfbum9btGbJXRcfmpGWhqzAihCsCEJKAQCo10F3BgDgeLMgZyCVSu3cuRPFEva6GHZQ8EIAFAWcWpjlAACor6/funXryx9sXfzmZgC468fT6C1WGf947dMfnd2XL/TWpztPnXj4X2dVVMFiyZIl8+fPX7BgwQ033MDtmj59+tKlS08++eRzzz13/fr1EydOXLp06bhx4xYvXrxo0SIuqmewQWFsjCUmUGAbo9iWK0lEGBEF9X5Vnj4oAGJxyyJrXy1+UGHA7Dn6JOwE+7mzAaJQnG6OVXEAADOqUaqYpKgxEahw4QJa2Gga5nK5VCqFItp0fspmQQGDdDqt1WrJIud8HXj2bDZLljRVpURqRCLalHqBKljsFWN4VcmSowQygrHmDOslsNlsvb291JVQqFOEl5DNZlEZjK0uiiCSwwZKZbPZaDRqt9tZQ5z1KuAli6KonnN2GoHxMMTjcS48L5lMYvFQdqOiKKRmHo1GRVGkOrCgcsplMhn0KqTTadb1QUksXCVZAgoDsGrm3LEI9vYhf6NLUApK61hmEFOVsIwSHU6VdtkBszcCPTkks8byTDWFYy+cKBk9SDh4YsWo+o1RbVgFnmNBrdt83759qWz9RncGvnnjv7bu6aNMl8049p+vb5JzeQA444TmV++55KGl66+//9XC3uP++fpG3Iu45Yen/Pfl0/Hz+LkPbfmySFHjf1dtKb6It2754SkXTh1z6k+fyBVI7/+9vRU/vLpux9nHD1nZugeDcp97d8efl7Su/P2sWrO+dZtv5n+9hOP/58pNj/3nt5av2/Hc2i9AhQZv2WS8wUG1NGoVRzpkWd66dSu+UEKh0F7z8zh0d3ej+srdl58OAEvf/QJt/cHBihDctAOWBCClgFsDc1zwq0K1scbGxjFjxiDtSSQSnZ2dHR0dFdJzDwrWx+HDGADAd+ygEQAKJdj+uvxzAJgxeeR/nH3MALu6/v7XZtyyGD/f/vja1a07D8WAq6hiv/Hiiy8CwBVXXFFyb319/YUXXtja2trZ2Yn/Yu2g9vb2QRxjKeDPcrn0GqHMLigfQSeU2kjbhFIuHWoplh8J+6GYNbGfRaMpUbA0SO2Xe41zqlOs+Wi1Wmk1HbdgMR+bzYblmNl6lFj2IJPJxONxrEAKAJhoUbhYAbewA2BzNqjuKtFgpVg7GD+kUqnKJUeh2AimUq0IDLWCgimczWZ7enoikUgkEsFipurqolyfaq9UPp/H9H21I4jGzB1C00g0TCkglUqxU4SjIi7KjoH+IiHBOrDYgAu9o9tB00gkDftnK8myByLvxc/csdxqBd0+nF5FUdTPCTLbXC4XjUapW41Go9Z3Vt8I7uyIkmXB2YFxj5968CaTqaamBu+dzWbDsEzsFl1bT7zeRkyG+A8APPXaJtr+5iedaz/98oHnP6K9i9/YzPIfALjvXx/iWB5f8SnHf0piwXMf3Pfsu7kyGnqvt3blmadstz/+xMp2QRD+tmwjOz/3PLeuJP8BgC5/rOT2QUOVAlVxpMPpdOLKDQCwco0DQSKRwMW2hoaG048fce13vgEAty1auzcV0IOAN8Lw/3bAv/wQzYFNgktc8LvhML0469VoNDY3Nx999NFIhGKx2LZt2zo6OrhqDwcRSwIAAMeY4BQmEPfxVZ0dXVEAuP788QPv6j/OOmbjVm84kQIASRJHN5YI8a+iisOIdevW1dfXV1DAHz58ODbDf1F88vBToJJvJ9bHUq4BS0tYV4xSvBGYZlCKwxQf0q+UwLIvRfWB67awV+7tMkFf8no2m/X5fFjegD2Cfatz5i+b04IfcOVer9fb7XaHw0HelWQyyTENNFupGEvf6Ji0CvYs9BlD40wmEwVWYZUYlBTj2lNRy1wupw7PEwrQaDTcSbFKjDrrI5fLUXVRAEilUtFoNJPJoL3OOj3YY7VaLbqAbDabw+Eo6ZtiNyqKEg6HI5EI1gaVJElNmehG4MSqJ7CcxEI5qWjUWiBehP0YDIZ4PM5NHfcMUIITNwatVhsIBLi0HGR0uJiIyUjsc1JuCRXZF/2LggHcjUC3njpSjh5Ldg6tViuGd7IPEhQi0PR6PUvdE4lEIBCIxWLBYBAjBpGEm81mHIM/kix8rZTCXwUAOHJy5i+e+nxXAKDvO5jO8prvqUx2+vwnI4l0RqaLrbRAks7KbTuLmVJ/HG2JrLBEOnvzwnde+Wg7u/FLbzHP6Q+rhfwgmGIVUQ2Eq+JIB60CAkA+n/d49p7JQ+HmXV1dAGAymfCo38w77ZlVn23dE7xt0Zq7fjztEA14bQReDUFPFgDAIsE5Nphhq1TS3WQyNTc3x2Ixr9cbiURisVgsFqupqfF4PAe3ftHSIOzOAEBfCBzii92BO554CwDmnjGq3pyPxWIDPOk5J45cs2FnTzAOABpJbHIfEdmNVVRB0Gg03d3dPp+vnOD15s2bgVmrRktrcOJRBw4BCrrVlZtRTZ5iJwxqwekFBUBJg1gkio1KbixZgqJjARgpOSg1BqWk4QSksi3ksjt/ex38/W9QiAJSFCWRSGCgGhXKZG1ELjsc1cYymQx5Y9TZ3uRY4FLJZVkOhUKSJNXU1GD4k5rDQMFo5voURRHPq9fr0aUgyzLnkyEEAgEiZvj8cBUt0e/EUYKSOSd0FUKheCubCsVOFMViCQURZLocnU4nyzKelCbZZDKRO4VC7/DYkrRQPc/s7AmFIrZ4a9QHUv6VUhBuxlK2UCCHGAmmFnrmTk0lNbmzkLwb8kObzUZyzKiLjc2o2Cv1zOb/0Hk1Gg07t7FYDEX8MIEHc5BQ8UwtV6DT6SjpC0vxoIQGJlABgNFoxNhLda0kBJuohlKElPGFp4ul5MK3j123UEPo+1P6daEACG9v/HLIRfdfMbOF2di/V71MsmFbb/GGcq8DAQTlry99Kuf57Ym0XNSzUGH8g42qF6iKrwCw9pYgCPiK2Wv7tra2cDjs9/vRnUISTw6r8TdzTwOA3/7znU3beyt1sV94Lwp3fAn/6IWeLOhF+LYD7h0O51bkPwSLxTJy5MiRI0dSBeuOjo7Ozs59KgVbAT1ZeDEAAHCuDYYxP8SoAtdcX3vj91oAoKur67PPPtuxY8deOzz7xJHtX/rwNT1l7JCDMsgqqjiImDRpEgDMnz+/5N5169YtXryYmgHAhg0bAOBIKRDECg+UMmj6TCEBAAUMFP5AdntaEdKKiN2pV32/ZYMfulRmiQDA5QVhn6VC7FS2fOGPRqt11EHBxiXbMZvNarVaj8fjdru5PAoujgvtV/LkcEakoiiBQMDv9/t8PnWdUygkr8fjcZfLVbL8KHqT1NuDwWA8Hse0HHwJlwxA0Gq1aN2yp+PcJrSLu0z1gLlrV6+yo4QX24yy7TEqj43swuR+DD5EbmA0GrnOaVSoAEbbUTQcd3E6B6jD5nK57Ha7zWZzuVxms5kmx2g0YuoOmfXIskitGwCQDKBnhp1VPDXSYwDIZDIs/1EUBcPVsMg46/lB7yI9Bup5Y0HXQmdHxTa2DeUdQTFTYjfieOx2eyaToaQvVNBOJBJshCSWCq1Qk50bMEvh8Cwff9FT4YpU3ZXb0XcVyXT2Ly+sG/CRpd4LJY9VQMV/qM+SXubDj6oXqIqvAFDAUVGUgUTBxeNxjUaDXn4AcDgcbKHia77zjWdXt639dOdti9Y8f+dFB2uE6+Lwagi2pwAAROjz/JgHJCtQhJqampqamnA47PV64/F4KBQKhUJ2u93j8ajrCe4TXvADADg1MMvJbHxry3Or2wDgrh9Pb2ocsnXrVlzlGgjv0mulc04c+fq67XIuf+YJzQcytiqqOBS47rrrFi9e/NRTT3V0dPz85z9vaWlpbm4OhUKdnZ3PPPPM448/HovF5syZg/IqsiyvXLnSYrG0tBwG3fwSUADyCkglM3WA6pD2/S3TA89fBFBoI+PACa16qXV4CziG7XVQopzNS1q14wg3SLlMTtJxriFxwuRnn322eBh9DoSS61mU+K5uqaiKk6KYL5EBlDlmj6UPGJWEOf0oY4CuErSkURqYusWMlP5LEEWz2YxJO8iT33jjjW3btiE3owROGi2m2nPXZTKZUAEZI9a4ZBuz2YyMKJvN5sukXnDXVQ6UcKUoClv4yGKxSJKEW2ijTqczGo3IHF555RU05UmpmaAoCo5Wp9OhAjJqJWOhUgBAGoB+NoxXp4qiOCeCILCC3Xheuolc9hc6XtjBI9hnhj2KnRNMoXn//fcB4LXXXmtvbyfiwfWJYyhZxZUbUrk5x/Gg2huoHjmdToeOqQqaGQj2mcd7x2bHmc3msXXajbvxaSl21CjkVNk3UsFEoO31WIX/7yC4cPZ5wIcI/0YU6J133sEPp5566kHvvLW1NRQKYaHxg975vy0wBxEd+virIIrizp078b1T7hcUA81DoRAeohYYuGPuaWf851MvvvP5s6s++/7p+5D9UhIbErAiCF8UEk2/VQszbGA7sC9WbW1tbW1tMBj0er3JZDIYDAaDQafT6fF49voyLYmPY7AuDgAwy1Hk+f2vx1YDwPknH3VOS31nZyeu3oEqcZYFhlLgK3vyaMeGL7q7g4mj6/QUc4imxn4MsooqDi5aWlqefPLJ2bNnv//++2gScZg+ffojjzyCnzs6Os4///xRo0YdOU9v78YPAQT3cZMB+iyPj//4y6O+N6+m+ShaWg18sSnZ29V46ll0VDYRg7zSu+mjISedwXWoKIwFIwIoEN7+xRvXzlr4xeaTb7t//I+u50cgMGu4AgBAV+uHdd84tcS6sAIgwHv/82s5Hpvyqz9J+v438+7P2372yB8OdC6OMPzpT3863EM4+LjssssO9xAOMu65557DPYSDhJom8aiZUDsMIF9UO7koQagyhKIaxqkgGOwAULSR0FcmrHQ3/a12fwhak+CZCHkZxAG9NpV0WNDXHiH8B/6tKNCzzz57//33/+QnPzkUFGj+/PmrV68uqb5axT4hkUhEo1EMulXHEqRSKdY6x7g4m81mt9vJQRSLxVg9U3XJnWnHDbvqghMeXvrJbYvWHAgF2pyAV0PwWWGxb3otzLCB6+B9pVDZJhAIeL3eVCrl9/v9fr/b7fZ4PPtaWRkLAR1ngpOYhJ07//FW204/ANw57zSn04lBFKxEDxsRhApL0WiUDT84tskUiKWHOIwjnVJPT7+n3mAwWCwWk8lUW1tbMvikiioGBxdeeOH27dvvueeexx9/nC2m2dLScvPNN19yySW0ZezYsYsWLTocYyyCRunzAIigXDHKZs5llinZiKAFAUZmg1f/+LsA4aVyZLemBgCc+eRP6rKGxrqlYmp73gAAHiFzmckbDQaEsbUvy+Gd2loyNrSCklWEviUQBUABDeR/5M7f8vQTiqJEJcNL+UxU1AFAXS7eI5mxmQSKR8x25XUA4Ib0JUfZluazcbH4/aMAADhzyX/87LIak3F9unc5DMU92ZDPuPndDz/8kMtlx7o0bB9cxRuTyYT55Zg+zs0SNeaW5yVJqq2txd8IrVZLstSkZKDX6zElBgOWaDxcJ1arlX1a+i9UUT744IPrr7/+scceO+aYYyRJstvt6XSaBGyo5iOWr0GNBPQzsD9nFouFDZbD3ymcolAoRP4HzJ/BJBP0ruj1ela/jmaAnV6dToeBD1jDh7abTCaTyYRCCHgKkp/+zne+43K57r33XpoHfIerZwAKGVb0L/3assDSQxjQZTAY8PKxEBNNOI4HAILBIE2FKIr4kx0Oh9nfGvYsOO34GRNv2B6w2+XLl1977bUvvPDCmDFjdDod/QypW5a8RgDw+/3cUwEFtw8VdaXQwUQigQp7nKwCwel0llOPKAnM4xIEwWg04oHhcPi7s+fqGyam3JP2BJIohGDRi8eNcPRGMo0u66VnHD2qvqY3GH3ilXW7QxmdweipNb2+oSedzVmMWotB8kfTigLD3OYbzh/jsOj+sXr7F13RKUe5vOHUpzvDybSckfOSAEcNqfnJOaOff3/3O+1em0n70wuOdRvlha99FkmC3mja0ROtdxj+84Jx45qsOs3ZABBPy1pJ/PvrW9/6zHf0kJqsLHf2xk6fWPfWZ71be2JaURjmNuu0ogjCpWeMufibo6LJ7Fubu55Z2yHnlD1fWjvDe5mKQ4p/Iwp0gOju7p49ezYArFq16nCP5WsITJQMh8Pl8k25UHIEht4mEomenp6amhqLxWI2m2OxGL3vHA7HkCEl0lTunHfaM6s2f7E7ePvjazE7aJ/weRJWhODTQrDYqTUwoxYa9lKReT/hcDgcDoff7/d6vel0ure3t7e31+1219XVDXC5+qUAdKEKAhMC177T/5sn3gKAW354ynGj6gBg9OjR27dvj0ajWLstEAi4XK5oNIoKDeq4DgBo9piVfH7mJL4iEDFVrVaLHq0jpBR0Ff+GqK+vX7BgwYIFC3w+X0dHh81mGz169JHj6uFwhSmU0kezinCqLqGx2ABgsjm9KZ2T0olhlizYhwqCcK2S3JbL5QVhtJiG2iFarfZXDkN7EnIAE4w6gJHhsDOVSl0Fqe25/FtZkyAKJ9u0p1qFXRnoyYBTC22xnCYVG69Jayw2gD75h/EQbJP1ZiE/TMrGlcQmyWbVaafWCFpBh52P1Wl8PtcxEGiT9b68ZriUcYq5jpwOFPDUmFpqjAATAGCEopwSib0ZFev1wu2XXWjQSEcddRTFQYmiaLPZ1Is40WiU1YnGhBP1/GBxTyRRoAqNIzUCQjqdzufzLBOw2Wz4guJKr7AhTLishjxBKS5Es23bNgCoq6sbOnQoFRTK5/OZTIYkjAmcKAKBM+hra2txQmRZZgOeNRqN0+nkjmX7RCucjVtmpzebzQYCAdrucrkEQYjFYqzd73Q6MVLLaDSyBfckSaqQFOf3+4mnsQIDBPwtxs+ki8BRTaxdm81mLRYLXZHVaiVexHaLBYWoE7vdzkom1NXV4ZopJgtFo1HsBKXVMELSZrMJgtDU1FRZmYCdGZpY9XNVAel0WhRF1PjGLaIout3uAR5eDqlUyiTJw43Bx+6fzU4jxXlqtdpcLqfT6WaddRLVbzUajUajEYek1WrZGzf9xHFs/1iklcj8rGnHut1uChG84vvnUMtcLodMkv3W3POT4aiaGAwGWd1zAjsJx4w76tqLTgOAU05Z2FlaLnuQcIT+DByB6O7uXr16dbm9l1122bRp046UIPKvFPL5PGYxVi74Uzn6Gb+TwWBQkiRciREEoaamZujQoSXbu2pNd86b9rMHXrv7ybd/cPr48cMHmgC9PQ0rQvBxgaZNtsCMYnWBQwSn0+l0Ont7e71ebzab7e3txWqqHo+nspulKwMvBQEAZtqhiSFpty1aAwCjhtjvmtevjDdixIidO3fir2Yikfjyyy8DgUDlmX/3nhkV9lKWKgrccQXvqqjikOLiiy/2+XwLFizAN7PL5TpSpA4q4lRdkv3S5fP5o4VEVupbEUdvwEjotw5xcX2ssf/rXVtbi4VimsX0CEMGAMSUmDc7m3QivgTcciomFxWaRIzT9L2EazTCt139LGVsn1kumUymRCIxTpMWhD4dsOM0KQAwggDQ114QhIZay6W1AAB3SpJWq0XzERV+y4Xycmn6JbUNqKAqgfWBEC9iwblNAIDqe6rtSNqIRALDsHU6HZ5U/SYkG7qkTg9lyZOqGF0gpfjjyIkQqjNwenp6dDqdxWKhNi6XCz0kaMSjo0CWZUmS8vk8O73sulU+n0eGwE0sqVSLoihJElGRyrJDqMbGCqbRGiUmO9GNyOVybF1a5H7YLJ1O+3w+QRDopFQqNJfLsRqALLekG8SOh2JGZFlGkky7sAcscmq1WlGZoNx14bHowrJarZgBhQt5FWaDA94Cs9mM8nf4ufIh6XQa2QveC3YYrCgF5ZKx9AP/Yi0sbGmz2ajQMDskADAajZFIhB4zlpTG43GcVdobiURKEj+kx8iykKbSTcFdGMvDHcVNQiaTwauuPDOHGlUKdHAwd+7cwz2EryR8Pp/P56uQebKvoG+UTqcbMWJEhZbXXTjpmVWfvbNp1+2Pr33u9u/uteddGVgRgvcL3+sTzHCODUYNbhF5t9vtcrm8Xm9vb68syz09PUSEyjnZMQTOrYELmXjAf61p+7+17QBw57zTRLHowGHDhuXzeYxz8Pv9B2XYGHoRDofRBh2Ipl8VVRw4Vq5cGQqFvlorU5huzloG6vz4yunyCLvdjoUd6ZBEIkEmu9rm5lboMbU9Ho9zppjVakWDWxAENhpKLaCshkajqeB8MxgMrIZYyQglVs6YPTUWTuDq/xA4zTFcHWcv3GazscFUBoMBDyHDF1mQoijsehNOJooxlLwuvJXoVGdj9lCBWiml8Y1iykTzcDwo+kwR3clkEmkMiRaUm1h10AReHRsBSMIJAGCz2QbiIcF0UKKdaI5Th9yEcz/ukiQZDAa6QO5JZiPfoJgQmkwmspgNBgN7vdlslvu+gIpMQrHAQEkQwZZlORwOE3lLp9PxeHxfC1QYDAb0j6l9gwjs3GAwsJzNZrNhlCYNA58i3CuKItZWguKbS/rgdCHlFhowuA4fP5aZ4xZOfBxFL8p1xQqB4BjovmMpJPzKIHNDGfRkMonBnNlsFhXzBvIqO6TYTwpE5bQxLLK1tbW9vb2lpaXyj43P59u0aVNnZ6fL5Zo0aRJJFR94zweI1tbWXbt2+Xw+i8UyduzY0aNH76uV1t3dnUqlbDabmjTLstze3t7e3p5KpSZOnDh27Fh15yj8ZTAYcE5CodDq1atlWR47duzEiRMP5NKOWGByC9YtPRRQFKW7u9vpdFZIm7lz3rQzf/HP59e2/2tN20XTxpVr1pOFFSF4q/BlP8YE59hoWXSwIQhCXV2dx+Pp6enxer25XK6rq6u3txeJENf4o1ifw2qWsyjj8bZFawHg26ccfckZE7hDwuEwpVFV9v/sB3w+XzKZRDXVg9tzFVWocfLJJ69du3bHjh1YAvUrAXIdEHC5Hcp/JbVarZqBaDQao9HI2ZQEIlq4qCxJEucc0Gg0qVSqpClGBjcZ66yA8n5Dp9OZzWZcycbonZJXygYLIEXB8VR4z7M940xyPhmcPVzYLll9m11Tx594m81mNpspxAsDpRRFQSUxyl+yWCzooMAqqGSF40zids62JpJJPgQoWPlYW5bszlgsVlltzGg0shrZeJkGgwHzlNBXgx3KspzJZLLZbAUPSQVYLBY2gp0eBpK0ZofE/sv5x2jmJUmiyDc8ijwPoiiiAY3lj5LJJKZa0YmQcqi/KXtNoOXiULhaPXtlvGpUqOFBMxOLxdgpwi8U55zhwsjZyEOseSVJks/nowYVfrjxWKI9REfLHYJ1sdTbFUXx+/2cM5MF54bCW4ZnwRtXboSDjP2kQLi+vmrVqtbW1ltvvZW+Zk1NTc8999xJJ53EtV+/fv1f/vKXhQsXshvnzZt3zTXXnHjiifvdM877+vXrOYLU2dmJ/ezVhrvjjjsefvjh7u5udmNzc/OiRYumT59OW04//XSKgmNv9qJFi9D/M3v27JJyCH//+98ffPDBjRs30paJEydec8011157Ldvsvvvu+81vfjN9+vSlS5defPHFK1asoF0XXXTRokWLDm6JzMOOUCjk8/nKpf0cCOjbmMlkuru70+l0XV1dudfQ9JbhV55//CPL1t/++NqSFCggw/IgrCqQn7FGmGGDiWXzJwcPgiDU19e73W6v19vT0yPL8p49e3p7e+vq6thQnyUBAIDjzTCZeXzueOKtLV/6AUBdHJYC7WAA3539Qzwex7Wlyuy0iioOHJMnT16+fPlHH330FaJAarCrtlBscKAkcbmUboPBwBpYrPWJhiMt/XJ2qkajsVqtXChLJpNhX6ToIAIASZLUdCWbzWIq/EBeI+hTkiQJS0mWtKgQqBxN5nsul3vz423RZHrymAZ/Upkyjk9KpJGj0AsbrEUfdvZGAynJZtK0fr7z3FOP/XSb11ljbHT1G50csSESxZa+waCgVCqFL08UjEbBZZxbWZbRkEW3gNVqdQYknQAAIABJREFU1Wq1JeWYoUDqUL+btqAngXNlVFikBwCdTudwOHC68CGha9Hr9ehtoPR93DWQ0gtqfoJHxeP/n70vj4+qOt9/7+xrZjKZLEDYg4RVVBC0KqC0oqKC0qpVW2hr1a9apa3f0qrgUr/qz1boYrUtNdJi3ajSCq0LVUCsIKgsAQOiBBIgkExmktnX+/vjYV5Ozp2EkLBEO88f+czc3Dn33HPPvfd9zvu+zxuGyAFKyvJqmpqt9oPqQKqq8rRUFMXhcEQiEbBBtvVBM6ADYbfb2WI2m83BYBBWeyKREKkCWJA5C3SJa7CKjXcwXB14ipAly0IIXS6gzCMj3tQMVVWNRqPYDe0qhsPhgC4RyhlhcKQroj0uyJt0B9lsNpPJFAwG2wtIa+8d3dzczMF4WmemFlKx2i88BQKefPLJpUuXTp069aKLLmppaVm5cuW6devOP//8V199ddq0abxbLBb7/ve/v3HjRoPBMHPmzPHjx+/YsWPp0qVVVVVvvfXWhg0btO4gseVYLLZixYqcLXcfq1evDoVC1157bUVFRf/+/Xfs2LFy5cpNmzZNnjz5nXfeYRZ08cUXe73epUuXUtuYt4qKig4af+GFF2677TY4c6ZPn+5yud54441Vq1bddtttzc3N9957r7R/KBS65JJLqqurb7jhhsGDB2OUli5d6nA4eoJU0fFCOBzeu3fvCXKASu9OpFQOGjSovYSZB2df8OLb22v2+h7887vzvnU+b29N0+sBejMb6FFhoYvddEYPy2TR6/W9evXyer1MXerr6+ERKioqWtZMB5NERDOEELhttY0P/fldIrrnhq+MHNgmQTMQCOzfv/8EMR8RqVQKXtP+/fsfk0hOHnkcE2655ZYXX3xxzpw5kyZN+kJkAYkQmYAURsX7WCyWDtIMFEUpKiqC9Q9DOZVKSQvYzK/EjU6nM5PJSH4h0RhCjBx+hTxMs9nMDgRR2w0lUDs4R7/fDyPPZrPBSO34meByuQoKChRF8bVEzrjpT/t8R9bRKvsVvTjvKumxRkTQhRPDz3gk73x6zctrjqRjm/QrEmmViG6ZdvqC274KQ417CGUF3lkqSpNMJkVrNRaLIQ2JRykejxcWFoL2wMbNyX+4cUQ3SRddGsyjmpJGo1H8CZ8LuwJEwEruzDPZ7XZD0Y5X9O12uzgVRe6tZGvaYk9pWhoMBpvNxmwQShVi8CcckqCUYn1ValscFnVOg8FgIBDgEEHkoEpUkym3dFII0IKjCWWgxFVaDt5DFlMkEtEuPYg+Il4F4DJN0siImTwM7CwmvKmqKt22RqMRzFZckkAQI4i6dlZI7krcQXzWiqJwIVdUVYLLtD3vrkibsUWn03W8TC+dptFoZMfsqUW3KNDSpUvvuuuuBQsW4Ov8+fOvu+66pUuXzpkzZ+rUqXzNFi5cuHHjRq/X+9prr7Eb584775w8eXJ9ff1Pf/pTrX0vtTx37tycLXcf99xzz4QJE6SLd/fdd//iF7+YM2fOxx9/zB3YtGkTKFAn2UggEJgzZ04qlZo1a9Yf//hH9Hnu3Llz5syBzwe8S/zJxo0bx44du3XrVhZmueaaa2bMmLFkyZL58+d/OSoO+f3+AwcOnMwA0HA4vGfPnrKyspxrpSVu+4OzL7jrybceWPzuNZNHDO3riWbo9QC9EaCUSkTU30wXu9t4UXoajEZj7969kSMEVYm6urpPmlqXGwYS0bRC6t1GBWENEQ3p43lQUEFA0u3BgwdPAv9hBAIBg8HQq1evvGp2HicIgUBg/vz5N91005AhQ26//fbTTz89JxGqrKzMGZV9aqHT6WAEGwwG0VGjCjrI8XgctCESiSDOXlwyp6ybiDQ2EDIQ2AgzGo1svsNYlIKCEInEX7kaKZDJZKLRaCwWQxAXa+tv2d203zjEk8nh7f/nul3ra/bFY4nBvZxXTBiIU7BarZ15ucN6+/mStSL/IYVq9voee/4/f/nZldTWdcNcRW0rov32pvqX13wq1noE/yFSnl6+eeZ5g8ZWlq9bt66+vn7QoEGVlZXUNjjKbDbDRObwHqlggzRK4EjhcBj0A1ajdsFepIXib2Fzi0F9R40/xCDE43FERWYyGW5WJA/iT/BYRi5HBy1TO64GhiSmJ+3P01LcQkSxWEwM/wPYgRCLxTweDwdtSnoAyFCCac7uGgCTGWOlpdzUDhUnIoPBwB4S6XBauQ7xFisoKOBVAHSbiSiPDAnMFmyQb15R/i6VSvl8PtHvBK3zdDodDAbFKYQhRWSjSL207kqkmSAthwRvIVLRiKhjZ6x22kCWgzS6DgwxJhOBu5LIx6lCt7hERUXF448fKXlmMBieeuqp5cuX79q164UXXrjhhhuIKBAIoDoVyAbvXFlZ+cgjj8yePTunfd+Zlo8LpkyZot34yCOPLFq0aNOmTbW1tV0mHgsXLmxoaCgrK3vqqafE2fD444/jRB577DGuysf4zW9+IwpTTp8+fcyYMZs2bVq7du2XgALFYrH9+/e3F55+4tDa2ppIJAYPHpzzfrvjqnEvvrP9/e375i9+94bbrnwjQNEMEVFvE13spq98QcScTSZTeXk5iFBzc/Ma8hBRoZqYpIuw6O3z/65etnYHaULgmpqapFjQkwPIAfXp0+fkHzqP/wb89Kc/XbZsGT7//Oc/b283jmfuIUCSOqvcwuYLhUIIr+K8IMpSkVAoxMvGiUSClZoZWhvIZrNBuImy9CYYDMZiMXAtv98vPSrT6fTBgwcRVoQ4FqiHiZYcR1LBen72rU9+VvUfMlbWE93zp1UPf3cStzbrsdf+8uaR4PAlb/d+6WeXkKBOJgFyXuAzTqcTh/tw58E2O6lERB9/egD7BwIB9C0ej0u5E2y87qhvbqfWvUpEuxtaP/34+f379xPRnj174vH46aefLhIDg8GApXeYm1IMldlsNhqNogKb2Wz2+/2IgKKsJ01LJMLhMLK/eE9YnByqdNRwQUZTUxOH4YmUQLLmxXYSiQSkurrpNbVarZFIhNUaIDhx1F/B7pciFUW2Fo/HWWlNVVWWsNPpdJLuAk48nU6zhngoFLJYLBzmjeg7l8ulKArGHD8UqbjZbE4kEjmzZfjCsUiDeIuBhIjd5hsKsh/StRMrHVHWpcNxlZS9bfEZ/IdyTSHRAcvUS+uuDIVCzNtxXL1ej8GMRCIgMDlnF8QnjUYj8gBxgbDwQW3VzzHzWUlFG5PZQ9AtCnT99ddLDyyv1ztt2rSlS5du3rwZRKW2tha6Mbfccov08xtuuOHuu+9uamrauHGjZN93puXji/r6+tra2traWkwXr9cbCAS6Q4E2b95MRLNmzZLWaQwGw2233TZnzhxttfKxY8dq06gqKio2bdp04mQDThpaW1sPHDhw8vkPAPZVXl7OD+JDSbq/nh7uS4UGenD2xDlvfWa4eAKSZ4qNdLGLJh2DDGZPgcVi6devX62t9PMWMxGNj+2vrQ04HI6SkhKn03nvn94hohnnD/36pCOJTz6f78CBA6eqw42NjTqdrlevXqeqA3l8iVFRUdGZB3hPy7RUVdXhcOANiOcVjEhtkRkEd8GiEvOnpTOSbCC2GsXdnE4ndLTxlSWP0QfY92w+JhIJpHpLdifCveCj+NPr23j7wqUf/Pw7k2BT7W4IiPyHiNZW7//P9gPnDu+Fg4perHQ6HQqF+Cg4U6SafOurI96rrpOG7rKzBxDeNc3hf35Q2+CPFDrMV5xbUdHHE4/H2WLGqaXSOflP9tDxCPgPsHPnzjFjxnCsVyQSOXTokKiVJ6VOwYJkZW0kEUm8hQPP4OQRpcykMEgSdI3F9jsAAq5ySmiIW7Qy2RB56zjLqD2wEwBMFfyzgyScTCaDwDMci0WZcfpilCYzCklpDZNW8h3x4AQCASyxIedNlMJDb6GU3Z5QOLVVouPMIkTu4ZKxwHpOzRL+zGJoTqeTIyrxq5z6ezabjcPwxNtWkr+TYhfF4uZMvSR3pZiABMbLgXC8HbLaUpdEqWu73V5UVISkMl6OEas/YTKLSipSTGbOSoMnH92iQGeccYZ2IxYPuCDXBx98QESnn3661mNrMBj69OnT1NRUX1/fhZaPC5qamn71q18tWrQo5yo45Om6hh07dhDRsGE5kuxBu0HEpcBu7c64N7Te4S8WUMrm1E56v99vsVhKS0uJaE+cfttAqkppld5updeLBoybOYCIEsHIjQNsX+1iomOPgEr0esRMRGMs6bN0aksLhUKhUCi06N+1tQeDRPS9iwZiaZmIwuEwrxSeKqDwhbYCYB55dBOPP/64GE3wBYLP54MVwsq5iqLw2jBbKplM5tChQ5JriIhaWloQbcKL2aINdNTKPNJXLe/CoRVFcblc4rsJ2erYPxw7YlbGEql4MqVX1EQiEY60rf+mEimUSKaJKBwOh8Nh0YuFoswiGWDl4svH9VnQr6hm72Hh/nKv45qJQ372zXMSicTGnQ1X3r88lT78WHvorx/89ScXTzq9nP0qgNvRZhwMOkoJD8JPPvlEFEcrLCwsLi5mAxdXgS08bVgUBhllT7FFW/gO5mPOIioiQFaRtq4tF6MF5ozklZJMc465MplMopgYtVN4pzNgJwARud1ueKs62F9SCSssLLTZbGLePGWnGT7D+UBtldZYJLq9M+WNaIGrdoqhpJJQuHjuohIdW/DimYrtU3b0bDabmhUANBgMcJjwafLO6CocTSCN7GYh4Qbk21bN6lYzJCF4qXoS/iVmMdlsNmm44CGURiynrLZWIo+JYjqdZqFC7eBLSioklPc9VWvijG5RoJzlomBiooIyZW+k9tKeQAa2bdsmbe9My91HKpW67rrrVq5c6XA4Zs6cOWLECK/Xi5v2scceq6mp6U7jeKjlfI5Anqi2tnbfvn1i2NsXLmG38/D5fB0/5U8OmpqaLBbLQZPrdw3Uz0y7MrTgwGHNAKuirv/Hux8tf++0b5//1RvPO9U97TqWNdOhJBHRzBJ9mXFgKBQ6dOjQhzv2PfXP7UT0/a8NKXPqdu3aNWjQIJ1O5/P5esJiTHNzs8Ph6MKiYx55fFkBy5hjeLDmmslkxBog0ho52z3IKafsaq4UsiVlS3OYGTS4SBOJxHtK2xOJREFBgdFoRGQO4vs5SOnGi4Y+vvQj/PD7087IpBItwSARFdvp4rED39i4+3CjCg3r67nwjH5s24leLNSfEaOh+PPexiDzHyIaUFbwv98YB8vhL//ewfwHeGpF9cTRfaThmn7uoP/30oe+4GEX02/vvPSWBf/E5xKbWpA+xFrPJpPpvPPOg4WqXY6EhadkBb6wri/tk8lk9Hq9yWSCwgFOBLXd2vPnIDGD186lqjWxWAw+Fimhgo1LvlJ87Vg5Gsno2IFX7mH6c+2gnEHj7JTTHlcsgUq5bGhVoxguqYQhwJLjxESnGfi/NG/D4XAkEuGBPWrZHyJCn8XVZ1EoPBwOo2xrc3Oz5AYRP0vuDu1RIHzHXYrFYsyQcZpWq1Xy8OCUEY+K7Xa7XVL61ooc6HQ6UcQcdz27OjlcTSxNm0gkHA4Hu1V1Oh2O2J7zir9CU0TaKK65dEBmpLkklgxu7ycnDd2iQDmjs+rq6kjwfuDk28txhO9l7NixXWiZIRZoOyYsXbp05cqVFRUV7777rpQO+8tf/rJrbTKKiorq6+tz2peffvopEQ0bNkzkP19ihEKh4+u76zKSyeT6psgrimuohbZFiYgOZsio0CWFNNWtPNXX+qGqzn92zTUXDh/Sx3O0xnoi6uK0wk9EdIWHyoxE2cDx23//PhENKLHffPEQIopGozt37nS73T3kuoTDYZ/P17t371PdkTzy6ClIp9NsKGQymdbWVl6ohlKCWJddIir8mS1RqUyHCE4tSCaTMOXhcOAFeLPZjEx6CDOI5iNkr1iGobm5mS3XOVedcXpF2Y8f+YNH1/rUnJ+JdZZ/9LUSfWDXbr9CitrHSb+fN03sv2j7chkTbepLMtXGforGUlw8NKXxaieSaSxH8uAoiuK0mt56dMbzqz7VGYzXTxk1YoB31KDiHz1W5TCq43qnFUUJhULf+ta3YrHYaaedBhtG8lEAMHLEEkAFBQWiIBhUEFShBo4YjCReOIl5ilkTkhMJX7VVU9lO5UQa1H1irWoSdOS4yhD6A3sa7o5IJAKKJem8wXqWjqsFnx2PQyqVAhNAGBj8JNofFhQUcGgZXykuasRAQgs+45Q5nk0yuiBvSNmcN5vNpigKXykm23Bg8q8ikYjBYFA7LAEk0kumaghMDYfDSjajT+shtNvtcA3xLQx/lDjDw+FwQUGBOKNI46EyGo38VVSS0Ol0LpcLzkkpVDWZTOr1ek7LYQeRdC2kFDVtqIjVauXeplKp9vgPngwo08QE+KgxnCcTx+zrFLFlyxbtRhhV7MY566yziKimpkZLVGKxGCgQ3DvH2jIRIc5bFBAENm3a1Jn+r1+/noimT58u8Z9UKqUNgWM5Du2EzokhQ4YQ0fbt27X/wsvgv2TNO5PJ+Hy+zqzQnAR8anAvpbLeSnJb9iGpKKQSTXGRSaE7rx43flhvIpr3zJpT2ctuYJmfiKiXka4QSo8+/+9tb2zcQ0S3XTqUNyI08WT3r300NzeLpabzyOO/HGx7cag9f4UFyYkTomEkmRdaKxOuJP4qrchCTcFisTgcDgTVwPzyeDxer9fr9TqdTt5us9n8fj+04Px+P7K3+Yg6ne6ai0aXZPaX0EGpJ7W1tWf1Ss8cnjq/X2ZkSSbY4meTC1a7z+fDe9bhcODU9Hq95NYY3Kvgq2ceKfd0weje/Jb57qViIL1CRLMvHi6xDnwuK7SNLE4219V8XrNl484DE4b3ufj0kpElGYOOVFX1eDyFhYVDhw7la6GNLuMBsVqtXq+3uLgYpoI4MqI0Nmkg9koMaJSM/vb0r6XkEKlldMnj8cDxIlWllNgC8n8gLR0MBuEebG5uDgQCcEiK9rR0XBQL4q+4oMjOxziIhhOOK9rZIslB7SDxLOCiEbsqXQhk74jxgWjBarXabDasA3KQmHilcsbpgLA1NTX5fD6t4YozFcPzLBYLzxCoyWcyGTiLfD6f6LMF64BgemFhId/C2rMmIovFou2n6A6Kx+NMe8RAPoiaNDc34+his5A9QI0mCH/zv3jpoaCgQLw0YoogAGF6DBSOIg0Rxry4uLi4uBg0HncBOsyxiD2BC3WLAi1atEiimA0NDSjrOX78eGwZMGAACMbChQulnz/99NOBQMBisWg1ADrTMmXL8mj50ocfftiZ/mNya6f4okWLtFU7+QY+ePAgdQLo57PPPiu1H4vFfvWrXxGRWHr1S4xIJMKS86cWuw0Fb1r6K0R700ZFIaeBznHSHWX0qwFky94HkIp+adX2v7+381T2tUtYF6TNYSKiGUJaTTqj3vfMaiKaOXHYrTMnlpWV4SWRcxnyFALFgk51L/L4EiKVSi1btuzRRx+96aabJueCWIr6lINvTGm5lINJOFVDZClFRUVer1eyaYgILojW1taWlpZ4PA57pbGxkV9wyFQmIcMHj2uLxQJr2GKxMAmhtuajWGaeNFbpu9UHBn7zyS36s9eq51f9a7NoVPXv3z+WUp7dbPzDR8aF641Pr9xrt9tRq4SpAtbIIaEGI5jLg6JXLpfr7Mpeet3hIVrwyqazbl1cvbuRiMZV9h41sATbh/Ur/Nt9l10+fgC+Sjzq4p+88O3fbf7jWv/0x9eNv7XK+rVHHljRtHC98c3PDR6P5+yzz04kEk1NTfAPiD4WDEhJSUl74s7iyIgODWo//od9RGhcSqRh+x5eHd7Ow0KadGLxXzkhXTK2rcXQKZTKwXtcpE/axlFwxm63FxYW4nLzOEiUBj+ESpjdboekmN/vDwaDTNHB7fETBOCJIYhGo1EaVb/fj5oQcFtp3WgSJPIjUjiwCHzmorfMA3Gm/HN4R10ul9Pp5BBHbTskSDK0tLRg4V68hSWFdE4w05I0qfwUPxD4KESUSCRE6sWnLElTiEsn7DaUXDra6crTDEp60g56vR78Co0jdlTqMzxs1APQLQrU0NBw991389dQKHTrrbfGYrExY8ZMnz4dGx0Ox0MPPUREv/rVr1auXMk7b9y48eGHHyai22+/XVuToTMtUzaCbvHixSJjWbVq1S9+8YvO9P/0008noiVLlojpgCtXrhQPzaioqECuzoYNGzrT+O23315RUREIBG699VbuXiqVuuOOOxoaGhwOx09+8pPOtPNFx6FDh051Fw6jXyo4NVo7Nbr75tCW/3X6F/Sn75bQaBuZhZtgylkDZ19yOhHNq1p9yjraJaTVwy6gcQ46UyiWeN8zq3Y3BIjowdkXWK3WsrKyysrK4cOH8ypyz0EkEsk7gvI4vli7du24ceNmzJjx05/+dNGiRatyoUdxbyULs9ns9XoRwFZUVIR4EuyDVA2RjaTTacTMFBYWQv7RarUWFhZCiBnL8IFAgA0RBKXgM3taSFADa2pqguAVm2siRFJEQiYSb1EU5dd/31zfGCSiFBkeXvKe3W53u91Wq9Xlck2ZMuXTeGld62HL7Onlm7d8fkiyiuCCYGuYiJLJZFFREXwaLpcrmqTHXvwgncn+RKGavb7/98L7RPSLl9Zt3X34vfPJ3maX3SRlq+Prvz+u21oH30I2I+VwXSBav0/Xb/jZAwcOxNdIJNLS0iJlAXVQlpSphZYAdADxZFHLVdrB6XQ6nc6CggKXy8UpBiJTQs4MXx0xUUSEZNBz95jg8XXk6EFMDNTN1B6XYbVaodygbUckBqILxeFwoMQNZPHYAahmwWMiZe3nfH+h6E1paWnOfPKOwZ4ciVyBtIALYUWba4PiXBDIDZ4sri3mvO5iChYPF0LFxOiyZDKJBQssB8CLIo0qCQMrlnJCapN4UJfLhWeFFHzECxxiV2OxGM8NEhQXuG+8rM8FmsTzFWcduwHFg0KYvie4gKibuUC33377008/XV1dPWHChFgs9vrrr9fU1DgcjqeeekrcbdasWX//+9+XL19+ySWXTJ06tbKycteuXStXrgyFQmPGjLnnnnu63PKdd965cOHCmpqaM84449vf/rbD4di8efOSJUumT5+OMqYdY9asWb/85S/r6+v79u07derUkSNHVldXL1++fPr06Q0NDWvXrpX2v+GGGxYuXHjddddNmTIFdOi73/3ueeflTp23WCxPPfXUjBkzXnjhhY0bN06aNMlisaxataq6utpgMCxYsKAHFuM77giFQj1BBQHQkzo4nQ2WbW3OFLlyPkMfnD3xxbe3V+9u/L/n3vvZ9V85uX3sOpb5qSlJRDRdCM/etOvgY8+/T0QPzLpgaN8jviGtoE0PQTAYbO+1nUcex4pAIHDdddfV19ePGTNmypQpzz77LBH96Ec/2rFjx6pVq2pra88777wOnuGnBAaDAUUSFUWBAURZ61+rTEVEyJmWioHw4jdLUWlTt1n512q1plIpsfiJFPoSDodzrqabzWbO+dbr9WKOtclk+ujTI8Ryd0OgqSXqdVnZAksYPURHEhE/rW8ePaiEM7nRuPSMgrXHltNn+/1tNA9UIqJNuxqIaOvnbUJ8dze0Du/XJmsF0WufH+Qw9RzW2Ce1h84ZNZC/QphB3KE9TbZ4PC7m7eCk2kudp3Yy0UXOAEj6aR6Ph4U9RZjN5uLi4kwm094Kl7b8KB+IL7rdbg8EAoqgQsHHtdvtOY+bE3AkplIp6dxjsRjyYfAVF1o6lpgSxlv8fj+Xu2V6KQ0UJnYXLGxROx4fpG4ripJKpVBqNucOWohlecSfYAD5WiQSCYyJNAipVMrv9+Om4JhVlAvDDqhKHI1GMSxgU0ajUbrEiH+T+iYqZ6CSL/cQmWAs0OXxeFpbW6UiRciqkk4W1Xt5C1irlOkHB1EPsUC6RYGuvvrqiRMn3n333atWrcKWkSNHvvzyy6ijfOQYBsNrr7326KOPPvzww8uXL1++fDkRWSyWu+6665FHHsn5HOlky2VlZS+//PKNN964a9eu++67Dxt//OMf33bbbZ2hQG63+7XXXps9e/amTZuWLVu2bNkyt9s9a9asp5566qtf/ap2//nz5xPRkiVLcApENHHixA5en1OmTPn4449vvPHGdevW7dq1CxsrKyurqqq0sX9fSnCBsJ6GYDDY0tIiFiNj9C5yPPidiT9+auW8qtXXTB4+uHeOfXoa9sTpX34ioukeKhXEV+6rWk1EIwYU3yto3GmrKHQTKJuIFcpuNoUA9A6WV/PIo/N4+OGH6+vrp06d+tprrxkMBrwU5s6dS0SxWOzRRx994IEHrr76agRU9xAUFBQgmYTDrhA/E4lE2lNNzFkMBP8SHTWiqc2VWHg1GnVRKZdl34E1WVhYCArEvUXwTywWu2LCwOdXHQ4nnnLWQK/rSJBPMpn86pje/1x/+J1otxgvHV9B2YqQiCxCDr14aDEvn4jGDu1VKYhiAzMnDiOiq84fumLdp9hisxguGtOXxbWUbIkVm8329QtHz//z+znPy6Sn66eO027n/rCotAiIVovuDlVVzWazXq/ndCAJuBCsMMbbuRyNqqrQgM6pn5azaCy14yHJKZYtgmdXzpx1lonrJP+hrC8r54mLtXf0ej1KQvF/2zMbYIWL1rPUT6VtXaljAqSxxVkHX2sqlRKlR1hegmuDUnYlQhv36PF4EolES0uLlHWDNQVRrhoJPNrTF2MvEaXGp4+xZWcphEk40F08nLbuhfh4oaxLkwsWKW1rQ2FdhutWqdkiRdJRtA8oaapYLBbEu+LSS9kupwTdokBENHPmzJkzZzY0NNTU1IwcObIDWee5c+fOnTsX5Ue9Xu/IkSOPS8vTpk3bunXrxo0ba2pqKisrJ02a5Ha7U6nU7t27pT2feOKJJ554Qto4ZsyYDRs27Nq1q6Ghoby8nN+F77zzjvZYbrcubwIPAAAgAElEQVR7wYIFCxYsYCEH7lXO/YmooqLi/fffD4VCNTU1sVhs5MiRLKsg4v7777///vtztlBVVVVVVZXzXz0cqGje5Z9v3Ljxpptu6mCHoUOHvvDCC11uPxQK5aRARDRn5tkvvr19w47986pWP3fP9Jz79CigomsfE00TTmjJW1v/uW4XET04+wJx56OWoegktm7d+txzz9XW1u7evRtviKKiohEjRnzzm98UE/aOCbFYrLW19UusDp/HyUR1dTURzZ8/XyvrZLFY7r///s8++2zOnDnnnXeeVpW054AzbaRanAhvSyaTUhqAaBSKjhrYMZDNBZ0Ql4E5gEen01mtVjH4reNq7mw8iX0gov+bfa7bYa76xzqPLlD1kx9gYzQajUQi6XT6molDAuH4K2t39S5y/OiaCQadGg6HjUYjnMDS2hmyt7UyzS/Ou+r/vfD++k/22czGjKpefUHlvG+dT0Szpo72h2J/fn1TL4/95stGWkx6q9WKOCJVqIw0tG/Ri/Nm/OjplYd8YafNVOg0uyx0qDlUXGD+329+pVepF7GFer3eYrGw2DcPrNQZv98vGsr8AcwBEYkYbSjpYR+73Y7wJ5ZfS6VSEG4WtZtDoZB0+khQYZsV1Av1NHOKVkti2SLgW5NU10TqoihKYWFhTpnsjhEKhZAwhkOIDYrHstvtvConzmHxJ+IHqTVWG4f+mPYEudhOx+wIFEgsdWoymaxWK8gARk+v1yNZDqNtMBgQvM2lTrk1nU7ndrtxZSVGh3UKk8kkcR4ckUeM2xEJjFjuFvesWGU1Ho8jQFGsdEQdBm0yhXM4HMFgUPQGi0Q6Z22xox5FfP7g7uYrW1BQAEn9dq/HSUG3KBBb82VlZZ0M6xowYEBnynUfU8vl5eWSurTBYNAepb2lC4PBUFlZKfmXOobFYunMWTAcDkdPfsWeIMBbeqp70S46Tjt5YPb5l8598YW3t187ecTl5w45ab3qAt4P0dYIEdEMIdYjkUrPq1pDRN+YNGz6eUPF/btfjCyRSDz55JPPPfcc3go2m62iomL//v0+n2/NmjVr1qwZOnToH//4x645hfx+f54C5XFcUFNTI8rtuN1uqQz3zTffvGTJkrVr1/bA57PFYgkGg2w8SdXWm5ubeXlYXCfWLrqzowYGCvtSpGVgEgopIm8HBAA5+uAk2ppCDPZaUNZoMxv1933z7I9efsRms/UucqB4ouiCuPnSkbdcNgoZRKzOD9NKkjiTrHnGyIHFf/7pFTn7M2fm2XdMPxPxPNAQh4sJfol4PI7QoEvH9b9o9A1GozEWi+GgEFqIRCJil+AVwaq/lhCm0+lAICDFOyEWC4V9SFNhE269eDwOHw5c6EiGREFb0S8EM1e6rJK/grJL+DlFq6VrLVnVuASigRSJRMTIKMSz5RznjoHOMGNBI1qiggguFom2Wq06nQ6hgBAQo2wJVJEAoIyVmpXbdjgckp+Qz4WX/AwGQyqV0vJDhslk4j7zRr523EPKRou53W6uuMUkgX8lVjjVXiyUZGVmjig7t9sdjUbBfikbNsb9l7xMlDVr2QHFtyfSgaB8LY02ew7FE4cSg3gXE1EoFOKByllbzGKxxGIxjElO8kma509PQ3e9QHnk0R6OVxbQihUrTkTFGEjmtxfPffG4wd++ePTiN7bMq1rdkylQUqVXfUREZztoTBsVhNV7DrYoivLQdyZJP+nmdUmn07Nnz4ba+7XXXjtr1iwWtT948OCmTZt+/etf79ixIxgMdo0CcenA7nQyjzwAMWl7wIABUr0EkO1OKoieHMTjcVQpVRTF6/ViFUnUdyIibZlCIjIajbh3QF3EdPCOjQ9RiAxIJBJms7m1tRXBORzEhUQjiCMjFojtZtHEJyJkt1e9+UmNeYJHbaGsQwA7t4QTv1u+ZdWWfQrR2NNKbrpkZP8SJ5++9rzE/m/YceDpf3wUjSdnXTz6a+MGdXBesHdxCi0tLZCIgLcBGR16vf6Dmv33Pvv+nkOtTrPistAVEwbff8sV1DbUCqVaubCS1v+jNSiJiCWPRfBvdTodky6OncO1jsfjUqwaLhBPAHzVOkNMJpPYbYhWSyu/OJDVasU044ESn7fsCqCsMF17b8mjgj0AqqoaDIb26ghx7SBRSgEoKipiAxr1dlgoIpVKiVM3HA7npEDimOCUtUWNOPpaWncQJdrMZrOk7qsoSigU0uv1VqsVQwT1POm3iDLVXixqK8hGRGAs7I+lbD3ZwsLCTCYjiuBRdrEDVBacVpIKtNlsOf23XAeMsjcXKiZR9i5mf6Y0UGJtMUSrgv+gV6FQiNUyJPRM8gPkKVAeJwral1mPAlZxOni4PzDrghff2b7l80OP/vU/c7957snsW+exrJmaU6S0FcL+cGfDL15cR0QPzr6gok+bYD+cdXeO+Oqrr27fvl2v1z/xxBMXXNAmxK60tPTiiy+ePHnyk08+2fl4cQmJRCIej3f5pZtHHozS0tLm5ubm5ma8xUF43n777QsvvBA7vPzyy6RJMjm1gLqU3W6HUBsoHMRnsYMqCK+JEK3wWCzGMSftga09bd6F0Whsbm7WRunAIOMHu5gwjQ6wULLH45nz5Fu/fmUD6bwt5J1+zwu//8Fk3vNbj7+5Yefh2hJbdvve/HDvB7++prGxcdu2bclkcujQof369aOsTrFIYvf7QufdsRgqCC++s/39J2edXdnu6phUsTEajYqlltLpdH1j67T7/pFRVSJCRtHmump/KParH39DG7nUwWBKKQ3wFLF1mzO5USzHBK8U+zcURUkkEjBqOYMrZ0gYZUOhFEXBQKXTaaZPklg2W/bwTcFlkUgktNpuImdAXc72TlwC2KYYdOpwOMSjiOVieUyQ8c8c2+126/V6yANyMU28DmCpIw5NGhMSkvilcq4504qYHyYSCVAC3GtQWcQrkokBgxkdtwwHFDxyVqsVfhL0GSwXDi6UIk2n05CS41ktuvJ4JhiNRkXQhIDYidlsluJdAXEQMpkM1jdtNlvOoSbNxMtkMlplP/EctUSaR0wkdfgQiUS6IMR3atGzVHHz+DKhh5RD7QAda5L0LSl4YNYFRDSvavXuA3LxqJ6A3TF6I0BENKOIioXVDCh6jxpYrFW0Q/5Al4+4YcOGP/3pT0Q0a9Ysif8wTCbTnDlztPWOO4+eP3Py+EJg3Lhxra2tXJ/6sssuI6KHHnoI8Srr1q176aWXiKi9nMBTiHA4LHprxZqPMFxEixzlPnJK5XYAeJnsdrvdbmdxJ0VRUN5EW1REbVvckxOmSaiQyCV0iGjJW9V8rNfWfR6MJtDUtj2+LP+B6abWN4X+8d6OV1555ZNPPtm1a9eKFStQfA/tiyfyt9WfHFaBU4iIVrz/aQeVyqUR0Ov1khG5Yv1u8J/DgnAKEdE/1tVS2+V/Uao4J9jE5DGMRqNQdmlqavL7/Y2NjdK7RirHxLLIvEMmk7Hb7axHrKVk/Nlms5WWlkILWwxbksSy+VoXFRUhGA/66UVFRR2ksHdmIgHhcBi1RJuamviiiEcxGo1iuVhMMBB+NqMVRQkEAihIKhbT5GU7adxEumUwGLicq6j3w5dSHDTmh+xQ5eqrGEaxlCpXO7VareAn2tPnt6rNZnM6ncFg0OfztbS0HDp0KBqNIpnN7XZ7vV6+WDgdnDUJM8FqtUp0F9RIFKyTZrIY1hiNRsWKtBhqLg5GWdcTSAumriS63XH1Jx4xyVtFmjvuC4EuUiCc/JgxY45vb05oy3mcZPRwLxC1DQmLRCLaEkY/vmbCmUPK0hm1Z5YJ+rufiKiviS4VJDYWv7Hl9Q8+I6KHvjMpGo3u27dPXArVKsMcE3bu3NnQ0GAyma688srutNMxeohcZh5fdGCWLl68GF+nT59eUVGxatWqwsLCXr16nXPOOdXV1Q6H47bbbjul3cwNLCfzVylVw+12s0WLEuziyncn/Vqw9hKJhOgZzmQyra2tEvMBFEWRagHBnBKdVNztAWVH1oM9TovTasJPPE528CpEh3lQpNUnPpo+++wzasuyiMgfjL2zee/hPVQiIrtRhblMRD9esHT0jU/c/H9/FUeMA4GQU4HIPTbXSgrtYmv4W+QwctUXyuZwa4cO9R6wm8PhQCyZOFZIQZHMa9HWlMpiasvawhOidXfA22AymUwmk8vlErtnNBo9Ho/X69USG61lT+3YrF2YSGK0JOrYiP/lKC/RUEZIWzgcFmcan2Y8Hpc8eKqqhkIh+EN43EQKJHlBxVNAQSpW1MA0xqURf4VcI+nURGrX0tKSyWTAEKSLJQY9Sj7b9kShVFXlFQQeKEg7QEdB3BNd5Y1Go5FDziStF8jTi0MNIsSMiDkh/hsMBiXq2B6RBsQREwdBW3f1C4F8IFweJwTS+7tnQqfTBQKB1tZWBAkoilJSUiLt8+DsC6b97KW//nvbtRcOv2xCD0oKei9I1VBBEELgovEU2Np1F424/Nwhra2tjY2NPp8PkqlOp7ObWgg1NTVENGrUqL59+3annY7RfcGGPPIgokmTJlVVVYlv8Xfeeefyyy/ftGkTJD0HDBhQVVUlqen0HIjCwdrqIpJ1gpAbKF91PgwV0WKixhQvBgOS/e1wOJghsEqy1Dd0+5bLRn1/4eHSQN+ePIiNzt5FjtJC20F/hA9gNevHnVb6Zu2Rw4G6iCyLiK6456X/bDuiZjG8n+f6C4cSUTwen3H3H//xUSMRbdtfW137m/f+cAf2Qf5PKpWCFB4Rmc1mXsO+YsLABa8W7qjzox/gQEP6l8IiRAuo14nMKAR0sd4A104BTWL5BHEcxM+cY5NIJFKplMvlslqtXMDHYrGYzWY+rqIoFosFmj2c9oP+w9DsID5NvPrpdLo9jbj20IWJxGVqgJxufNGpArcGp5EAYnaTFHmI+Dd+L0BIQKfTiauWalsVNfHQnMSi1+uhTw2nitfrFcUPEWwG0UKEkEFIUGShCACT9CSUrMg1INX95IBGaUBEpsSngOpAZrO5pKQkGo2yaBPfntymmCXFUwtUXwph5auDsxCvjqjhTtkAWhDp9qo/8a3EX+EZ61g3ssciT4HyOCHQqtB2GXPnzs35uL/88suvuCK3HNBRgUdSNBo9dOgQHpfpdLpXr15ambivDCu5ZtLQF1ftuHfRqvOHdz24ixFTFSInEQWDQb2+i0WTEqryit9BpJxlSQ5IRbnX9z37Xn1jUK9TfvKNs3AuZWVlDQ0NCEQWVaS6hv379xORligeX/SEcgF5fAlgMBhmzZolbikvL//4449Rm8HtdldWVvbYrDOlrXCwqD8r/gsKTpAR46ognUQymWQJYGyRbLWCggJUpGFpKYPBoK3QmrNvrvieH52TfHbZu5Zk0xDLrQUFBcji2LbHl+U/KohHNJ76LGAoLy+vr69XVbWoqGjUqFHcMo7y/tbdWf6jEimDe7lXPjqjrq7uo48+amxsfGvLkT6v+yzY6G8tLjzsGzEYDAaDgSWhRRiNxvW/ueHpFVvm/nE1kYqWP6kPikGAqqqm0+mWlhZW5OOnkyLUTgFbEHXblLblJqVKr5yspdPpUE2Ilcoh7oycCgw+fgLnQOcvLgD+Q7k0ADpA5ycSUyxxY87fsj6yGNqntFXKplxpV2CDYmxbLBaDwa3X65l+i9II7TmvxFmKa4diSsggQrYS2wCiBrR4g+CIiqK4XC50gOMV+fTFEBhEAEq1m1g4QUv2+DN0FMBY0EnuPEoV8UMAVB9qKJlMRpKi5v5I58LjxrNUjHtsj/26XK50Os01gux2ewe8GrM3Z5mpHoI8BcrjhOA4uoC2bt2ac/ukSZO63CY/bXntRFVV2Pda3Hhe77+9u3PL7sZ5i96adeHgLh8USCh6cowior179zarXXR3rLX0aTE6daSOaPr088bDizrVewO//fvHRPQ/lwxNh5o+DzXx/plMBg/Bbj6JsHZ+oq3Gniwgk8eXAJ2szXCsSKVSy5Yt+/DDD6urq2tqalCbYcCAATfffPOxhnbr9XqXyyXZVVqV29bWVjaR3W535zPXqa1YcM5VahQIolzSUtKBcvZt+/btNoNqC+3S6/UHDhyoq6vDGZUUsvMqGwinUKHTMnbatP3792cyGXiYxVpA+/bt+9sLf8maKwoRDR9QTETvvPMOfFZuizEayhYtNRHzH4AloSXYbDaLxTL1zPK5Qn96FzmMRqNY4cdsNouRXVL+AzsckAqP5CXEsPFyu06nAwMU7XUlqwKHxlOpVGtrKxKWkHNCRJKBrj0FCZgMqDQKsS+RnOTUiOsmRP6j1+tx7rFYLBKJIE5PnFeFhYWiv4KyrxKp1idb6mjN4/FI8Wk85lxQSKRSBQUFYipXzh9iZ9jxiA/Edsl/heGCF0XM2KFslVIpGA+wWCyIBkSyDXtN4XKB+nkwGJQapCyjEJsS+yP5diRPl6qqrHhhMpkkKepoNMqMyGq1Ms3DEflrJ+MePR5PKpVCJdYOLApedwiFQshAE9drOnOgk4Ce0o88vmQ4jqT/mWeeyZlb3/3AU3Znax9wIvoU2f/nkqG/Xl7z9BufXnJWea/C3I/Xzh5U0fHRdWpXkvEadLZNxmIiOifR4FZSlG3wqdc/JaKhfQq+M+VItXvty0Ny0x8T8OQ60RRIUZTPP//caDSe0HC7PL70mDNnTkNDw/PPP9/eDs8+++zixYsXLFjQ/ezTmpqa2bNnr1u3TtpIRE8//fSUKVN+85vfdKb6HFty2rVViYqk02lJuxkV3EUlqJwaWYD4W86OEJ8MxySUp6VJAwYM+Pzzz3FGHo8HemVENGxQn9unn/XbZVkhcoUunzBo3GmlRNSnTx/uD/OfdDr9wQcfOIyZ8X0y6/fpiMhuMdwybVRrayvH7J1Tnnml5rBl/+3Jh1epFr++5dEX3o8nUrdMO/3bF+WIYVYUJZFIlLgsN10y8o//qiYih9X4/UtHmM1mm80mlUAhoj+9vu2tj+t6WY+QCtEVZjAYxLQcKDoA8A6JBUDtdjvcMlJmBb4Gg8FwOAyngc1my2Qy0Wg0lUohRKq9SyB5uhRFEbXFKFdqe2cKtohOKjz5QQnwLhApVjqd9nq9LG8AJQN4rlKpFGq5Sh2w2+1wpICNSIlnlNVIQFoXuBNoNvZBzF4sFhPTemOxGFMgCBIgyBCXleveKIqC+QPCgP2lm85kMtlsttbWVjFYtAOogopdcXExRpgl7ChbDkhKduUsGvYmsYdH1KATaYPVapVYBO56fE4kEtwCZPokRoSIO4wk6vZGIhGtAp44pJIOfiQSwVmgaG8ymZQiLVGDi7JVrSKRCKYx/nus6zUnDnkKlMcJwXFk+aWlpSeiLhARZTKZMWPGRKPRpqam1tbWVCo1evTonHsuGD16Tc2fNu06+Py6Q8/+5PLuHDSaIdpNRDRs2LDCLg3Syv1EUepvptmDexH1wsaqf21et6ORiH7xP1NHjz5MgZqbm+vr600mk8ViKSoqcjqdzc3Ne/fubbfpo6G8vHzv3r3i2/1EAItnfr/faDR2suZyHnlosWrVKqmUh4TNmzcfdZ/OYMmSJTfddFMsFvN6vfPnzx87dmxlZWUoFNq4ceOHH3749NNPr1y5ct26dZ2hQCwM1clDs2WGGB7OhIYgLwdBIflE/KFkz3GuDgDju5N9yInzzz8fJqbRaDz77LN5u8/n+9k3xsw4p//nB1pUlXoV2S88qwKmP7SwUqkUTEmElsViMbTztUGpMWU6X4R+cP2UioGFiI/CCe4LKtlcHjoUMxHR0tWffOfx5TjiT/+0xqBkkDgkDlogEIDR+cCN46+ZOGR3Q+tFY/pazQaDwWAymUQTTVGUeX9eB5pERMrI6/Ahk8nk1LwmjfGK2qNijk3O2Dyxe3AaJJNJDE4ymQwEAhAc0/5E6+mSsj6k1HaWNsZXUQFChOikQk3eUCgEQ9ZsNkOVQTxNxGJRdlUR2T5iGg/OBQqEsLmht8ZHlOYhm9SoNCrxTCLS6XRms1mkQOLExlyKRqNwWcDhAyKakzBgsQDzDU5CahuhJzauXQrkM4XKuc1mg4QdSziKQYBiYk8kEoHCASoIc7Uf3BHJZBLuQbBBj8ejXR/JSc/C4TBymfR6vdvtZqsM0xtkhmdCNBqFLDj24dUTJFBhI5LfsLP45KG2kZY4Ln7CpywSP+TXaTt88pGnQHkcT4TD4bq6ur59+34hYpnwSrBarZ3xNjw4e+IV97z0lze3Xjt5+NSzuxsO12W8G6TtUSKiGUJQdyiauK9qNRHd8NVRl0444gLyeDxS8Le2Wt8xYeDAgf/5z3+wtn3iYDQabTZbMBhsaGhoaWkZOnTo0X+TRx4auN3ujunNcali0dDQcMcdd8RisalTp1ZVVTFpd7vd5eXl06dPv/POO+++++7ONygVw2kPKJsjZh1IAUXiCr22UpDVamWtKhijosXcfQNlwIABV199dVVVlcViGThwIDaq2WKOw/t5hvUtRFdbWlpgosEmQ0iY2NTQoUN37dpFRCW2zLC+RRWD+uMEL7roov/85z9+v7+60UDqYXf30tWftEYu/f3yj7O/VomUP/xr2/cvPxNnmkwmRZMONvfwfp7h/TxEpNPptC8vnU738ppP+atSMjKSyM1euDaOw+FAfViRe3CODUip1huvtq0SIy7tA1ithy2bk33ldFbo9fqioiJxC8q5imFdIDnSHSHJuobDYZ5j8Xg8EonY7XamPahVqmQLGVHW06KVt0GCCj4zaecBFMcBPJzD53AsqZPSjQAjnmkVNwXZuqMKQoAmiaGhUmAkH0Va59XWoYIHTwzEQB0h8dYDoFuNFDtmgMizguMFzitkpuXsNhKHuMMmk0kr01dQUBCLxVpbW7ERKTo8/tgfoydKd7BriBOocOLaaYZIS1x0SdOivWjSU448BcrjuCGTydTV1cVisfr6+qFDh0qqKT0QxxQVfdmEim9eNPKv/66eV7XmVFGgaIZe9RERneukkcIS7byqNQd8IZNB/+Ds3LV6GJ0xrTrAaaedRkT79+/fuHHj2LFju9NUB0C9Nrx1otHo/v37T5AbMI//cuzYsYOIupBlLuLuu+8OBAJut/v555/P2ZTX662qquqkyIfb7Xa73clkMhQKqZrKhiLQoPiYVQRhN+lfHLUvxrQYDAYs9MIeRa4/zHQYMR0c/ahQFMXr9Upmomhzix0OBAKhUAgJWtqB6tev31VXXbVr1y673Q6lBPzq9NNPHzZsWHNz87K6f22tRXVT8jgt8XBrnyKO4lOIqJfXyY8+MRGCM08YkpMhFou99957dXV1JQXGQDjLB5IRm0lPRPAX8c7SonsHslpcCEj0mYi9YiKkTdOCdrNY0BNuJW0iDf9EG5TB/Efcs+OKuuJYsVAEtTVnQSlZMADxftqmRB4iWth8CMS/cdiVyO1zdlKsSYorIpbBFYdOy+1BGKSN/KtwOMy2OzxXGDFI/KGH4KJSl9Bz7WROp9MYFlH9j0mI1mTS0uBYLKYlclyAVafTgTdqZfpaWlpQjJWy+gpSy5z1JA44ky5+qoicU5w/8HYyJWYa7HA4IpGI6N9rL1nr5CNPgfI4bgD/ISKIzEJQ8lR3qiMca6THg9+54MV3tn2488AvX1r/o2+MP0G96gDLmqk1TUaFpguunXWf7PvV3z4gooe+M7F/6VFWtRG83mXV6alTpy5atKiuru73v/99BxQIT7ou592iziOrITU1NamqynkCeeTRAaD2hs+BQCAWi61atUq7WygUqq6uXrZsmcFg6I4odm1t7ZIlS4jozjvv7JhKdTKDDrzF7/dzPFvOuJdwOIyFZMnwEpWgxLxnpE/EYjEppkW0CFFkRlVV3HEdHB2QBJdVVYVvAenO4FeqqsKvkkgkYDxx1gdbfm+//Ta46GmnnXbllVeKngc1K5RcWlpaWloqujiMRmMoFEJK+q3TRv/Pb9/B9tsuH53JZG6/fNSy93YFI3EiMhn1j998EVrz+Xytra27d++2Wq2DBw+mthY8rDRks1itVrvd/txzz9XV1RHRSJd+54FsTaQ9a4jORUgS/zbnonsHz0CHwwGWS4KaGfMf8CjKqjCL3APGN48PLjH/EBp6WI9nMTFtWheerhJT0ma3Y/C5b6JrhYjMZrNkssPdFIlEkskk+DOS4MVDIP+Ht0C+TJQ7U1XVYDCgapBWsbC9FPycb3Np/KV0IL1eb7VaOzADxGuKQXM6neJNFIvFFEXBICD5SpRK4yGVqCMJt634X5y4Vv6+45NicLGgZDLJ8ZZihSuRj+X0w3AyEmIaSRhwSQff7XZDi0XkP1hlkPi2qqo8XTE/mab2BOQpUB7HB83NzUj7Ky8vx83f8ynQsQZ7DCxzPzh74j1/WjWvavU1k4eXF5/UQmCfxejfLUREM4rII9y49z2zmojOOq3sx9dMOGojMEe6TIFMJtOcOXN++MMfbty4ccGCBT/4wQ+0j+Pa2tp58+Y9+uijXXPd4LVERAixQFlun8+XSqX69+/ftW7n8d+DZ5999oEHHhC3TJ48uYP9Z82a5fV6u3y4lStX4sP3vve9LjciQapsiAwQlPuApcipxgysvyK5Wcx7RqkZbGRVKBIsaWRrwNzHdl51hnEWCoWcTmfO3E5JcDmTyaBX8XhctHqxvaSkhBtELA1W9Pfs2QP+Q0Q7d+5cv379iBEj+LeSsSvabSKVmn7uoPNH9V6zZd+ZQ0r6lziJqK/X7v/HD3/76ofBaPzua84xGg6XcG1oaHjllVdgs5aXl3/961+vq6urq6srKyvr3bs3MwqcXXNzM/gPEY0oTo8b4inod0ayefcPbnpXp/uZx+ORPAxi93IGLCEqzGw2W7NATxobG7WnCZ8Am8h6vd5gMKBCkbSn5P1Dy5QNu5IkmwEkFEksCEJ2mUyGma1ITjDmEDSDAyqTySAdC/tAPCCRSMRiMXzTxIwAACAASURBVHiZEPDGaoHIjdEOi8Vi4ZnJHJKD60S3GB1jIIPb7fZ6vZzW4nA4dDqdVtW9PeSsd8TaqvCDiY5NxC/ASYI8LtTIYl6kqmpLS0s0GrVarVJdVG4kJ2VisJOnPYhKj5gGmHKcjyTNGT6QxWLhsYUIBHZAgpA4YliaRKwd/JxWq5WtKVh9qhAMKR4RjLfjYT+ZyFOgPI4DVFWFXHJhYSHbE8fL1/nXv/61vafeLbfc0p2WuxDvPveb5774zvYtnx+aV7X6mf+d1p2jHytebSYiGmCmrwmenkUrNr39US0RPTh7YifbMZvN3aGmkydPvuyyy1asWPHnP/95/fr1N95448CBAwcMGODz+Xbt2rV169bnnnsuZ/BDJ8HrTJy3io1SxfE88sgJt9vNgtcNDQ2pVCqnkwe7XXnllTfccEN3Drd7924iKi8vP171VbUrtWq2wDwvSEsrx0SEgobYIloYiGrjzHspDo3vqVAoBPOaNGvMiUTC5/PlVHASu8r1XiRgYzqdDgQChYWFiqKgRjP+a7fbt23bJu4vFRjFsnrOFWt2EOFrkdMy4ytH4pNhg95xVRtPdSqVqq6uZsdFfX392rVrN2zYgK9nnnnm+eefLz67pMzJMo/z4q8MXrWqjrIib1JXxUV3rZ3X3NzMufKJRAIJLTiE1WqFWSna+uJnHv+cj26tmQ7AF6fdn4gURSkoKDCZTGK9nUQiEQqFwFjwVeuXYOGETCYDgQTEbaqqilNmlQXWgNaqBYoQS/Foz4jNaHz1er16vR7VS6E3cFTdQr1eL045oJOvfumawnUmUhftnI/FYoWFhbFYDNqM/ENVVZlMJhIJu90OhxLfOFpORW2vLJyoer0eC4JEZLVaudAQZS+feLGi0Sir6bJkNml4F2iheFxo6IE3YoryiOFhIvljxWnWnhdLFbQTeogWAuUpUB7HBQ0NDXjyivpdx4sCPffcc+39qzsUyG63d2014sHZE6ff9/LiN7ZcO3n418YN6nIHjgmrW6kGKghCUmtrJH7fM6uI6NsXj+58epLNZtMWMj8m/PznP580adLDDz+8Y8eOe++9V/qvyWS6/vrru7yyztPGZrOlUim8gDOZzLBhw7rT5zz+S3DXXXfddddd+HzGGWcEAgGwlBMENH4c1duxiKuNh9GmBDCMRmMHWZesFaaNehJ/hRKfJJSwFA8HxW2pZVENDH0QvRbSenY8Hj948KDRaCwoKGCDyWAwjB49es2aNdwmgtMYiIlFnRltSBgzB3Ah8XSklB7AYrHwqKIpdkAR0ZYtW4qLi1VV5T4UFRVNmDABQudWq3XcuHHi6CGdg+MAjUYjMlKw6C6Z5ul0mjNkMBrhcJj3cTqd0BATA89E4OykaDH+gGgl9p/wpTwqEJzJLEjNFspjwO0jBjJJ3q1EIsGLVkSEGtwkyDmgQBCuOITIOEwL79+c62WqJgOKiCBiJlUvzZnJcxwhXlOz2YxXZ85rBCiKgjhSsf+QZ5T2BDNMpVKBQEBk1O21jHQvePawhUkmvoJ8isdlBxpPP97ON6+iKG63Wzva8AtJG8WHCbcPwT1m6ajEqn3UYItWiPzUIk+B8jgOaGpqIqKysjLxyQuvd5cdAr1797755puPT/9ygVMtjxWXnzvk2gtHvPD2tnlVq08OBQqnD7uAziugEQKvvO+Z1YcCEavZ0HkXEBF5PB6sjnenS1OmTBk7duyKFStqa2s/++yzgwcP2my2vn37Dhgw4Prrr5fUh44JPIXwviwsLDxw4EAsFvP5fN1pNo//QjzyyCOS8tJxR3v2SjeBNHex82JSsmTlQC7ZaDRK8o8SJLtNYk3JZBLp3el0mskG/wT/lZbSRdEzu92OJW2RokhmkKqqyWQSPiVQJoPB4PV6r7322g8++CCRSJx11lmjRo2KRCKJRMJgMHBhTZvNpqoqnGDoElJK2Ig0m80+n086WW0xE4vFcsYZZ0BcTlXV0tJS0eJPpVJvvPEGEZWXl19++eWw2qdMmXLGGWf4fL7KykoxCQeCBPiMOECHw2EymXJSLxE8PqLnDWYoBpNZkLjKzoY1EUFIWmwNmTN8CMh55SwGpYXFYhEZDmkS3OHA4TIyYh4/tRU2QH6aGLfGkwduIikn3m63i5VkJH6LFrAiJhaHlSwKUNAOThDC5aDQZrP5qBdIgijDzS447V3PPknOdpPAAu7UVkUDnyUtx5w9SSaTElPCJMddmUgkJHUKNIXbLRwOs6idoiiQVu8gTlI6LsJWk8kkTkEKvKQseWYKBEciiBZOnNPeAFGI/NQiT4Hy6C58Ph/uPe3CP6ztrjXbu3fvbsa5dQAo9nT55w/OvuDFd7Zv2HFgwdL1c2Yegy7CHw/SDcWHP/+5ie7sXM2bZX4Kpcmso+nCusl71fW/fXUjET04e+IxZSXpdDq32w3W2h243e7rr7++m41IsFqt4nVBHZV4PN7c3NzU1JSnQHkcE6ZOnXqiDwG55/r6+uPbrKqqdrsd0T6kUQzL+RMQIb59mABYrVZt3L9kSFE2b0SS5RV/JcoxAyBdSAbgKC/Kmq0cQqNtColDalY5rbKyUqyYxBYn8kBg8YfD4UAo/rvlW7bvbZ7xldNunXH4qWswGILR1EPPrf740wNTz+x7zcQh6ADqcmIfCD/g84gRI1wuV3V1tdPpHD9+/G8Wv/qPD3fEU6TXUTxNw73q6aXp+vr6ffv29enTB+kQer3+tNNO0+l0Ty77cPm6XSWmHKFoyWTS7/eDuOYMf0AIk7TwJLprxMGkbCIQqtnY7XZOzCAipJdwU8jjEp/nILE5i0GJo8ofpDhzJVsnlxPcxUg2o9EI5UDsFolEwDBxjagdesCfReIdDofBG1GKR9wNaUgoH0TZzCUYzVICj3YtT0zgQdE/8Ws6nYZ+tMiNOwlt7pDRaHQ4HAaDAYV0bTYbSKB01kiV8Xg8KD8Izw/yrJBRk3OsSENHcUOJJBOfUY81ZxJROp32+/2iaCRlpSM6iJMEuGQQirdiEkoxiuwOEi+EOGGQWnbUsT1VyFOgPLoLuIY9Ho/2dnK5XD6fr8vJ9ycOTqfzmGqfSxjcu/DB2Rfc98zqec+suWbyiN5FnUrQDGdoQ4hiGUIVv0+jlFFJ19H6CxHRpzF6ByoIHnK3UUFYRURnV/b+4dePWZuuoKCg+xToRMDlcmlfM16vt7m5ORqNastW5JHHqQVTIBjNx6tZPEtF2qPN/9F+jsfjiB0VRasSiQQywtPptFaiV1EU1rdFwAzISU6iBbMYn9mAhjEtPuRTqRT7o0S9Zt6BF7NZOU06kCrU00SFSlVVv/X4mxt2HiSif39cF0src2YeLrd6xT0v/WdbPRG9sWF3OJH5wYyz2F0Tj8cDgUBpaalINjhxa+eehv99/tOMeoSn7WqmWFoZ3zslRvShk/cv+QDCm5QtjSr6OhSh8kx7EeBFRUV+v190YvAqOKx2aFpgi06ng93JAyI2xeYmAguJSCtSrGT1o5G+AkaBURXjBuEQkJgAgpTaowcul8tkMrE1n0gkioqKJOWA9lJlJKC3DodDURRWOMRQiC9o0RYXCRtcE+J0hUwZEWECIHxUHBPRiyVyYwmsoMDdQB+orSOF9+degV9JJ449xSKwkAxBf8Q9wYTD4XA6nUYcGmQPFUXhZ4LEc8TKs5L/EJDuaIPBEI1GISDesUxlKBTivC9OJYI7F/GHYnQuzk6v14OPceNS/CqfZk9wARFRt+ok5pEHlCupndoaVqu1Z9qsx+oN1+Jn139l5MDiSDw5r2p1J39i19EQK+2KEalEKtn0R+c/RIcLAQ2y0BRhIH//2kerN+8loqMWAsoJp9PZzQJBJwImkynnbLHZbOitNms2jzxOLZAfoqrqW2+9dRybRRKFaEyzfdyxjBVrsuErVmeTyaTD4XC5XB6PR1LlQlFUfIaZIlY4kSLu8ENVVZubm30+X1NTU0tLC0fgMETnT1Dn0ekNYtI2tTXoO1BOw+dIJKIoyo59LeA/RCoRPfPPTUSUSCSWrqkB/8H2v737Kcp3ZjKZpa+vnbdw8eIXXn3ppZc41kvEH15Zm0FHlCN/tx5UioqKLBbL22+//dZbb+3duxcH+subW48MRcnISCKtCBBPp4PYSLvdzkk7XI6ptbW1qanJ5/M1Nja2J1QDV5529Fgrwu12O51Oq9XK0wP+q1AoBN2/UCjU1NTEMnrsFkA5HTAuIgLvArNt7yxIiEbDBIvH4+C6R4ao7bCILoucJ8UEVc3KbauqGgqFoGsv2uJieVO1rUZ2PB7niDIpZUXqCQmFPrVnFwwGedB4KYH7AOYvBYUy4L+SPFrsaOVDS4FkgM1mA/m02+0Qq+BfqaqKPCuUk+LTl0pciCk64snyLQnRv3A4DDepJJ8gQfyXSHUoW75ZehbB4yQ2nrNZq9XaQxKBKE+B8ugm+NXS3hOhuLj4qEtBJxlGo/G4EDNk4FT9a/PKD3fXN3bKOh9hI4+BFIVIob5HEeQkInqnlXbGiKhNCJw/GJtXtYaIZl9y+lfHdiUZSVEUl8t1gtIYugzWctUClDWnHZNHHqcQFRUVM2fOJKLFixd3Oeg3J6LRqN1ud7vdWEjyeDxer7e4uNjj8TCH0S6msiGLr7xwy/uzPK5ery8oKCgoKBDDgSwWi8vlYlcP74msPCWb0IxlaSKKx+N+vz8QCIjuCyycv7nh8/7X/maL/uy16vkvrNqJjZKvg3Ipp5EmuimdTvfvnQ0gJoWItu9pmvLDv1xw51+ueeAVcXuJy6Kqaks4cem9f//Bn3f8ZbN+4Xrj8xta1q9frz1K7+LsW0A98re4sODSSy995ZVXampqdu3atWLFioMHD1oslgFlwisjGfEU2B0OB8ooiW12nFkBvTU2iKPRaCwWY6sdIUOoXwlmIo5SToUDuEHw2WazFRQU2O127oDD4RCTTNrTzIBlbzQaS0pKiouLO9ZcTqfTLS0t7E4UJ5gkGyha+eJfdA9pOYlEorm5+dChQ5FIBM4l+LVMJpNoTItDgUg2PkfRWSRyDLHPImeQXKmS6B9GngeNBIV6qQ8dvD3Ft5iiKLw6LNE8EUq2bLG0IoAJI54IyKoUayetWeAW04ahut1ul8vFh1AUJRwO+3y+QCCQ80RA0XmgQHiY9oMliqeg0+n4yUBE4XAYtVLE87VYLKhsi4l0ykOE8hQoj24BiyjiY1eC2WzuOY4gJavQum/fPr/fn3MBsvO48iunfWPycCKaV7V66LeefuZfm476kxFWakkTHgjjj5a/E84cdgFdUEDDhbfSfc+samqJOKymh75zDCoIh9sMhw8cOLBz586DBw92HAd88lFSUtLev/AsRnT7SexRHnkcBQ6HY/78+QaDYdWqVffdd1/O+ZlKpX7xi18sXbr0mFoGT4ClyPEqyWQyEok4nc7CwsLCwkKpNI0Y3cQ0Q/QMEFFraytcB4iLg82dyWSgbBuPx4PBYGFhIZiJkhXqFUW3eVmaBKMWNe/dbndxcTGKlj64eHV9Y5CIUmR4eMl78G/AaWAwGJBWZLfbcwYki/E58D71Lyu88+qzxX3e2VyX9Qsdhs1iuPmykUT01Iqtmz5vIjrMatbv022syZGsdevV51WWMQFj+emC3bt3i3bnnj17HA7Hj75xpOqaumcN5Ji11ZlyxhcgqwdhiodbUFUIKnBsFe+M4L1gMOjz+UQfBQrOUFv7HnFQ4nK7xWIpLi52uVxer9disYhkOKdzj4iQx4JOon5UTt8IwMWgGHq9HnPDYDC43W4wKG0spUTL8ROejdFoNJlMYkpbrVYptFJsClWVcI4SYcvJMRBCltOpJWrZoTMYefHqg29giMQDdUB0UUEVyw28cMDjA5qHbkvOsUwmI+pziIFz3EgqlWIih7sJYiHiiUNDFfFvPOzQuc7pjAXx056I0+lkuoUEM/5hOBwWxwQZZZy4yC2wPgofl8dWO5FOCfIUKI9uAXeFtJQi4agLSycN/NpubW09cODA1q1bq6uru9PgA7MuIKL1n+zX6ZS/rdlx1P37m0khUhUiooqjyZa+6qNIhqw6mi7oPK3Zsvepf3xERA/OvqCX5xiC2Q4cOLBly5Y9e/YgUpl1nzrfwglFr169OsjO4nW1brLWPPI47hg5cuTcuXOJaNGiRePGjVu7di2bpPX19UuXLj3nnHPuvvvuY8oJVrLV5UWwiebz+dRsGRYpmh8b9Xq91+t1u90ej0c0ysWgNVVVE4kEXDqqqqIMMYxRbThWIBA4ePAgsg4sFosU0aRmhb9w9GAwGA6Ht+w+km24uyHQ1HJkZR2cqqioqL1w3JxG5BP/M6WN9kzblfRbLhtV/fQNEyrLiGhbbVYdLvt409mLpaQLaCu//cSNc68aLjZ3KBDhtxWOi7ymay8c3vDKXUt+duUzN49S976LHSTPTEFBgfZVmEwmm5qacO0kEqJN2yCBVcLy5u3iNS0uLhZt+nA4HAwGDx065PP58Hi3WCzYgRPoSbBNUV6Tu4pZAdG/QCCArqLQuRZasxXSC/zV6XQWFRXx7NXavtiIIqpiuJrIu6QXEzgDtD0wn3GO4mij2pLT6YQGN//LbDZ7vd6cqUoQGsUZpdNp0WPGe+JERL+Qqqo8Q+DK4FuD97HZbB6PB8qH4olgPns8HqPRiMBF0nAGfMC0Udtq61HWMcv7I+VG3CKtbJrNZswZrERDBEJskBkOaQANOt5ZvIKSRxHZd6I3Cc1KvJeyWnCUayKdEvSsZeA8vnDAndNx3LDdbi8qKorFYh0Urzg5MJlMeN8jlxe6q11u7dnXN9/x6zdHDPBuq22KJdLvba3LuRtW+7AEmEql+qU9cdXmoFT97roWox6qLFD8FF+oO6K0qpWIaIaHCoTRnV+1hogmDOsjrYkeFS6XK5VKtba2trS0sAVjt9t7glqLWFE3J/ixnqdAefRAPPTQQ+PHj7/11ls3bdp0/vnnE1F5eXksFmPRkYqKipEjR3amKXb+SKYMluf5q1aCFhFo0no5EaXT6VAoxLLCXA5IaSteLH6Ix+NWq1W0a2HeQf0ZMbTScjISuyHbCONm5vkVi9/6BDtcOr6i1OMQRcz4t6+//vrmzZvdbve55547atQo3p6znub/TD9rwdJsSJtgJHsKLPdcd7Y+aw9PP3fQvzcdeRo7LfrZl5/j9/uhwszjiQ8/mHnOax82bNtzuFTajHMHDx48uLy8vL6+XlXV0tLS8eMP865il+26i0a8+eY+bhnr+qwGBnuXK1SCyEkp4yiMw5eAstWKuGqQ2laLXBqB9gr+gCylUimUK4Xpmclk0IJoNyuKgoetyK8kNwJpZIsxizppthoMBlREhYYB3BHinIHVjn5y38SQSFjq6CGWA8AZ2jsiqyBQNh4PTMnlcrlcrmQyKYpxU1unCkZMewo4KO5Hya0UCoVAjHlMEokEJhjOq+MICy5VDB+LeHWYMkl1wJS2aihWqxWlihwOh6gWSJogUm0IJahXPB7Hq5+Tr7T9lC4Q6xBKHkVtApJ2OuVsvDsl1I8X8hQoj24Bj/KjhlThvdjY2HhSOtUuUFsaCrZ4LqNoQNfESWZNPX35+7vera6zmgzRZCoYTdQ1tvYtLqCspxh1EsLhsMj9yo3qdotjYDyQSYRa2jaIvH8Eh7zabCCiCgtdKHC03/39wzVb9hJRF0LgbDYb6k5Q9hE2ePBgm81WU1Nzap9EOp2utLS0YxaNOGMxMCCPPHoUpk2bdt555y1cuHDz5s01NTU1NTUWi6WysnLAgAE333zz9OnTO9kObCNQGth8CHZqr+Y65WILYkkcttLi8ThKfHAOPVwNarakCVs2EMKC9rFUQTWZTEqS2fgtZYO7ODzmkdnnepyWp5a+W6Q0//XeH9vMehADq9XKvV2/fj0Kj0aj0b/97W94InUwOIN6uf/+4FVPLN2QSKZvumy0vzXy3Ns1/XsVzr5wcDQSYnpz9XkV0XjqN3/f3BpNjhrovfe6cUaDjrIqzNhHXJ5/5odfXfDqps2fHfrGxNPuunpcOp2+6qqrGhsbDQYDyqQmk0mYpNpkRVTMFLfA7qds5UptyrvRaGxsbOTtiHADj0W6o2hBRqPRnBmSVquVV6+ka9TS0uJ0OjFt+OKKP8QHsThmztFG/VZMhg74DwQAtNv1en1hYaEoTsjzBHoVbrfb4XBA/QzWPHZDEBcs9c4UrhEdOKpQoAb/8vl84r0jjRWAAq+sqkdZHULxXERlM9wFiqJIY8JXREqLEoHzpez9AhakZJXc+Op0QB6ISNQXybmnmpWty6n5ZsgCd6vVam3PBOILhJpXEMpD7aP2eih526RgP94BVcU6OMeTgzwFyqNb6EwgHFBcXByPx0+hqFdZWRmyTZLJ5MGDB+ER8vv9LS0tvXr1Ki4uPmoLWix94Opv/nzZv9bviiaIiOb+/u3n7p0eCoUOHjzY3u3dL9nqNUZHJHNoUkcikcMrc0ZzibPfLrKLIXBNLRGoz33vsjEXnjngmPoZCoX279/Pi2pEVFFRARd/v379+F8nHzqdrry8vGNpTkDNCtSe+E7lkUdX4Ha777///u63w64YUCBRHo0BUwnGIlgN2+iZTIaNTsn3jhUf0eEj2iX4ysao2WxGaJxoNcJlDWNRyRavhAHKNhlXFrp75pnvLXnQbDY7bSYiYpf72x/v+dHv3qprajVTuq9DP75PptCiEtHWrVvZ5UKCVDS++oOxR/+69uNPD0w/Z+A1E4eA4F07seKFpX9/7JntB8PK18b0ufd7l6JL37/8zFuuHGuz2bhsHY9AJBJJJpNWq9VisazbXr/4rU8SqcxN0876yvDSVCrFQm2s653JZDilOxaLwZ6ORqN+vx+NiNdFDO7CRSwoKGBDmeUrIFNOgiKfTqczm83iWwOXAxEEWsFVu92O3C2TyQRdVmakiUTC5/NBOgwCdHxxxXnlcDgCgUDOYDy0gx4iA1NbExMWNgdW5QScM5JrC0D+CWx0iK2Bh2DpUM3WjOrg1SBOD9EFIRIelnEDVFUtLi5ubGyUWBD4MBx6qVRKUhmBM00apWAwKGVMiTuAhol3JWTiJAFrIjKZTKy4IJJJiGtz9xRBPltUg5D2ZCiKUlRU1PHatJa9a6sJ43mCyqpwcyHgUEvAcvqslKyYimhgYHAg/33KE5LzFCiPbgHPjg6yJxkmk6lv376fffbZKYkBdbvdpaWl+FxWVgbp+l69eh04cCCZTO7bt6+lpaV3795dyFn6673Tf/KHtxcu3ZBKp9/8cPfu3bvZ/sgJI2W+Htl5lEaT8TObPx1k8xSFrCljIR4T86rW+IOxApv5oe9M6nz3MpnMgQMH2P/m/P/svWmYHFeVJnwiMyIzcl8qa1VJJZWQZC22LGPZxruxsY3ZbExjsw5DszXQ0EDTG93N8NAL090zbL3QQ/PBDDSbAQO2wdjY2MLY2LJkZNmSte9VUm1ZuS8RmfH9eCuPTt3IKpV22R3vj3qyIiNu3LhxI/K895zznlisVCr19/dzrHY0Gl2wYMGOHTvOCrvo6OiYvaQ9UKvV8EqdSTLOg4eXDJS4ILc0rdaqh8jGIlfaqVarfCAvLfMyMwmi4l5ZZ7sT7cj3mNaq1gJ2xMYiEsplhF4oFMLSskwCcRwHq+Z+v39ovHjjJ7/NBtPhvL59vPmRSywiSqfTMItJhDYhmYFE/Z+HnjmQK9ff9+qVhULhqaee+sJDYwfyfiLa+fBwJPnUx950SSQSkWoQvDYfCoUmJyc5qO9wtvz6T99jN5pEdPdvdt7zmde9fElXrVZrNpvyh4AtVAwCDodyQL1eV3Z2B3cFAoF0Og1/Gu+p1LcBYCzyjykPUbVa5WGRkCYsp2/xUW5VaM76AHkwDGMWV4P8CpNKkf8iItTzmakFlqjmpjgaTWvJbBARs4JarSa53Ew1owA5PRSaNEuwAM7Lng1qCRjK2ZLNZtEyV/5R8ojQCI+G8nzxRoU5p9NpuGFJ+EYwhuFwWJkeRKRMG3BXRO8rY8J7YgCxUZY95RJebceEIR95rpgE/oMOIxiSs4N8Ph/Ssfx+P0Jp0ElIscuWOaaRB0cO5uy9Ot3wKJCHkwKW2eaYT2IYxoIFC44cOTI7STjl6Ozs7O3tlQ/b4sWL8VQnEomhoSFcwvbt27u7u3t7e4+3/f/5vldWatZX732mUKqewktLlicOlWl8fLyvr2/j7uy/37ORiD777mu6knPladlsdnh4GC/rSCTS19c3k/7S/Pnzh4eH50JlTxVYg3UuO2OC6bo+F3+RBw8vXsCjjrwdbJFmMb/EyuWyLDDK38pFfWn+ujfycj5XqtFalVLYySN3jsfjcgGCzTXpuEAWvmmaildZ1jn98o+ebnXGQZXoXE3bWwi+9aaXx+NxrmvEtArugp2Hi6L+j/bDX+94780rNE373c7DB/Iab7/nyX1/+4FbpLUHb8mGDRs0TbvgggvYKNc07b4n94D/oFb1vU/tffmSLiKqVCrSGFXqJimoVqsKOXEHdxmGMXs1Jwa4Jeil5C3FYlHTtFkWgBCrpsQducPwiEjXdchpKBNjFoCwFQoFSS0UX4QbcCHKfRKJBAqpO638E0X5TUmAmSlCW5ke7p8txfPDn+FOQfUF0FTlEpSCVMFgEPVYZSoRPzjkSqLjc8EzIx8fOE9outEPFxC65PaHKNMmGAzKek2yeCv2NE0Tse5YqgAjQhVUEoxuJsiXDL8HmP457RQRmAPz7zI4eaVSkS8lPAvc/jm1julRIA8nBbzi8aTNZWaHw+GBgYFdu3bNVAPulCMajfb29rpD9fDo+v3++fPnJxKJ4eHhSqUCetbX13dctVMnJiY+dOPCsFb9px9v2bQ3u3rhqSz7Va1W9+7d+7n/3EREV6zq//BtF8/lqHq9PjQ0xAotfX19s0hOE1EymdR1fffu3WdGuxvqbQAAIABJREFUskLTtLnzH2qtcc4iGefBw0sDeADr9TrSnamlRqVYkxxsRtP5DFMgmHeKvC/+hYpUPp9X1KUcUSmFeRFvnylkRSmiEo1GESzHpiSqheBzuVzu72Q7TCOa4kFvuvU1q5d2U8v3pRSRbDQaHfGQPKqvY4ofrly6iO4b4+0Le9PKq96yrK985SvQN3vsscduv/12Fo3o5LUkh4go1gp9UtbLg8Eg+0BmKsRERM1ms1ar+Xw+trDnEh/uRjgcZgFieQtKpdLsFAh2tpQsj0aj5XJZZt4bhsEedW68rT9QboSRHYlEpORX2/kAsxt6AO64PsMwWD0C16KsGKJNntgzLXgpsWQK/dBaNXzJdSsty8rlcgjIbHt3FPcRAgWpdd8xB3CLwXKZRDWbTVw1NN8Nw1AoE1d0UDyKTPOQPoQtcpq5t5BwgsEViUqjCC1D+VSpDwGw1nkoFGr7S9q2mBgEIaRziYdolhytZDKJmk6O49i2nc1mUc0MfuMTS70+TfAokIeTAv88zP6ClvD5fIsXL969e/fp1iLTNK27u7u7u/uYzlaUCDx8+PDhw4er1eru3bs7Ojr6+vqO6TsmopGRkZGREdu277xyYPVAsjd96lc4ms3m5952/mvXDpw3OG8u+4+Ojg4NDeFFlkgk+vr6ZkrNlIhGo8uWLdu3b9/pzgvy+XwLFixwR7fPBIRQU4tve/DwXwGlUkkuk8uXGBZW265A4ytyCS77/f6Ojo56vc4lDjs7p3Si/X4/iqTBI9RoNKBBLONqlAoqEn6/XzIWeBioJWTsPuodr1z6uW8/PjTeevlr9JpLFq1d2k1EsJuJKBgMKnJV82KBj95+yRd/+BQRhYP6H9/5Cl3XG43GlWsvuPXi/T9++ggRhQL+992yslgs8mp3uVxev3496zuXSqVt27ZddNFF+Pf1ly361sN9jz03RERdYccY2bBnT+fg4KDbQEylUhirQCAgfxS4DizSSjmjI5VKzZ3/VCoVZgVojQdf3nR5x92QJq+u6+zrgPY0tbilZVlwO8jJo8wTcqVc4pddegk4jG2mPsCgj0Qi/GvCCWb8Y8TCaNws2CmStaRAwkxwJ6JAOI5HKZlMJpPJXC7HO4AJQKxPDiYYLNKr5GXis2VZqITL+xuGgX5SK9IMJAftlEqlSCTCrAnZejR9tYKme6hAVpk0Qr2wXC7LLbyzpDcoL8sKhGAsCv/BuTDaxWIRD5oy8eQjL593sFYw23A4DG6DzzPdF5BAmT9Wq9VwNyuVCsS+Q6HQufCD7lEgDyeLSCRSr9dHR0dn1zWW8Pl8g4ODExMT4+Pj7mf1lCAej3d2ds7u+VXQ09ODuDhU3oA7KJ1O27Y9PDw8f/58ZX/LskZGRqTM3fL5p7EI7JVL4/G4ViwWlRcH3mhYMEPlU1gPhmH09fVhfWiOCAaDg4ODY2Njo6OjpyM1CDma6XT6uHKuhoeHmc6d8i558HBuQuomMwKBADwMhUKBvzIM45hF1hG2BOuTl+p5ORZykTBWoBGMKjTYc/Y4rkgkwmv5bOoRkWVZ8DxIMqBpmmVZT3/5ju88sv3AaGHFgo7uVAj8h4j4ZSXFplmu6qreQuUia6KiLUlbfeF6NBrFef/lY6/58IHsnsP5V67uD5sGbFxYdTIgBwAJjEajSPH/2h9e+bf/8u1GkwZTTSJ64YUXLr30Ugzsrl271q1bNzw8vGrVqltuuUVZuk4kEvCcQypNmssQxUZRo9lvChHlcjlOjmXblAdfVimdZdFdMXl9Pp987cue4z4q9rc0xE3TVJJ1cd5yuSxV18jlolH6gCiyWCwG8wDOBOkjUnQjQCZhxx8zBEOZjdK96f6NwHgqfkWINLB5IBksCCS8oEokHiuDI04V/Txy5Gh9XvnMooSxohclXUDu9CE5gFAvVLagDwixk5OB89OUHLO2kZBEVKvVoHyAf3niYdbxKgkPLyYz5nM0Gp0LdVHCR9FbFOPiyznrWgjkUSAPJ4/u7u5sNlur1Y4cOcKSA8eEz+dDobehoSHEB59CJBKJ+fPnn8ADFgqFFi9ePDY2NjQ0ZNv2/v378/l8Op3OZrM+n2/evGlOGIX/nAFgmW3p0qX8hiqXy7t27ero6Ojv7x8aGhoZGcH2TCbT19d3ApEYuq739PREo9F9+/Yd06463pZBKY/rqEqlgovq7e09pxzoHjycJrAXhYhkhUpwGNM0lWUjiE0pUfsKkCiCKiLKUj259GygzUUzV6EhkWONyBaYucVi0f3SgLo3Vy4Cb3nLtUsV+0yWswQQYoDX+OTk5KZNm7oj1B1xiOipp54677zz+Lx+v3/FgjRfO0xVXdcdx1myZMn69ev5kpcuXdpsNpEgAdN5IHE0VpAzcIjoJz/5Ccy1jRs3mqZ54403kogmgnQBCIwy4JqmwVqFO0gZDWlG67qu8A0kYMjLlzWdZroXCmZJ7+F0FLkPDzsMaE3TOEDD7/fD0FemXCKR0DQNqTtKGRxY55wIhKR5aucjkroRYPVEVCwWOzo6Zv/lkrTW7d50Q7J07iEr49H0HCTbtpH2JtVrEdvJfBUFsrCsoORfyfOyxLnbq8ZxcXKjkh2gOOjQNxQyAkOTZ+SLgsY6cm9mmgmO47SdeOCo0LzGk6VpmuLedLfGlceoVfQ2EomgshmukWUDlQs8Y9kQs8CjQB5OFqZpdnd3Hzly5PDhw6lU6rjsVF3XFyxYkEqlhoaGTt4dBHmDrq6uExB2k8hkMnAHZbPZyclJvD3Hx8eRwY99pMzamQT06/r6+gKBQK1W27NnD35Itm7dindQOBzu7e09LveXG9FodPny5dlsdnR09OQV/Hw+Xzqd7u3tnUtgoYLh4WFqzbGT7IYHDy8KwKKqVqucUeC0RAsKhUKlUkmn04VCge2bRqMhbXelKd4NNV7a1ldV9L5mz913hLYvcqzZzFWUfKWXid/JkGjbP1qw7ObS/jRbh/Kl7TaXp8ol2dpElfqiDmdlVCx6bv/IyvlJ1vhibNw+lEmE48HAHXfcsW3btkajsXjxYsTfovONRiORSEQy/fv2H8qEHSJ6+ctfjmOx+MVNbdu27cYbb0TgFiK7sN7PoT7K+OCDUl0UkMU03XQRnAfOENQPjcVix3yZK1Jys/z8QbYLtjV3mzsMzXQpt82uHplUBqcQSA624B5JqXQoiTFta+sjgm4Eq3qQKC01O9+TTeFCZne4YSQnJyclY5H3RTpniAhpcopBwsrg/G8+n3en0rkhZScgVIBMPNADxIwhVExmEIFfST1D95KuEgqLi8JSCJyobStzwAWnbAwEAu70Iews57Ok6IxcLscz2XEcrD74fD7meFA8hztOHqiIYZwVeBTIwylAd3f3xMSEZVkHDx5ctGjRMXNvFMRisWXLlhWLxUKhUCgUTiAXJRwOx+Px2csIHBcMwxgYGAARggq+4zjDw8O6rqfT6dHRUfa3nHlMTk7qut7V1bV3716kqLIbrbe391RRBZ/P19HRkUql8vl8LpfL5XLHq5SAGuGxWCwej5+Yy3vv3r0wRHp6ek7gcA8eXtRQond4Y7FYlL4gWGbSAguFQu6FXliBckuj0chms0ohVKkR3BaKapZhGPV6nSPW3ALQCiKRyAe++OC3H9pCRLdffd43PnmzkiTd1lzu6OjYUuq6+5nJpkOZsPPPlywlor/55mOf/eZjdqN53oKO7/31G1/Wm8ByVa5Uf+c/PrB++xEiunlV4n2v7L/kkktQJ0fpzEe/su6udSNExtrB+Lf//JbBwUFsR7EyHsBFixYpMXXgG6z6MIvjhVp2IcrCypuiLOFDT5wVollum8vLmKZpWRYTJHkKlikPhUKzMFguXKuYzgrcFWOUy1Es12q1Cv8khkV6JGZqgYhCoRBUsHk7h0vNdGoUwlLix2gOus9SioBa9Wr4WyngBii9sm1byuhxU4qgiDxE8dZiCaPRaMCVxHwVTFIyHyJi8inpaNskJSWyzrKssbExIgoGg+4HEH2QbxUpi8e9lYmF2Jm3TE5OIkmJ2+R66xJ4A8gtEAR3C7WfdXgUyMMpgM/n6+npOXDgQD6f37Vr16JFi05gvR8xpt3d3blcDgsSs3hycVK4XHkl8uQuog3A6xBJjLfA/v37kX04+2/e6cbY2FihUNB1nW0aTdPi8fgpd5X4fD5klFarVdQhKZfLs/uFkJgUiURSqdQJM9JGo7F3714sYvX09MxdO8GDh5cMUDDE/aqBfYzP7qCmWCyG5w75zTDm2mYFQHkMMTmJRCIej8/FLlECePL5vNMqfpJMJv1+fywWsywLfir3SX/2253gP0TOD9e9cP2agfe85kJY1TD0FeMbV5otVH+yKd90iDQaK2vfevzIDVdVwX9Ioxf2j//J/3nop599UyQSKZVK/3rvs+A/RHT/c7kFgbE9e/Z85CMfweKa4zj48NAzB+5atwM9Wb87/8Bzkx8YpGd3j3TEQ/MysZtuumndunXZbHZwcPCaa65pOxTIR5ppbYj9YGNjYyz0J+vM+nw+yCIjUigYDI6Pj/Ph0OZWysvgKxiUGF7OlTpm7EM+n+cWMB8SiYTP5+MfEbfeHUOZGIoCm9OqUjWTm0XxU8HQlyxdsot6vc66bRJcCEv+1pumiZ9pavkkMZGUhVTEdEnmUKlUWGAgEAgkk0mMA3vJHJduuDvgTTIi/uzz+SB26vP5uKiOfBCQPMZNSe04y7I6Ojpkz0FH6/U6y00pzJm3SGoK1iS/1abrQ5LwLTuO07ZmvUK0+C6Ypok1TfjK5LXjitwWAqd+0TlDfgCPAnk4NcBze+DAgWKxuHPnTll8cxYwl+CXDj4Hg8GBgQF4h5G6hyLosoQZvNun85po4cKFk5OT+AHj5/zw4cOn9aRzBLzS/K+u6ycZ/jc7sO6Iu4zYX36jYQ1Y13XcFHb41Ov13/3ud6lUqrOz87j6ls1mDxw4gPf1vHnz5q6d7cHDSwBsR9q2nclksLqvPOxc4FLhGFgzRjoK7CHTNPEile3DxcHHVqvVOfIfNChbkx2A9JYs1WpZFpwSzz///HPPPRePxzeO8LKIRkQbth289dJ+EpYlF+LEFtu2Jycndx2pTNXwcYiI7n1ix5Uf+X9yyy+e2r3yv//7f3zsVa+4YHD3kWnm76/26t2RyR07dixbtgxbms1mtVrdOZyTPdm44/BVH/l/qD704Vtf/sU/vGnNmjVck9RxnM9//4kHnznQG6pSK0vKMIxMJjM5OSmNe7gU2A+G8qncGcUMlcxTSY3Aj51SXoa/5fQVlN08Zt0hWUuHhFJzNBpNp9M+n0/X9Vm0c2RElgybZL0v/Arw/ooXAjYxsraYs2WzWXghmCTwDHRPSK7RSS0Far/fD51lpZIPlKzRQ6brHAHIDcJPJTOvlPwZxaxXhk5CcaaxtYBVXXg1q9WqmwNIokUtOUelvggIoXQ3OSL7qG03mFnFYjGOhZODzOeVUwtScm3XShQ0Gg1d15mRuiMqFUiHqjOD4/FswaNAHk4ZkMW4b9++SqWyY8eOTCbT2dk5e5BuLpcrFAoQDnIcBzwHxch6enrwU91W5uXMAEksyOAvFAqHDh1Sfs/OFvhdg2TQzs7OOZbeOyXw+/1zuSN4+Waz2Ww2q+t6b29vIpGYPSJuYmJidHSUf6oHBgaOS9HOg4eXAHglKJfLxWIxhJ1wKramaZFIBBE1JCwb0zSRfELCXUCtICXZfjgcjkajCKnCFryB59g90zRBIeDEgLcH4TROS40Aez67Z2zIWJJuFp9//vm77roLG+v6NL2vZstqwrH79u3LZrPLly9PJpOy/GXcsDWNpCH6wv6xad3SaOdQ7ss/+d3ql/W88apl9/12B3+zY0I7UtKkRQ7icccNF37mW0/yxlK13qq+Sv/84w1vuW7ZZasW8lGf+LeHIMlNRNqqtxSLxZGRkVAoFIvFkskkluo4fkm+jdvGdWPE5MpaW4VoEspabYs4MQM55vtf8d0B1WrVsqxMJoOam2hf0T1DgooSEOU2l6X56/f74bfnpvirZrOJ3w4lD0SZfu4JyWof/C9+GpTYTskYaXpxVdRE4tOBWssU/2QyqdyFQCAQj8dRTYg7Jg0ApPEoYwtNOTkaKJbFjWiahnbgh4H8AHtsCoVCPp/nwZeCKNwHNIKgR17sUKiIW0IwGAwi3YtadcP4VYN+cuSbcrGK4wtTF/xHeqLi8biyMptMJgOBAF4XsifnDhHyKJCHUwnUQzh48CBiUsfGxjo6OiAPAoUQIsIrGzWwEWAt3ykQ4Fe0184FxGKxgYEBELxz5Oklor6+PsVvfu6go6ND07SxsTEsYx84cODAgQORSAQLpfDpYTJAoBPRHTg2mUx2dnZ6tVA9/FeD8m5BNBQRJRIJiF+j2I5hGJVKBa4SEpWC2rbJYk1EhKCakZERaTQf74Mm5Q24+KY0khzH+caDW//i64+Tcd5Bor/6+roLolNfZXMFIpzaIdKe3naYWsbWww8/vG3bNiJ64oknbr311t7eXj7j3iN5WGtTBVVJI9KmHEDUaozodzsP1+v1lYs6p4y21u6jTpdS1UDTtGXzO5LR4GSxht2e2DIsd9iy58hlqxbyv998YPPRY7tW5cs1x3HK5TIW+4+ZPCOjpJjMsJHKiUZOK7kfkmskKu+x3UzCNpXm/uzgUks03aJVsnFoumBDoVBAARy+EGwHMVMsYO4GeGClUikWi+znoVYs1ujoaDgcVmKkwR45HMvN6JQanTjcPefZ/naPDPrMPhBsVCQrYrGY5FT1er1SqUSjUUR8+f3+SCRSLBa5Tm4qldI0TREeaBtMyAsHRMRZMeinomXCgwzROWU7f0in0zCoUIIWU1Fr5TjB1cZBqgA2VqvVQqGgpFShV4pXKhQK+Xw+LHb4/X4E4ziOgzVNScJxaghgSAoEaociQphFpyNh4WTgUSAPpxiJRCKRSIyNjY2MjNTr9fHxcY5vblt2DW92/IRrmtbf33/O2vTZbJajeM8uuA+Tk5PxePxMuoCOC/Ch5XI5COth6Wh2Kcx0Op3JZE5rUJ8HD+csFCczOwFYrwkpN8FgEDoEJFwKNEPJEYAj0/AGRnZBIBCAcXnCHY5EIrBcpTXs9/u/dv/zvM/Pnp284HINNnPY4PenRkR9HVFqaSKD/wCbNm2SFGj1YOZlfYmdQ/lptMeF/mBu/fr1P3iuZd61TjXpTPNaQ1jv++t2ThZrvNuBkaO2b9jUr79wPnaD4buwJzFRaAWSWeVwwO8cK+kfkC4yx3E6Ojq4uKT7QAwgO2QAWZgVssgI92L5tXK5DGt1pj6AjfApeOYAICr8r1ywtyxL+mrY6mUXkOQ/cIlA6k1WgFFsd8dxkFMqqRFIOO8Jr5rCKiH5IKumMhuh1sxXHh9JtJRqv20RDAaVUqow69EOdLdTqRRW65BfROIhBWzbRoket/cVpUVBNuTQtX1gcaVt+4k1RHmZCIxEa/F4HDSMB5zPhZ2RLgUNdCSDMS1EZ6DxiEHm32IZAsOi5ySkNZrNZqPR4HJGkE/EjQ6Hwx0dHYVCwS1Gd3bhUSAPpwWZTCaTyYyPj6NkEIuQ8g7IXcETiNqX0Wj0xHQUzgwajYbMVT1HUCgUJicnz/FsGbBiIsrlcnD9VSoVvC6pFYSNiEc4iM52fz14OGuQti+bhjNpCkPgy70ow6YPzB2Zfy+9DdVq1TRNv9+Pap5cYL7ZbCqhULN02DRNGQvHxlO5dvRtbzUcu+noPiKinlT4o7evQVBZxDTe/5pV2EcxXuHvkgVb/s9Hr//j/3hs444RIniDnClHkEOkUdJ0Vnc3r17Q2LBhQ4VWKZ207KOdgVlGRNX6NCWrZtP5zLuu/MEjW/s6ou9/zapYxMRuqMTy8d+79O1/95Op4d23jujytuavAqhNUMth4vP56vW6W+daWX13gx0Luq7D9kXcI81BSFoGdzmtklMIvpC+ILgj2gYqM6lWQq04KUhr6R9wHyQ5b9sgnxpmgNYqpsSoVqsy+xfXrlRNlRkmsqtcI0ipIJRKpSCYxoBigWVZ7AhFwSJ5YLFYZCW9arWKKkM8AqlUCt487gOK6tAMhXTQMaY9PHQoHStZHGwkzoBiuKvHyscEMo/QbUNaGt8C+BLz+TyuDhObWaK8BCZREoqbV2FuWiuKElchSZcjlLKVNs/6grJHgTycRnR0dMCl02w2Ee+EtEuUIsY+Bw8eDAQCPT09ZyvhZ44YHR2dfQHpbCGXy53jFIjBXIhx7sQEe/BwjgCp5M1mkwOllDcPG0mxWAz1cILBoCL7S61SAUr5MsRQsRJUNptNp9NsFSHKlyN2EI2jlDOGMDHbypqmQbOBiEKhENusv//q8//mP5/A54t6GnrL+Ekmk5987w3vuvmCHQcnrlnV27CmrNhEIjE4OLh79278e+GFFypZNKsWdd77t29a/d5vjObKLffOlKunN+Z7z4VT7di2/Y6bV37vV1tax2lEzoduu5jb4UCdWy8f/Mw3nyzXp5If3nTN8r98x9WffPOlcNEoNVJuu2Lx4R/90S+f3lMf3/2uOz7l8/0FtVLqR0dHYW7OLs0MezGXywUCAcUWhDVJLYsQuT1zlNOc/f2plEvinTOZzOjoqJwtCNnw+/1KugsJk1dpB5GZ3AicVJgYCm2WHgPFoOev+BCtpSpWrVYh8qZcFM9A5mAYT2l5Y9U1l8txl8rlcq1W43qd3BRi4SCK6B5ShZux6jcPGuLoJGuaKcqOR0nh9kRk23YymWQpRcuyUEEIdE5Ju0IGVzKZ5GdQxqRhiyzKxCMD35qiysAcSdJI27aVbku5C6elneD2XNH0V5BErVZTROHpHIiL8yiQhzMBn8830wJ/f3//me/PCYADCc41YI3qRRo55vEfDx4koEHP/4KlKAWCkMmdTCbxUgWlKZVK/I5CBjb7Z7i1ZrMZj8c58AmtyWQe2EnSaEbgHJv1LAOFlHcYYYioUS7kz95y2WB35E//4WspLffBG27at28fti9dunR0dHRJb+yCwa56vZ7NHjWJ3vzmN2/evHl0dPS8887r7u6Wr1wE/pVKpV/83Rv+8+Ftml9/500XFsq1ux7d2puOrs5UfvPrR7HnxRdf/OrLlvz6i+/4zkOb9w5PdsTN269aesvlS7kptptjocBjn/+9v//+M9sPTtxx3co/fcsrSJTEYQcOYBhGp+l/y/UrH3jgEG4TCAC1xMoqlYqUZuYbIcWggXq9rtAbvlNOS08CYcOzvNUVjgEOLH04jqhgS9NJCJoNh8PuH7VGo2EYBus0cIEpDlYn8dIOhUKc4wHnA7ViyVBsSpHJhtaRckY2tfkQOWMRRmVZFr6l6TMQWTpKKppC4SqVCoTRmFHLTCq+Fvg8a7UaamC0HXNteh6RhFTMc0NZNUASrIwDhPMEkzydTssnLhQKFQoFhZU1Go2JiQmkAzkuPQYAJb9k7hn8vVqrHBCPABMtOWhgmLxFRkv6fD5WqoQGLK+AYBDaxvUFAgHUDeNSQuFw2KNAHjy8CHDMDJaZ8PTTT7/3ve/lf8PhcFdXV3d3d3d3d29v73XXXcc6rSeDYrH4IqVAHjx4kGCbAIvWJCpFSqsCijJ46nGIrKLIFray2BwOh5E0gpxvfIUAFbaKUGCerX/p05DCxAj0VwJyJEzTfPXahV+pP2sYxi233LJ3795Dhw4NDAz09/ejHWQiweodHR194YUXiOjCCy9cu3YtTdfyIiLbtrEO3ZuOfOL2NUTk91N/Kvr3v381DLX583q3bt3a09NzwQUXlEqlxZ2Bv3rLxXJRnLsq68AuWdD93b9+o7vz9Xr9mOVipd0JjXK+cTJVAwVnJAtyBxZqrkqaJJQwePDZjJYNBoNBv9+P2kGSl7JQGJu51EpHUSaMcmnNZhMadzyRWJ/asiy4IAzDCIfDOBAZ8Pz7yDMTktAIO4SjMh6Pc1YSeqXoIuAQZbjQMqTGQId4Btbr9Xg8zpXBAcX4RlyWokpHLiBCrO12xccirXaupITZolQyxLfuVQMWk5Adls3KOxKJRFjpUe6PxYt4PF4qldweYGr5oJCwBJVdwzBs2+ZyqDIMLxqNyhBBEFosbWDlWnGdKfycV0DcRWaVGw2OR3SuBIB4FMiDh2PDHY97YiiXy3v37t27dy/+/drXvnbzzTfffPPNV1xxxUl27+T75sGDh3MELH4wExxRBpGmCxkjqaDRaOCz9CDBO8EiY0QEWxZOJNipqGRSKBRwYKPRGBsbg2dDCX1BxRKcFDrdiHNGTxDtDC2pTCbT3d09MjIiMxbgvIpGo47j/OhHP4Jh+txzz73nPe/p7+/H4WwKK1FGsOrWrVu3bdu2VCp1xRVXLFy4EHkXxWJRCewhlyT0LHVg6/U6wgLRt1nKJYG0uM9FrcIp/C8y7MGmUCPFXYQUhqM8F+xgJJY0Gg3sgCKqSoIHCUkM5qVczps9MChcK0/KLi95XtM0FYE7/hZShO6h4LmqtcqkFotF5JWBdOFe03Si7lZt5g6whqGUApcTnq89Ho9LpTgMhRx8d/lO9EQRGecnBZeARQEUu4MTRsahBQIBLBwwDUCov5wGmqalUqm2qwbyAeRLniXjLhaLIQ/ZTXLINbeVlpFTVy6X0RNIVii+LNR/Z4cen4iXKogoFArxt3iu23YVfp5cLqcIZrijOs8F/kMeBfLgYS44eY5x33339fX1EVGhUIA89OOPP37ffffde++9P//5zz/3uc/dcMMNJ9x4sVhU6ql58ODhxQjbtkdGRtg+YzPCnYxh2zZLllHLEqrX65OTk7zOHQ6H2UKSsWpSZIxaBT3ZTvX5fIgdkkUnYbNKc1PTNE4Z4rV5jjKCdhk+o4esW4ULGR8fRym5LVu2yIX5559/vru7G24NOTJMfvB58+bNzz77LBEdPnz4hz/84bvf/W622nmZnEdSt8P6AAAgAElEQVRs7hYYF32W9l9bIHMD0ljIreKWkUACngN6EI/H4QNh9WQkrHNrCI6S3YtEIqy2zCY4NKxl5xUfBYqKkquCrTSUpdIdRgZ1gUA7Zxe4Y3BtKFkmm01nauWVIUrKcZxQKIRINhjQmDOSB0oa71Zvc2fegxASUTKZlFJj4B58FXLa8BZlrpJwDfElOI6DQjp8iKSdyWRStonVAe4k9gcPVFYN8IEfQBzFgXBth5oLJyqTFvdO3mgsc3DFeRwrF1O4AJE7DC8WiyGfTUppg3s3m81QKIQo2bZKhhKGYUSjUVaM0ETpKkV25VxgQR4F8uDh2Ghb3u7EEIvFVqxYsWLFiptuuumtb33rpz/96W3btv3TP/3TpZde6s77nCPcJaU9ePDwYoSylgy7B0kUSgAPOAa5loHlbrZtd3Z2Ih7Gtm0wGUgywgKWB8oYPLbU2VRC9pEUJsbCkHSDaNO1udECG7LwI8Hy++4j2+yG899uXp1JJ9miwlEQ1ZVhQmy0yd327dtXqGsvjPkiAVqRaTz01NadE9rapd2vWN7DoV+ArGLkxobtww88vefylf3XrF5ArvC2WcJ12l4sEYVCIS5nyV8Vi8WOjg5pjCoJ69AZw2dIfsnQLGnHK9MAd1YOF1LwTdPkECm+HL/fj8g02Oi5XA6S6Jhjcy9HYVmWm6OSK80G1jO+giZYMBiUswtVtuEAkfWIHMdBiR4efOWhwAdExwWDwVQqxc06jgNdB7knboTf7zcMg4Pi5Eg2m02l3it4LGiJcqXuyq1K2SKtJVaOEEpJEUdGRkAAQP/kSLZVkCNR71VeCyfgyVLF7mSqSCRSqVSUZEJ5RTIMD15EebjP5+NpmUwm50iPIVeI2S6nriK7csIGzymER4E8eDgGsF51OlpetmzZZz7zmbe97W1Hjhz50pe+9KlPfeqEmzolcXoePHg4u3AvWkej0XA4jEiqtha5jBdSzHGYSig6qUTWQRLXrU5GrbgmzZX8XS6XU6kUJ9VA2l6xMtv2kDkJbKOrPnHXruE8EX35p8/+7j/eu3Llyg0bNuzevdtxnO7u7ksvvVR63ZUYra8/sOVff7KxVLUvXBD6xSYD574/4C/9egP2efM1S7/w/qs+/c0nv/OrFxzSGs3mu25e/S8fvbntaN/52bvvemQrVOP+7K2X/+3vXytzcmaK1ALcxSWpVXlWXjgJ3Wq3X0v6qRDCJMs0tfWDSRiGkUwm8/m8dPgUCgUUi5O0Ct6AbDar8Ml8Pt/W7J4dSo4ZA4oCfLuVfUBX5DxEyCWSQ5R6RFLwDU4qZWBxCblcLpPJSC8cRhsDwnPbaZXEUULmeBzAAGu1mlJOlIdLXk7bUsLJZLJUKik63aVSiVcNkEJDrefLcZxqtcreP03TEPSoREhKAiNbhpYddpYkXw4jWJ+cBpFIRBFXIBGGxxSF2vFtaPG7L7wt4vE4r3cg2hbxnCTosUeBPHh4EWAmfZhTgmXLlt12220/+MEPfvazn50MBTpNJM2DBw9nEtLIQCUTLveOhd62pqdcLJerzqZpIhptpswitzoZTQ8kU8J4stksKgUhu8B9FDuF9h7Jf+77G9aHX5N0xp/efvj8gRQMvu89ugP8h4gOjBa+9KP1f/3Oq975znfu2bOn2WwuXryYLxb7wMqfmJhoNBpPbT34ia/8Cld8f/aoZ75UnyoRRER3rduxakH6qz9/jr/9yj0bM4nwZ951tXKZG7YP3/XIVvSdiD737cfveXzH0HhhQWfsD157/h3XrVDWvJ988snt27dDZLxer4+NjSkRd6FQKBqNKtn5PCaNRkPqhiGySO4Gsiq3yP3djAIRX3BzyVAorgwTiUTYP+C0JAEUNTBJCWScEtKBHMeBKwl127BPIBBwOypJBEbydmUcYGcr21lyUCaxQDNAhmsqkgDS94iaSHIEeLd0Os3NIoKrXq/LqQXiAXE5mk6KAKRdgdvDzYJAPh4ovmW6ricSCeTC0XRHUDwex7NDggA4rchGeXMLhYL0xcmaTnOEHEY4sngQ2FWluJVAFBWKIr1hTLqOqycIIzQMA4smijwdio8dV4OnA2dZkM6Dh3Mfp5tdLF++nIgqlcrBgwdPuJHTytM8ePBwZgDFJNM0UU+dHQLIM8ZnNl8Ui9kR9TpgxxSLxYmJCei/zXQ690YOqXVa6RYMVAoiUV2nLRzH+dz3N/z0id0O+bJa50e/dH8ul4NWmN2cZgH/Yv0ufFi0aBH4D18sVMVSqRQXt/nuI9v5DFOMh8SG1qnve3qf8tV3Hnre3cn7ntiubHl+72i2UN20e/QDX3q45kyr5Hj//ff//Oc/37Vr1zPPPENExWJRur8ikUh3d3c8Hkf5BzkOsv1IJAIpc+gxtBs5UvaHuLm7KWzBXVDmBlAsFmu1GmpDxWIxaRZLR5D0OeTzeeR0VSqVycnJ0dHR8fHxUqlUq9VyuVwulxsbG8tms6Ojo3JWBIPBSCQSDodlD+UObEnjJkJom79lhTQuwouoPHwLJWUSUyIcDnOftVYZJZmNBvDETqVS3d3dXV1dcHbJqQVRaWpFklerVWiR40DFg0StODHo7/GwKEHybqkAJmBy2Gfy70H5EJ8rlYqi9y3hVtQAFN6OQDtkpmGcMR/keXkWoedaSz9DCZlDJK37jG1RKBQgqVKpVKDlUCqVFAmKc0HGyfMCefBwDJxudgGZBMdx9u/ff8JVkjwvkAcPLwE4jiN1CGSsiKwdiQ9IstdE0UMc2DaDQrZjWVZbrWfLshDjBF04LAwrS+NYtse68kzBb5qm/Xz9Xv73yReGhydKvemIpmnzOqYFER2ZaG9USfExdmHVG3Nah77mwoVPbh2WWwa6oqVSScYvFQqFCwaSrkOP4iePPvee11/C/27atEl+q7xvYYwi0olFz6Czhx00TYN/TxFbmwVSmw4FPbXpCmkkCAwMYkVJHFrV6Ko7UwVuDe6MLLDjDoLSNA35G1+7//kHnzlw5ap5f/3froFbLxwOr982/G8/2TCZL95x9ZJrV6s/Yfmy9a/3Prtl/8TtV533/jesxV2AF1HX9QeeOfTDxx6Zl4l95I1ru2JTtVbhqEkkEl/+0fp7f7vz2gsHoqZx7293Xrqs60OvXSV75TiObdvZbLZUa37pxxu37J947SWL3nb9cp7YPKUhwk5iatVqNZ5aeHykq02J8KQWi0NUG/eBtcud6YWYGDiXdLxAJpH3dPv35O2g6X4tIBqNStU7BpT0FYk8ONBqtVomk8EWeBelDj43y8qQkKFTOqYItc8C6XZGHTNlcp4jaDP0Hl6q2LRp0+bNmyORyG233Xa2+/Jiwvj4+IEDB07sWK4LxIpwbpTLZYhif+xjH3vnO995YicKBoPwJnmYO+6+++5SqXT++eevXr36bPfFw39pPPfcc+effz4R9fT0yMVdJfFayT9RCMwxY2ZYIWCmHWbS4FKA8yqnU/Yf63t1NbwAn436RPf+u1r7+YYWvavpm6I30fzWjvHftD0LR+KxLV4L9Y3Oe91sV0ik28V5B747NO92K8ApLlr3/ruM+rimabxCj87nOi4pJlc7WptwmJ593zHsAu/PKuG2bReLxe7ubiYPaFb2k+8a3y95anmBjqsmDEO510rFT3LNDdkB7piS1uIObkQ7w8PD0C53d0NiMnN5MXk+PodLezpHHiKihh45NP9Oh6Z60nng7mBtBAOCE43231ozu/FtauLJeG4zN1iOLBrtuh6fdbvYs/c/5elynVcUEqtoOkLF3R2HH3T3TTmLPvzkkSNH5s2bJ58ROWLsLpv9kt1QbgTf2ba5Ye6ZwNt57UBr6WpQu7kkcfjwYV3X5W2S86ptB9p2hsRsaTszGUqbyulIOBV5MPmKjjm2mqYdPny4Vqu95z3v+epXvzr7zqcJnhfIg4dj4HhDYI8Xu3ZNhYL09PSccCNzz1P04MHDOYvVq1fL9HRICPC/smipruuwM6QotoTb2EV2B5b/3XaPbdvsRGprKytdgiQ0b1dMwwnb2lSsjNZDenXsst5Kb//l/NUBa/y5QqZg632hyhX9obD/WndPoHKmaRq0dPmrzaXR7eVMw9GWRnOj1UDWDhFR2G+ZPnvCCqWM2pqu4vzF1xKNPzxqHChHA5q9PDK27OKpCtQcpSZW5bfsrqS3VboKtm76GtWmP+izzwuPLVu7CgYfGOnExMS+ffuIqFAoFIvFCy64QOZsQJaNhOtA1/VZKr3Q9Fup3GVXD4mIZJUkjHbbdz7fFAQycaoJvlVuKz4HFizZ0Qjqun/wosucUsHe+EhzbGjqKs67SMv01fduszt6qZS/74k6BxyWI4uuuOaVhtbcmk8czGpEU+lYHa+4fe1lA75dm2nicK1Wm6gHHpgAM3GINF/PhdeuOTpuvxrtoZYX0Najiy6+uTeQ5779eHQFuX57K9HBta+40tCa8kImbVOeRetevSw+eeTIkTVr1iAwDDvzTUEMoTK9FTcalwymljYgtW4rD7KmaRw/Vq/Xpd2P7Cb3feF7gQhAJkjwQeGuyb7hUcWxv/jFL6LR6OWXXy6vHaF3/PAygsFgo9GQT6g7SM/tv2XgWBkLJy+2Vqvxw44+y2vHe8bt9lHmnmma991338jISNsOnBl4FMiDh2Ng9l+yk8fQ0NTvzfz580+4kdPdSQ8ePJwBfOpTn1q2bBnbHI7jJJNJaexCCcowjGw2O4vbJxwOo5ohDBHkqCAoCDsozRJRrVaTWUMo4il3gMGEepdEZNs2ovzR1UQiUSgUOJgqGo1Go9HLrrkxGmre/fW7ZRZBOp02DGMsV8kk2uj4N5tNWageRicOhwCArhs1yzYD+tjY2GSxYtlOOhaMRCK5qjMvM01jKl+uWZUiW4E+n6+zsxOfZZ1WIurq6jp4JBvQrHy5FgsFOB0c14txq1arBw4c2Ldv39vf/vaPf/zja9as4cOV0COgo6OjbbQSAIk/muEu0/TyuAhMksMSDAaTyaOBfFyCE8GNCIFTxLJl/Btvf9IK/7QWWyHOa1z9ureZkyv02g9riY2WSUTBVqZVau9XjgxNiT1kEqFvfv0/iOj7j2x9y2fvJpraKXbptfqNlxG95UM9NK80MjRefODD3yUiIo2Iuled///942f4XB/95wf++e6np47V6C/+5GOrFx7l/zs+fd/GHYeVcUvHzH/+wv+i6eFhRyYrD3zw23yWtRcsu2Pl4nXr1v3pn/7pkiVLeDfUvbFtW9d1yfYhMI1vMYdN01SSahDZyL+zCIcLh8O8BalE8hA5AaBRoUwS900nIsuyFEUN1DiuVCo33HDDwMDAF77wBWxH54PBoGEYSqYNpro8qWmaiUSCXJDlmDgdi/sgSUs8HscKgnzwafraB/aPRCI+n4+lz2nmB+Tqq68+uxTIk0Pw4OEYON3sgt8UJ5wIRESz/NZ68ODhxYJAIMAvnLZRUtANazQaTDaUxWzDMDKZTCwW03U9Ho9nMplMJgNVKBmgr9AbIkLRem4EadOGYcDaRt5RJpPhZABd15PJJBazYfEEg8FQKKTrOvgPEQWpRkThcJjjkViBty3/odaKOwNqwvF4PJFIdHZ2GoahaWQGdCJKJpNd6URXKgLZAIX/EFE8HJT5P1AEHhkZGR8flwY0AoSiQQ2HKAnr+XweY2Wa5pIlS/CmVexjDIJyI2aPS1Sy7d1OOVBNdgJUq1UeeQgw8J6WZY2NjZXL5UqlMjY2VqvVkE7GoUokCANTO5z6cStMLjfAb61w1vGD/2jaUd2J8245qqr3J3dOufXefO3ygRUL8Tk1r2v5Ky/G54dzZBhGbzpy3Y0XTY1S0Bi4/pIXhDbhu29c3p+JEhFpdOuVS9cu7Zbd+MhtL3eP24ded4E7mPO8RX3vu6UVoWfq73/NKuwgHRFwJyLXiFkx+3Zg3Ou6nkqlMpmMuwAOmAY+5/P5QqFQrVYnJibYNWeaZtvA1Hq9PjExgVJFii3RVlNEqqID9Xrdtm3UEpU0DPexVqtBnENOITArBDcmk8l0Ot2W/9D0ckxsivC4ySktE9tkC5J68dqNeyjcb6rjFbs7HfDMJg8ejoHTyi4ajcb3vvc9Iurr6zsZmXzPC+TBw0sD8Xic126lKoAEBKbaxrHAZcE2XKVSQUUat3ycu1kpQ0zT6420BUJrsGCMsKtAIOCusAlTTK6jQ1u5UChwkVbunmEYSkxdtVqtVqtyHwAcb5bu0fR6O5CkI1fQIFSeOQ6qbU68ArnCDUKiaVqhUGDbkQPVcI26rofDYdl/KFnDNPT5fI1GAzY6qy3HYjHTNNl7ViwWoSZn27ZSsEipOJTL5dgSJWGVyjgl27YReVUnTZHWI4fqjtYgNmqPfjN4yYoPrwzVRsuXrpg32HvUB3Xrx+/cvvVAw27MWznIG6uNqVCo1995bfyyi/IjE/NXvcwf0NnsbTQaPYnAU1+644EN+1Ox4BWr5iuhaG+9YdXNly358SObVw92REPGumcPXbSka6ArxiPstISqieh/vP2SN1/9st3DuRvWLDAD/vv3/o7b0XUdv60sSy0vVxMCdHMB5OP4X1ktJxqNsiOIm4WmhaZp7sAwGSmHmYBDUEpInsWyrEQiARKVSqXGx8fdYnHyM8IsMZdA3prNZtvISaUcEwTK275z+JGEBgbPTPcSTDgcRtQcu6AVGQ8SAiFnFx4F8uDhGHD/JJ9CfPe73925cycRffCDHzyZdjwvkAcPLw2gSgmkmSzLGh0dRZSOI4q0SFFmLjPPW0qlEiiQZVn5fJ43Io0B/85kfwQCAaQBzP5KgUAZF6zkyDHUP2lbbRNnZKEzNsrdRVrD4TAXV1EuCqprx/W643o7WHR3J8NUq9V6vd7R0QEZ4lnyoBjy20QiAZMxlUqVy2XU4cH4l8vlcrmsaRpuBCKssEAOOxJ1Kh3HwQhwbUrIrynL5NVqFZVnlM4otWXcPec8IgxFNBotl8sY4Uv08i/rUU0TVEejuk+/x073Bmh4utEeLYy88cJF/O/TRXqqSCmdzvdX88sGCC6jVjuXherUICK6SK8829+V7u8iov4AbSnRN0Yo4qPbU1oXERHd+PIFh5rG90thrR680EcDzaLP5/OFoz/J+Q/WwssuWTngKzmOc9sVi2VnEokEU4hykx60YsOdyVV9NVNXS2DBHMeNcK8aOI4zR5WztsBog9IjH4alDsbGxpCQQ+1uiqTEHPQIjyu4vZL4x34VTdMymQxSjyTjUugQC3zXajXwnEAgIB9MPEruckzYMxKJKKLVcuLFYjGwcbyReHs0GvX7/blczu/34xJkJ6mls28YhtvPdlbgmU0ePBwDCKM/5Rr2GzZsuPfee++55x4iuvPOO1/zmtecTGttSwR48ODhRQckFThCm7hUKoVCIZbc5fgZ7OPz+VDAUTaCr5SFZ13XUSwVvpG2Z1esMeVb2DQs2x0Oh0FspPkFZ8tMZmWxWGwbACOLtLK0gHJRxWIRHg+/3w9Lse0pZgKsvbYL57iomSJzZqdDspOK3wx3ijlVsVgsFovhcBhOCSUOqlwuS1lq5VtN06rVqmVZ7guPRqPZbFZ2EiLa/G8sFksmk6VSqV6vI+oPVVNLpdJ1gVK3z/7ivQ+Ho7FFV1x/pOEjoiO2dsQmIhoI0KBJwVJ293gu4af3XbiQ23y6SF85MvU55TffZk5ubwQX+usW+XOB6JoovcyvZbNEREv0+gdCE9t88Q5TP2zRAzlyiLJEXzzi+0DImO+38o7v3yvphkNUo6co8oFQbcDX+PeJ4O46EdGzFC0GnSuNaeLpSlWcLw3TzlqYiLY1guWgdqVRllFhCHKDNDYPZjqdBjEIhUJK1NZMAM/x+/1SmiIQCKCAKUIWFSoCz6eyfppKpVCVlfeR2tz87ESjUTxoiCzlw+VSCHri1i9R0sC4/7gEIiqVSkgeY8l1nAUeV/BzpspgSsrbQNd1rgNL4l3EhAcy3PxMoRuGYbi9xGcRHgXy4OHYiMViJ0mBfvnLX+INUigUDh48uH///s2bNyOa4uKLL37HO95xMo1Ho9GTWcfy4MHDuQN2VvAWuIPcJUewj3uZORQK4SsloCUQCLiVx5RTwxqDCT4+Pi7Dz2SCPlAul3EuaYFpmlYqlWZ6IylpGAzuaqlUkjoBvAOiwrAF5VnmUl1UIhKJIKnG3TiJzATlK/BGIqpWq26ONFOFSoCX2GWDGDRd15W4L66zpLWqtfCxLGDQ9sIRXijz+wOBgK7r8EdFIhEchcglJJYkEoloNApWsNxf3feVz3Z3d6+96uojjSBp5DQJs29fnf54HoU6U7Rwmluv1KBHjkYCUrbhM0L6rXpe1/Vo1AwGqdSgITuQaXkSlsWMnqCeb9BPJ6aF3f3ONvt99eesYENsfa5hGlpld/0oh9lkmUyBRiiQDgW7YkcTyQ7WaafIa8POYB3BYDCVSuEGKdQXvlYMyDEpkKzRFI1GEajG/ljMipniREzTRMQj/nVPGH4icO/knul0GpFpcn+5FBKLxQKBAMgMgKhOOGlnou4snoHPhmGAVFuWxXYOCAwofbPZnEk4GyWG0PlQKMTMED7MWq2GQljgadRSpDh3glbOlX548HAuQ+aenhg+//nPK1tCodAb3vCGG2+88fLLL297yNxx8t3z4MHDOQK3tTF70HwkEpFKbqFQiE1kGdCi5KK0hcJPEKLWbDaRuKLwH6BtnE+z2ZzJ0DFNk9vBArks0grjTDkERS39fr/MW5ip0qLMqXAD0VP5fN5tHfIw4qtoNGrbNhIbIFInD4ErAN+2PRG3aVmWO+u90WggO6harfKYSw4TDAZBUYrFomLLygt3XOU4sSeULeLxOAfgybNXq1VU1M1kMuBFoFhxBK45pGlTIW1RP4Vcpu+9WbonS43p49ebiGaMKXcK79BjRP+gJ5r0O188rO1W1TeIiFJ+R9O0mG9aW1GtGZouhp3Qmj6fr9ykb1ZTe22divQqi+5o+RIi03uY0JrSwQLjG4GFvA94u0JsWDDdDclz4JLl+y69bc1mE4RHupui0WgsFmONPmhXSFdeMBgEi+B7J0+t8B8IhPC/lUoFSox8OiZR7hnO7Is1vgF2jUrNDCYw+JdT1JR3CBcCRgAtP6FS5IMZI0byhL24pwNnvwcePJz7iEQiMv9v7ujr63v/+98vt4TD4b4W3HEmJ9y9U9KOBw8ezjpgGXMCMcwaZHIDmqYlk0mYwgjjSSQSbNZXKpVQKASnCgvHzeL/aTabCNcJBoNuRxO1SsIra9X8GS272RGsfHdrELaCzRSNRhV1r7apOFDU9fl8UlpXuRwstFuWBSOsbRQfgLVqmRcE+TulLCzyguD5YbU37moikZDtt1UWBpLJJBQRlEEjomw26w75cxwnk8nA8GX7UpZhcRxnZGQEegmlUkneMpwXjJFalqsMrsNuXCITpv+H//6bz4Wvp1ogcddD8Vtf1zoLkUOvdg1hqdHiPxqxQ6f0xIbXPri+WLHe/7o1H3vrldghP5Z95O5H/+GZFxYt7B7JVYvjOYccIxDQg4Fl16y58LVX+jS6PkG+ZihU0WRrfqeZ8DWvMqu/rppEFNCcK4PlcDi8rhrea09dwoOTdEWM+gNERCmdXpWkByeJd1Z8bnLwg8Eg2/GS2OTz+ZlKOSmDzFMU/8rJHwwGE4mE4ziQUAe3Z38sB6cprjwoK8LDyffODRTnVZ5QrizEUJ4dwzBisRg6w7QNonNKiJpyoKZp+Xw+HA5HIhHpd8KCiDwj/DzuZQKOOw0EAso6Ap4XwzBmDzE9A/AokAcPxwbeZSdGgT7wgQ+cji4xTNP0KJAHDy8Z2LYNexeWVrPZhNQBR9t3dHRwyU4+RNoxtVoNxpyieJtOp5VzWZbFaSRICcAZpV0Fc1xZq0ZP4ExA5RxlaXkmSw77x2IxSb34W8U4AzjfAOv0lmXBScI7uCP02uYjsQAdlupJOHyQC8R7ynikcrnMWp0zWWyzjzNyx7EQzmax25wFwPT4X9iXtm2jEA1S2GkGvYRIJKL4ECRxlbvx5//7owf/7ZcHKJAkoh/+bPONi1fMW7UYanArInSTiwKN2i3/j0NElPDT1cXhN379F/j2099Y1z2/qzF/KRFtvPvRPeu3ENHOncOtA7R6tVav1p756br0/K4Fq5dmS+WojwqBDOEOa0QOTWiBPX69qQUvoVpXs742UAkZejgcHipMs/X35ivzOkxc1x0ddEWMjtRpVchxrJDCx+Wjoeu6pmnlcjkQCEgHjuM4ExMTiURCodZut6Qix6dQepzILaXodrwobc7u6eU4RoWlwH3K67PKlGDtAUnt8NxhUQOJRpi67LfhIqfIXoOYBx+OBRF3D5ULhJMNlwnNemUHEHt3QeczDI8CefAwJ6RSqdHR0bPdizaQNTc8ePDwYodimZGw4ahlkykC+myjKM6Ktoq3vAVxVmyXWJbllszSWiVoeK2a+RhCZSDPDcUtPgrUiP+FiwYJKnwupl6KUFUymZycnFQyc9CrSqXS1dWlLHuzSDH3XMmpANiItG27WCwmEgk4B7Dujoz29veDyO/3c2ZOW9fW7ONM7fS7lUHmz5Kf4LpM08ThUNvjK63VatFoVGZfMO3kA6WPIhAIwD0o+3bfE9tlr55/eH12eGzgomXxTHJLhX40QW9MExENV+wfjjuba0bsyPBvfvK4kUqued2VhhnM2fSFdXtkC59/dOc1b19ikbZv4wvTB2naXTvw7M5XXrQw5DSaTW2pViEKE03Rqrzf/I+pjPqgQ8F58dDahE5E3fnxrY/uMeORRRcvD2jOokbhsU1Dj205cvnK/mtWL+gPwCnkI/80DsNqBE5Luo0pjczFwi1QlAmJqFAoKJa9+z6C0tOsULj9MUNSFShVvCC8BjLWbDaR14Qtsn6uWxBFee6gTIBqy+hkKpXiQliAO+K0UqmYpqNBQ4sAACAASURBVKk8hrhApk8S0HKUI3BMxcUzBo8CefAwJ4TD4VQqJcNRzgWYpsn1zj148PASAPtbSIiJaa0aL7B9FZOL8+axGxLu4Slqq6tL0/WyAcSkKZ6cZDJZrVYRZRcKhUKhkDwX94Sr3BCRaZoyrcK2bU5VSiaTWO2WsUlSqAr9lPVVuG/4gFga5F4ruroyloxcXIWFs7hXqVQKRZOgeSUHUIY9g1oEg0FceFtjVxnner1eLpcRMjSTi15ZvEcAleQnzMqKxWIwGIROl6KXYJpms9lUYq74wFKplEqlpI/CnWZ21QUDP9z4LP976Pndh57fvf4HD9340TvnrRx8cJLemKZyufz9Ud9m29z6yIbffnvK4bPt0Y23/80fhJPRyKJpFb1T87os0ogo3p2eHBqjGTCwdP7tZg4d7tKbH+qhh3NUa9JFMfqBOEgjWlfS1ybo15v2vOOT37MbTSI6+NiG//vnt3zrwS1/8fXHsdufvfXyv/39a/kofnwwsJDCw62ZJaQNYGXCSqVSr9er1aoSppjL5ZRYxzmCVxAUH2ZbsOg8EeEo+S1Lq0tKgxi/YDAoPaLNZlMS8rbPnVINLBQKyZQeFGLmiE3btvP5fLFYhC8a7RuGUalUgsHgTJEycCidC7VQFXgUyIOHuSKdTrtTS88uUqnULEmcHjx4eNFB+luoZdkrtq9yCExwpknNZrNcLkej0Zl0dand4i6EeuV2yDcxU0JUjOwJ0wx38VMADhz+l+tIKukHkgIRESx7rtIjO8lcBWWOgsGgIlLMbebzeUTZsUCCIr8mSaC8qFAoxNFNKNsqh72t8JccZ9M05YjNIhnHxVWU2Cpq1dOk1t2EUQszFEvpuPBsNhsIBNLptAyQ4wPhpmMfhWVZcPqFQiEQJ7/f/8G3vvre7blfrT/UsKaFJG1+4Ml5qwYthyyHSqXSFjtDRJvufYx3sOvWMz/99bJrLty27hl5YLUwZQRbNbbaHSLflItH08hx+lct7r/0fI2moipCodAaP62JEBEdtugH00ep1qT124bf/Y8/B/8hop1b9g9v2/+1+5/nff7395/8xO9d9r/u+u2zu0ded+ngGy6dP3Vix7Esi018v98vnSQ03f8GYPZKr6CyNCBjHRHZOJNamoK5VPKl6RIX0E9XgjxjsRhTGlkVt1ar1et1SC/wLFUWPmbyvcgpKjVUNE0rFArKAgG/YTRNY2U5mj6Y8kShUAhrDRxke464gMijQB48zB2xWCyVSinv0LOISCRyqgQVPHjwcC6Aa/KAKhSLRdgi7A6SS8iwibFQzQE/0hCZSVeXWqYemyOIgYEEHFagoSCnJEIoQUHyXNB2m311HCZppVKRsUlEVCqVZLo2tTQhOASOhAXGgGIVi1y7yUm5XGYhOzcPUaTV5PBOTk6CUyGVgnfL5/NwT7GfgQeTx1kZMWgkzDQgKK6ibKxWq2z1um30aDQKHWT0AZ4K0Dy/388rYjxo+LfZbLK7QMqj1Wq1b3/y9lWf+N7I7iESgtVNy6YmXRVrGpqPiJb661sbwYY1bflv+2PPbH9sGv8homaLOTQqPLxC68BxiOjgc7uae/bHzp9SG0MoF77vMWh1hDaJIVzRKF7x4W80mtOM5rrVKJSPOkbqduPqj3x964EsEf3stzsPv/3SgRYr4aAv/CsFmhUvECsTShqpDCNgWRaWBkBUkOtCM0Ch98eEVF+AO1c5O99iJWIN0DQNChxtFz6kh2cWch6NRrFGQOLaeaB4TCQBIyIlhzAcDkMLwTTNiYkJJcjW38LcRuV0waNAHjwcBxApO5Me6xkGR5V48ODhpYFKpZLL5TjwCQUKwQRYQpraqSHTdItNGtZt7QyZA01ElmWVy2Ws6aIRhAPNQmkcoc/LlRbhwsIZ4ZiSVpFpmkoRT4a7lBAI3kz8h4gCgQDKyPIWrp8DNBoNflfX63VZMNRdEDMejyNFfnx8nNmUlFWQsuAIdcNGv9+P1X006K7FNMP4zQhZUNX9LWaCjDhiXxncPnJn/oGQtrIcpUaj8fnv/mZk9yEiklzlkusvuiNSuIDKo6M+wzBuCBQsS1t+3UWbfvb4tN7gCOdops/gpeev8NdWGrWfho1quY2KOg6p/W4znX+xNl29A/jDHnokR08VKeKn6xL00M+3KvxnxYKOZV3+lFEZERvBf9CVHz2282NXm9RSJpDHokQs+y6g6hEKhZBwRUT1el3G0fEagbwdkBCQk9+27XA4rNzruYtuSygKAThcuqTAGN0i9YFAAB2YZeEDPkNUUsbcwJIEXyPL5bWt3yUHQUn/o9ajCv16pfiyEoKoaVomk6F2BQDOMDwK5MHDcSASiWQymaGhobPdEUqn0259Jw8ePLzYgQLt+IwChUwk2GJQhHp5hZU/5PN527Z5DRj+EMMwuIa9W8aa13TRSD6fR+FFjooxTZM9Tuw7oumVFiE2EAqFYPxZlgX5ZhQVkcp1ypqxmxcpqfzJZLJWqyGjALlApmlK/jNLgI3WKhiKwDO2zxCiQ6JoErfPR6F0JmTZZJuVSoW3IBECPvnjrcXkBu6ytDVRZ4laUsWIZ1NynwCeFZKLEhHreiv7a5r27C6mEg4RXbe6/9pXX6IvGZyw6xSgZrM5YTWHA4m1VFl6x8s/u2//s88fPNpXtKQRERkB/e8+89ZlvcbWJj1uhQoFxUHR4lcOEZEvFuOe/KbkXzdBlkOdOiV0uiJGaYNWR+iiKHXq9FxadbB8809ufHLdA6s67W1jbm6vERGlki8su6T/qpswkpVKRQoPyqEgomazKV0lSAxz+38k/0HJJt4OFler1bgMKzelVBNy9bYNWK6QG1fqPmWz2Uwmo4jUK5oi1CLkCBnFnMe1mKbp8/nAA90+Lpa9VsS+A4FAoVDgQYDGN8sbyNkYj8fd1Csej+PVgX/PnUruHgXy4OH40NXVZdv2yMjIsXc9bYjFYl1dXWfdiezBg4dTDjbltekFCiWwjusOrGdeAdOnXq/DUoHBBDE3auXwKDFmis/Btu1sNptOp5FThH2Qwc8mWrVaheSu7ANYkMxIYYunrRUO+Hw+SG6yhEAkEmGzCTJrIDAQtoatCTImew4DV9O0WCzGMgwcDSVHEhVjeMy585JaICMIcgKxWEzGvylhVLVaLZfLJRIJIsKIWZbFGeduTbxZwNoSzMEkJcOpZ3IQ8XbLssbHx8E/seQvQyXlPLll7cAvnp5SdQub+i1/8MYtvig1aGcjMNzUL9Ir36qlmg4RGUS05K2v2/O/v10Yz7nPfuHrr9nS0b+lFSExsHb5jsc2tb4UsXBEqXld+jWXf6tqv93MrbOiv6hNcYOJBlGVnmqN8V3j9Ee99OZrl3/83x4cHpuSzX7Zoo7/3H3ESQ8uHbQWDk/unfShwZ6lC7b+6mki0oNG/w2vGO1ccNPX7z8y/DTXomGSgOkqI7LkVUjfI00XuiCieDwOJgPaQ61sN+w/OTmZyWR4nUJy5rbSC22hSFzg7PIxbzQahUKBn0Fsn0l1g2tP8f4Qf2e3j/sQyF4rYt8+nw9hsShZZlkWBCQBFohzO1epFdwL9ZE5qkGcMXgUyIOH40ZXVxeUWM7K2UOhUFdX1wksLnrw4OHcB8e9OKLCugT4ALUMNfbJKIYytXwCMFZIWDyKQ4NTI7CsK31B8B2xyLJhGGAmfCwMJiXGTFIFaSNiOZnlpwzD4FgaDvUpFosgD5IKoieI1kP/oV8sleiopQDGUVWyVxz5I3vOn0ulEkKh5OK3Nj0JXknywbBLu7ZarSYSCURSKRVL+d+5RC9DW4KLHclYLO6Y3D8ej8MkZVEEPgppP5BDiMViuVxOSckgot+7avE/fP7LhdCiV1y08qqbXr7Fd9Q8fc42tzRMGYYWz6R+7+8/tH/TjlqlNvT87vz2HUui5cArX5tZtiiWSUqm84q33BQMm4c27bhheXej4Ww/OH771ec927mgZDXmrRwkohdsfbRZfNISP2SOwpXogUlaFaad3/zgf/+f96x79mDy/CWrX3tlNhEljeiiV70p8d3hXUOjl92KBpdedaFvbDy2Yok/MGXZHoz1MNmr1+tYTUDGVK1W43EYGxsLhUJgEYr3wzRNKZzNP7sgKqVSSZJJIoIMCe8jm5JjDnkAx3H4vBKyrJCmabJiFSAj0HRdd8fgAe7aUwrn0YTiPG8Eh9FcYt+s/6a4H51WcS13B0gIS3BBs7a7nS14FMiDh+OGrutgQUpS7Jk5dWdn5zGrEHjw4OFFCiVOyb2qqkhgK64VJXVhptiwaDSKfAbFEcT2OtMPqc7MngQGuhePx6EcBesNvhrsAKqAVe1gMOhW4LVtm1WnACWhhXuibId+cSaTmZycrNfrWDWXWSWRSIQj5UKhEETk2FiU/IqIxsfHk8mkXPxGEUneWUk9b+vIopaYm5uIAqyJd0ywurG8v2x9wgR3WkrlcE0gM0px7rFwuWmabnllnKjH2nV+Mv/1P/6jv5+IEh3N7TE0x3KmOy40cojmr15CRC+7bFV84lD8vq+OLO+pp5NTB7bgN/S1b7r+uje/8rOZIhx3kUjkf4yYYzi/Q45Gz9qh2W1QyyEiMgP6d/7qtm+M0mOs4u4QEVVWvOJVvdsfXTaIben+rs4FHaPNo8+L2ahrmsFDUa1WMfiJRMK2bY6rpFbQWlvvh1t2HJDK6dROuMJdNXXqooQUYbFY1HV9likBSbe2OoSAbdvValXXdXfanrtLcmKQq4wYiTpgbSHFsrkFn89XqVRqtZqbzklhiWazOT4+jnQjjMxMZzmTOLcImQcPLxaEQqH+/v4z7IrRNK27u9tLAfLg4SUMae44juMutcFibjOZOPLbtrshX6Wjo4MrjWqtVGYlxYiEfwYZKbJ7mqaFQiG4xOGbAmeIxWIo2ez3+30+39jYWD6fn5ychOec87aJCI6XtuMgOQaUIZSlbowDAvMQcVcoFHK53MjICCTdDMPo7OxMJBKRSAT1f7LZbLFYrFQqsMaUs0C3NxaLZTKZeDwuMxbcY+jW34tEImzzKXdBuahKpSIrtLQFPGZyC1oDl0gkEqlUKp1Ow6FRLpeR79HZ2ZlMJmU2kWxEodOoHIXL9Pv9e/yxsqYTHdU2MGl6D11WayDRQUSxLUc1EoLTD4lqU7phcNydZ7a+1YiIbKJrjOnLiA6FhFnaodPPJujRPFkO1RUWoFGys/vVl6xZYDRwIBFdHygu1qecNtltm8+vjfDQ4Rpl+SbpMSMizAroSmMCYBjD4XA6nU4mk26OwUFxyhZuVmkKZ+H4TEAh9gpQYEp5FpR9oNPtPpYl15Rw2bb0gxOZ2grNAaiDTNNfL/AjNRqNYrE407VorbLOUNNWqn6dRXheIA8eThCmaS5cuHBkZGRiYuIMnC4SiXR1dSHW3IMHDy9VyLgpEgyEwQn3bv+ANHRk3BSiZTRNQ3I/G/c+ny8Wi5VKJZSaiUajtm2zmYhanMrZNSG90Gw2JycndV2XAWMTExOsjYZFdPltW43gcDiMFH/Wu1N2aDQaqDGPNW/WL6bpFiR8NVorgYdalVXGx8d5HxnPppiGynlZPgvKcm0ZC7cAET++cTPlWoRCIelV6+jogKo1bopi3cJjJjWysVHuxvFy1IqyQ+K7vKfy7GzdwjuHO9JoNGJv+ehXJ0OKSVhwjtIRbUrRGqV9pjaO+c33fOTPI4e2J5OTQ8FksjSRJOtfy+lDzSm2cHWoKgfqRv/kM1qy1PIsrdGrAxFjWYC+PUZ1hy6I0PIQrQzRIzn6ZY4OW/TbFj+6L0t3Zo6mCREROfTKDv1HleR+y4/+vSpYPF+vrvJX9hjBJ59++mNvuPEvN26Ut7harUJ+HfpsbUXP2rrpYLu787gikQjU4RzH0XW9bSaMhLseMR1LM5CDIfGvpmmBQAD8WT6bWIBoq0OAdQcZAOmOf0PIKB58jjJ1B61x/SuIxXNELkNJXDRNs1AoyHPhL0QXzoWgOI8CefBw4jBNc968eYZhjIyMzL6kd5JIJpNdXV3njo6KBw8eTgei0WgqlYIuM14p1Wo1HA4rK9Cwa9mad7sa5BanpQRFQiWZgTAqtkiUaqqQvpXJNmzcz5RZhKopTksgbi4CADAlYRhJSiPj7kCBEolEPB6XV6ckrJPLolUqq0ib2HEcVrWi6Uv4AIs9QKrBDW4K3Vbii+SJfD5fPB5vNBoyNCifz/P1Qv1PaR/2MYxsNJjNZpPJJEa10WhIdsTmu3JPZWsgdQjuOnqZnb2hS66Xe0qeQw6tDVSuDpQ21s0GaYv1+tfLKaIpT85jlcAfLV+u6/p8ooo/VCo1Pxie2OjEx33mRTFtoOkgWhxD4bfrHw6PrbfCtkNrjGqXz9b10KBJf9k/7apXRehbsvyeQxM2DdfpL+bR+iKN1Jsxn7OoPhGfrD7VnM977bYD1xolTdMG/fVtE4cwbplMhuXLoXXRbDYhbuZWGqB2rJVFtKH1bFkW1iDwLZfwAiDn2JbQUiuEVTIQmV/UFm5aDpqNR0NymLbsS64pKKsk8thoNKp4mxFlqrTmlttWVOndfksefyWVbnJy8lwQRfAokAcPJwW/39/b2xsMBg8dOuRerz0lSCQS8+fP9/TfPHh4yQOhJqwooLUrnEJEiCfhf9k+lkutEopxj+Axacmxrey2cjo6OsrlMqzG2Rd6JEFiO0/uoOv6TGveMCWVGCEFbDXKjZFIhF1Dmqa5X8KQkuO8TaXKChcVTSQSM/VN0zR5FLVMPWVZnaaTT4V3+Xy+fD6vZF8gF8sRVX3cHJUlsHm3crkcj8cdx1ECipTRlvxH3nHDMGQBKE3TNH16iJczPZpNo5V6Na01bgiWiGjM0WVEXKluj49PQBOcqderj546YlmWpLUxalwf4Lk9zcnJHkJbmWUaEZHl0KBJgyY1m/S9733/V9u22YkMvf7DRw93NBDa4eFhOQgwtfG88G3K5XJS/IOhPClS8B2uSPTTtm13RIbkA20JrXyKmZA4syrFyak7E4ehdopwTqt0mNK+UjtL1/WOjg6aXjmKZi0IJk0RKN1jWJRnhE+H8UfyFQml75lKhJ1JeBTIg4dTgHQ6HQ6Hs9lsNps9VYVTNU1LpVLJZBJ19zx48PBfAY7IvHfnKwNcw2emHfhwn8+XTCalcV8oFGAOzmTJ0XQrBxnSyHKZi9HflvwAs2RaA0pRFGgY4N9QKDTTZbJryLKsQqHAPihqBQ4Fg0F4mVBNlS+EO4w0J4wSy9/J0yn56JFIJBaLQWSMZqZ8ckzYrSf3UZqt1+tuCgQnmzwKPzHu2lAzma244/B7VCqVaDQaDAbZsP7BnmzvOz9RG9oX7BtotTXt8JSvsd4KP1qLOJq2xF+7NlA6T6+9YE/1c22gQtNryErqBWV2OUmU2YLr3VG0Hso26k26OJBbkwz0hEKrI7SpJIUZ6ELKFwpaOBzesmXLtm3biEjPjQUmhuvpXu7Jnj17HnnkkVKptGvXLmp5PgGpz0Yt9kvi3hGRu4Cp5EjyKqrVquKNJBGTicaz2WwkEpGPnqwZBfh8vmKx2NZlBMBBWiqV2M8DUiR7xeWnLMsqlUp+vz8ajfL0kAPufoLC4bC7RBgRQUyfiOCYlYWVFEAxHzlLxWJxpldKMpnM5XIsc48x///Ze/N4SaoqXXRFRmRm5Jx5Tp6hJmqCKmqkihmZQUEEGVRUFBW7UbTp/qndbdv3Xr3a2r7r1Xcdun08UVFaQfspiqggMwUySUEBNVADBVVFjedUnpznjIx4f3wn11m5I8+hgKKqbOP7A+JERu7Ye8eOrPXttda3ppB5ODTwKJAHD28ICIEbGhoyTXPatGnxeDyfz2ez2TfoEUp2QET79u0rFosLFiw4SF324MHDkQuUMuQ/WanZ5/PBhJXcQxISaWU6HUFtt10uLZ6ellxPRKPRQqGgbCEr+77sLXH7o3AGJj6fLJVK0AqDAef3+5WiKIhDA3WZOl4IbcKFhRakiheGzDpUjUbDnRqBgSiJOmzNuw3ocDgcDAadTt0eaGqzqwG3ZsEx6hVhpYn6PFqnBNDo6CjOG4YRiURM00SWkXy+mAqZyoLnAlEEpUQmdZ44uzIKhUIsFksmk+Vy+Xsv5rYNLOxLLySiWCW7rC9yYkJvOtraipPya03SS216sqznOjJr29v+fY7/46nGM3ZgR9U6hsq7n9/wz3/aevrSWan+we37K5ecdszCWf24mF0o7gXm8/kgTp0pNW9dtfbedmT2CYuIaK1l/o2WPz4U+ki4uKpFj72c3bThlRWLZiwNNr/1u5drDeuURdOOSYxvENRmL9mwcdRu75t30uJkxH+CUbvj2WdBMDA5SETB3WOxGG8u8NOXa6BnvRq/3w9BNreHreeg5J/Is+rr65PUFDWjkN/VbDbhzu3pMmKUSiVUGQa356hRxMLxq1GpVLh6aa1WUwJQIVvCuwPjcYm6jpwxcm2jYCzSV+Ouvso4wJ+URCIRDAbhKJt67+aQwaNAHjy8fhSLxT179hBROp3GlkkkEoHUUj6fLxQKPfdXpgDiMfDvE34dSqXSyMiIVwXIg4e/BGSzWSVo3jRNli9TwBQIm6mO40BGjDf4YeGVSqVSqQTJ2mKxKFMIelpyPWGaZiAQ4NwVZlZKWk4ymYQ+W09DB2VqUGuFY/lQSlU2EovF2GpUci0OBD6fT1ZWUVgNsyzqyFWzO0LR8C2VShDRNgyDBY5lZ8rlMguU12q1SCSiGLIgRSgHCe8TTbIr73RSp+QxstJ5DnFxOByGpQ6PmRIcBbMbfYNGXCwW49q4jFqt1t/fHwwGXxmNbFz1zMYHVrfqzZlL5z9dGPv01pH3nHn0//roW6hNkUjkJ5UuVrBx1TO3/ubhf6zVh/uiX/vYOb94dv1379lORD/54x4oJvzTjQ/++svvuez0BdTtQlFg23Y6nX56y74z/u4/rLZNRNMWPfv2z3yAiNa2Asstq1arbXx44//948eJ6Pfiizfds+H0JdPO66NcXbvxl9tajReJ6JnbV13+pY9tDASVlC2Ij2EnUdO0WCxm2zYrW8i+4V/enl2VigJ8sqc/k6tUSUeHO4qVXN7OyWIgqVtXmjriKMpLga0EZTm5nzh/xGsJ+wvcOKfeoQIYvqUsrZ7BonKB9fxJ4c0Ov9/PGzSQS3G3dijhUSAPHl4/eNOoXC7LH1DTNIeHh4eHh1utVqFQKBQKqOvX898D7DPF4/F4PK5UHmg0Gtu3bz+QfGIPHjwcFmzfvn379u3yTDKZnDNnDgyv1wH5C4B968n4DzgPR80hEgxV2KXzQVb1AQnhRl41Mk0C8nGWZfX0bBiGgd9AGGeaplWrVWz2S7cVikK6B8J/QuH3YEn/K6wGlSshjofuwXMVCoUgtMVd0jQNriTqKK2hUqTUpIH6HHceMWby7oZhcBgzl+UJBoOoCes4DqL72FWimK3UKehJIg8kFApxYU23FASA2kTU4ZyRSCSfz8vnzmFXxZe2Pfmze3C85bHntpBGRP9x38a+mPnZ9xxfqVRS+sSIMjv2di529oyVP/y13wcMmghW6+C7v3kaFAj/tPFqkeIWmN7v/XYN+A8R7d24fd/mHcMLZ0c1GxLPN929QbSqcdWhxzbsvfZT53/51j+1GuNjb1Rqmx9eE3nf0qOPPnrjxo38HTk/UyefQPQPXlbIjvO2Y88QtZ50BTVty+UydjFwL9u2s9ks01G5+4ADph89OzYx/km2KqrVKl4o6driZkEz4GDkdmBRoEqsXF2hUAjXM2c7wFwdWYDLMIzR0VHMIQfI4blbliVX+Gv68XmT4JlWHjy8fiDaAYoxPfeQ/H5/Op3mrcF2u80Fm3Vd71nOjGHb9o4dOxD9ctj9xR48eOiJm2+++V/+5V/c55PJ5OWXX/6pT31qxYoVr6lBxexwm8VyuxdBNTjWOqXuEaAF40ZG2yvmMpSyX1PfdF1PpVKZTIZEXrWmaUq6EXU2qpHAINWrtFfTVKDJFX4BJgDuUoxTQHpLFG3iWCwGi5Y1fKn7KbiFkpvNZj6fV8ICcdxsNqUHhp+UpEPUsaGlXd5zvAgF5PglxMhx592pFPgHRWa5oDTq4OBgoVBgRTKet8IzL8hJ4qPfPvHy373nxAcakd0+iviciq0R0Z4XtnVdqVGza22OT8XLxdZjJTreqFWr1cfq5nMVJ1+uVkLxmN24IOGsCIw7YYrFYr7YVRSobbV9RE2Hms1mnfRizXI3DvyCpu/IdtV4bVdqjXD80ksvjcfjmzdvnjVrFk8ISta40/2VKrGcPKOoQuu6jo0GGWg62fpU3Cl+vx+a49Sho1zWnF1GJLwubki3CfVaJLJ6rzvmMJlMZjIZ5Y1jgqdsRrhFvaWKuiwrrMA0TY75lMraPS929/wwwqNAHjy8ISDvsGdhMjdQquwA4zp27Nhh23ar1WJNFQ8ePByZME3z1FNPxbFlWdu3b9+1a9fNN998yy23PPHEEyeeeOLraNPNFpScHy4/qoTKVKvVnhXlJTXC12lyGd8p5H3lZjMd8FYxdXiIMi7pI8IZ+I56tsDsxXGcKXKvZeNuu1ChghyDxL3q2UMJrgIpW4ZZqXhg2OTtCRlo1G634bXA3bn2kSRajuPIOEmnW9Q7GAwmEgn4tZhzwmz1+XypVArb8DIda2ZU1QEHzj1u5r9X+wq27hARactD7ZP0ypNL+p+5XVzUmS3luzPfsuLHo7QvaBXt0GPNMOlEyRgRFSj0yybtevGJyuwlZASWGvWjT1tGj7+Eb6VmDM5YOs926MFmNGsb69rmzLNP2H/HI+6+pWYMDi+ZP7xozp4NTMmc+eeccPOYsS5qfPKii0477bQ77riDOuFtpVLJXevTMAyFAil7DblczjRNcMVkMolGnA5yuZyS5MPf4mYRcummo/gULiOk9LjbwRdrtRo7gbGboGkaE2ysN+npb20FxQAAIABJREFUUtZtKBTKZrNy8SCHDV9kWRTqSDWWSiVuFmAVdQSXujuJpDWlIvABYuqCSIcGHgXy4OENIRaLjYyM1Gq1A6yAcYDYuXNnvV7nQPODFRbiwYOHNwPDw8MPPfSQPLNq1aqrrrpq3759H/3oR9etW/fGbxGJRMLhsNzThVECI0+x56RFIk0fhGPBhII8Wk8Z3ynkfaFecOA7uBwGI00xpiUyM4ExhW0krT3qKPlOwYKUxjkFouftJos5dNcL4tYcxwmHw4hJQ47TZCZvTyhmdyQSQRao0y1uIe+ozHw0GoWcHR4on+xZGtUwDOUfqWknLaW7npsYaSxSK1VmLzv6/e869WfgPxqRQy/Wfe+L1OYtTt40O7lxx1TC5cvfftoxZxxHRI+1wlXbR5oMYSPS6MnZpzlEZNFay6SFyYv/ObH96Y3hRHTReSfyZc+3TcehFZec0TdjcOe6rZFU/OWnNhT2jfnNwOyVC99y9UWk0fGXndMs1zI79pnR0IpLzkxNSxPRM2W616QLOkpC+K+b/0B4g1UiNE1zhxQiRY05NlKqsNc5WZIPh3gASIqTT9O9sHvuh3IlIqVxxLOBA6OIVjgclqLwYDK6riNpB+SEW8CPAC9I+RGHqDUajVqtFo/HeQ8CfsgpOglZC/cFrwrFB3VY4FEgDx7eECKRCLbcRkZGZsyYcVDazOVy2WwWXnj+V/agtOzBg4dDg3POOeeLX/ziJz/5yfXr1+fz+deaGqQYQKFQCLYslxpE1Ao2+/v6+qQcv+L3CIVCUqNJ/phMlpM9da52MpmUt5siQoaI2u22tAKROQ1m4gg9LgwEZ6ZweqNQKQliMLWonYxtIyJkeiCCDqYkb4qTiDJyOgIJPp9PUgvqjj1zOjVn2UZE9JTigZkCCr2RE8LnORjJ7RWUnZeQpVERfT3Z9lx+1lHLL3rLhvufaresxeedeMr7L6iXqtF4+C6yx2/lEBHZnR7e+K9Xffjbq7Y/s9GMhuadsjSzbc/oy7vNaMiqNay2vfCslSe861y0XGlrDkYhu6xUHCIanDdjcF7Xv5sakeOM//eoFQuOWrGAiFZcckZz+8uBOfO4nYE50y79/F9VcqVwsotk3penCzqMuFarYctAOhghlYFowEqlomka1gPCO2ly8WtlebiXnHJGiajsqTjnBsvoybtoHcl1uQBqtRpvgiivAFaFZOM4L999t0gG0Gw2c7ncFAp15CqXxO84XwAfJi4jIsMwuC4td0bZtTks8CiQBw9vCAh1KBQKUtToDSKVSgUCgRdffJE6+iqHXTjFgwcPrxXHHnvsa/2KDPoPh8NczYYtXRkWKzdi2dPC+f2cJA2Dr+ftJsvJftVc7VQq1Wq1wCim2KBRrEAIKkBfS56Upv/UP3coHSuNLU3TUOayZ3EVTdPS6fTY2BjmBzYZ+CTqmciZAefBlZqmIahMtlYsFuEc4/PuLI7JPDAKUG5Fto/gN/eVvFmujHpgYEDpXqvVajabzEhRjBWb/Shd6m487aelF5xKRNldI32zhonIjIcth3JaV09m+lro84BmnXvdFa36O+y2s/7eJwOR0MnvfeuSt558/RDdvLtRMSZ4stNuv/zI6s1rX562cPbyi95CRPu379388Bqr2TrmLctnLBknM9uf2fjy6hfCydji80+KD6Sow5gmguwc2r997+YHnwq8tG7u288dOPN0nNccchxS+A8R1dsEvWnqxBnKdCzURMKfyhoIh8P8ynBrUt8Mcoto2e/3Y9nLmrNYhEhUU/LEIpHIAUazS0G5icns9RpCaAQa+koAG1/AgyIi0zRlChNrGLAnlu/bs6hRz04CzWYTWzMYOMvcU6dqkNbRnWeeSb045KGHR4E8eHijGB4ehv716Ojo4ODgQWkTVdKRr3zYy4d58ODhdeDRRx8lolNPPfXAXUDsCggGg6AuzWazWCxWKhWpUkWujVjpPXAcx7bt/v5+JfED4OzwQCAgc7KJqFgs4i4Hkqs9WYTMFIB1nkwmYbc5HcksbBLjGpAc+S3FsjdNU4Y2cXbTZMVVpDGqdUqUoowjJiEajWIg9Xqdf2yRayTD2BAjxJ/C0+KeAemBmWwepAoCm54957ler7tjDrVOESHpmqtWq5ySymJcsvNculTiwiT9v1/+xchLu4ho17qX9m/bnRjsO+r4hbG0WLEOXWCOc4OEZtOfVr/cMF587Pn92/YQObvWbSWieyOvjG0vbe1fNGv5MYnhfiJa8593P/vIOiLa88K2sVdGTnn/2+762n9geretfuHif/7IvGNmrH9q40M3jmcX7Xz+xSu/dj1uJ29dLZTv/NrNju0Q+Tb89OGLZ8yB10hyJBlrN6S3isUiF2gi8VKgSK57MnEQi8VCoRCWJQtOKHobqVQKFAhL0V1l2O0PISK/3492epYZxYuGuDXqJaMHXgF5dCYw8GJx6hHHxSmjw6AqlUq9A2yssHsTbxbLyjF6FjWSI5KdNE0Tg+JVXavVUERIFhpGqSu+0ZGQ4exRIA8e3ihCodDAwMD+/ftHR0f7+/snS+Q9cJTLZdQ3GBgYGBoaOhh99ODBw6HDrl27brvttq9+9atE9MEPfvDAv8i7zrVaDaUMcV5RqSKxESstaSWAp2f4E6tjoUBKOp1mXwHfZepc7SkA4el2uw25Z9AbfKR1hMiCwaCUNaNOhXvspiuGkWLZY1NZThc7bZSAPVZmC4VCSPxg2zSfzzuOA9tRanBLbT2+gCGjhkCippiZqf32UgXBcZxoNBoIBHq2xsEFmkt/QrmFTO1gUWYZRiXTw9jsNkez4D9gEpsfeZaInrrtgQs+9X521Cz112f5mo5Dmqad8fe/eGnvxIODFsLm+574z0Bp7YiPaO/q2x48/2/eM3vp3Jee2cIXbX9mY3rO8Di91IgcstZv+vbbZlz4g7UTIx0r7Hxuy6zjFkR8dgVJRA4R0VM/u9uxHf7ipl/dN/jZayZoUndcXUBz3hYok4v84NNqtdqTBTGgkQA1Eb/fH41G3f+aS8eIUhKUy+woLAi1LnqWGeVXjzra6ziAfjrrMWQymVqtBo2EVCpl23YwGES9VNmZnv5Yub9AYu2hD9hVgShioVDgIrCT5TsxuJPs7XQXEWJpEC40HIvFIpEIeNcbt5TeODwK5MHDQcDQ0NDY2JhlWSMjI9OnT3+DraHcaiQS8fiPBw9/Fti+fbs7ruOcc8751re+9ZpEsWU8W88qMewIQgUPjq13HMcwDLl5PFmciXShQH5aUXPiu7zWmqStViubzcq7tNtt7Dcj45zNKXeEEqrukKiiCH+UYtlHo1HpFZFOG+pmBWx+VatVBCnxMJUINNbgDgQCslKkQiCDwaAkJNh3R6ml1yrSrXgJ4OuDm2KyK1/VZeQWcuAxKpMjze6WwY10rZZ19/5pxtJ5UcduaJqpORZpOjn/uWpLN/8ZR61YWduemPnRBx6749J5z01PrXlxH84EQ4Hi7tFOR4mIqqHI7aOtoxK8wDQiJxAN6+ScZlQXGY1ntu0ae2lzYGD6nds6DM3RiGj7S/uuDtDeFkV0ylv04uPP25Y97+TFQTN4TqBydqBikMOxlG4ju1wuI2xS8amOz4ZQS2+326ZpTm2my3QaTdMmC4YHM3czBF3X5fJm7XVFP10p81Wr1aDQoLzg3FXp5oWHU64NpQ+85OCezefzUrxkCiavdJJcK5DdyI4oyYU2j5xS716CgQcPBwGGYYCujI6Ojo2NvZGm9u3bB0/xG6dSHjx4ODQwDGNOBxyO9eijj371q1/dt2/fgbfDIij4U7Eq3MkA8k/JWAKBQD6fL5VKbrFaaWdDaVexvF+T26dWq42NjWUymUqlIuuuSvsMIWSFQgFZQNSJ3JPkDecRkOM4DvxRvCfNUHgCN0LdrEAqs1G3NUauTXpMAhEhRggndV1XxNzccmrNZhNGM8rFslI2BpjL5UZGRqRKMkMqaEFnrFwu53I5tw2tmLnpdDqZTPb19blF8GSbkzmUULyFldCI6HEtOnvlQtxKXuwv5OM+KpOv5WhPt0L3NSJEtDdb6VzVLTLeTdX35Rtr6sY/vPdUPtOoNbc8OVHnNJyIzj3nxDtL/qOOPapzzjHjkaH5M9uk3d+MFmz9zFlpOvaE3f1zirWWrL7atu3v/Pfvtxx6ZW/u55/6P4/efOfjt/zhl//thkqh3CLNIFYNcIgIgaAk1ollWRDQKxQK7lfDrZbunkYJyXgVrQIJrFi5DDRNKxaL/DoAPcUJFIAt41im4bGLFb4mbEA0Go1sNluv119VsQ1hn3jj+OQUUm+lUgmmjtxPUVYg/1gpa7hareZyuUql0rOq7yGGR4E8eDg4GBoawj+ZO3fulDl/rwm5XA4G09DQ0JFQO9mDBw8HgpkzZ27rYP/+/bVa7YknnjjjjDNuu+22c889F6l9BwLovMnUZPmpDB4jl5cmHA4PDAwkEolYLIYckmq16r41p74gO5xEqUREqjCzqtfrk/EoQCEA7suUSCRsPHPPeaeZjSfF6Gw2m9KuQnAd9586dqfP52NWAAML5dTcHWBTWEqEydC7/v7+VCqVSqXS6bScfIxR2b1uNpuK4DL632w2x8bGMFIE2imThh16RBDJu8iaP7DUleEj46Inw4GgdigUSiQSqVQKbE3TNMmTZfu47/pmILN9D+ZSEptWo1EUD3OjFSSiu5/Z0Qk867qYNJJ/Fsu1H49S3wmLr/7mp09539s6pyfoQbVQ3r3hZSK6Z80uPlkvVvZt3oHjnb7wDfuNzX3zs30z2+O62hPt5/dkXnluy8M/vKNeG18tjUpt08Nr0EnllYHPQfITvkB5m8hFHaVb1Q3Lsvx+P944RLWNj7PbhRgOh4PBYDabVQIpodQ3WeMSyqrjWkNEFIvF+vv7E4nEwMCA3++3bTuXy/GnGGmhUAiFQm4HIxyzOAYnUQY7mdCie58C51FEKBwOR6NRFKGSnBBu2FKpVCqVEKTac3fgEMOjQB48HDTMnz8fruFdu3a9DhY0MjKyY8cOIjJNc9q0aQe/fx48eDgkQKXU22+/fXh4eNOmTd/97ncP8IvBYDCdTsswNnmAdBe+mKmLpmmwlW3bNk2TDQtE0ym8wu/39/X1pdPp/v5+JlGJRGJwcHBgYID3lVEaCDxKbleDDOBY2ceVzE3RglMQj8dhfmH3ms10aag5joM8crbs8euK/nPPkXEEO0waWGCSuEYKWElr2HEc2RT3QelGNpuFp8u2bSUVRKFA+LRcLsuBI9AOxzBSIVmG3Ce3m4uIKpVKJpMZGxur1WqxWMzv97OragoEg8F4PG6aZi6Xg3ntdk0oYUjBV16p5MDQZPkeCvp9IW3iz/l6k4g2bJcBDo7oT9d3240WEf0uS3P7wzOWzBfXTGDnuq1E5JS7SEjbauPC7RvWlhLjQeDauDOhaxT7X9o9tmOvPNOo1CyH1liq14JlBsgVVdjTQco7j4ZhlEqlTCbDBbImRi6WRKVSga4Azyq0BPv7+4eGhgYHB2OxWKVS6Wnrsw4bvzWZTEbKzVNHclpyM2UlGIaBQFPqFLZyv3TsclFU5vDLoJQzAqZQunfvU8hvIdtH07R6vS63G4rFYiaTkTIVRwI8CuTBw8HE3LlzmQXt2LHDXZStJxzH2blz5969e4koHo8fffTRb24vPXjw8OYjmUyedtppRPRaS6Py3r9ir5MrFo7ju+r1OozmfD4vS4pNFp/jtqcbjYb0+SilgcbGxiqVClt+8Gwou+amaUJCajITB8JWOE6lUoODg4ODg9LdLTM0NE2DwcSWPc7D9SSzI3haZGZFq9WS3ZAhc3yg5GT39HpJ+7VarcpYOLAv7hhX6VH2v6XNytVX0YdGo+F2cylafyyMUS6X2aeHSSgUCu5oop4WrWwffsJwONzX1/epU2aaYfS/y7Ez59K3neKvpnxtIjpab55nVmOx2FnHzRSNOQvOWsnHmhDRHpg3g4hqNu1qUGJa36xlPf45G15w1NlxOmd4op+pGYMQYAjv2Fhf8wifP/bc49VaQqQtOHvltEVzZGcWnn1C3tF/VY8/2pqQBIBUtFRRk0Z5TxM/Go0ODQ0lEgl20dTrdRYxw3ZAPp+XSwKbApFIhGdVrmEiQkkc971ICFLjubfbbZTlaTQaeMR4qS3LknFlk9kVGKlc6u7byT/RpuKM0nUdbpyeLZBr3iaLm+05vT2d24cRnhyCBw8HE5qmzZs3b9u2bQh8R4mxwcHByTZU6vU6rAr8o5tOp2fOnNnzSg8ePPzZAR6GtWvXvuqVEpFIBBWBpE2PiK9arYYyIOVyWREWw0Gj0YCaNlsbxWIRyfryForSNHw+3EI6nVaUBmCC85lKpYLqh+4ao8FgcLI9bwivyTPuyyQngeQU3CDcbZbVYkCTFzE5UgLb6a6JicwieVOF/ygzgGPFQJTawbhROBxOJBKyZanioHVXelXKayJTHGf8fj+2z5SiKzLhvtFoZDKZeDwOUTt0W1EuVmbV7/eHQiGuLgVdZqSRNJvNRDX7f1190n/7/n0NMqcvnjNt4exqrjTnxEXDC46yqPrZyFjF0dJhMxbrJ6Lzl898bN3upmVrGs09admpV11w1OI5wRc27NuTfWrzyPgAA8Zxl5wxcXuH0nOn71q3VT6wE89dee9VS/0a/WHJ8Ef3vPK8PUNfsHTReSeOt1DJR53W3MzWbemjiejES04fe3rt7tHxtacb+op3nhVLJ2ctO2Zk04522/ZpNOekZanp48/r+ZZ5briFqEiwa5a40DqqiY7jTF21ScaSIWgN7tCe6StwPNLkxZdM05Sek2g0qgj9yTNAoVBQNAz4z1arhaXu1n/jykX4rcDrgPI+XPJINttsNpETJX8uQP+y2azTUfhQtLwjkYhlWfV6HY1P5pyMRqOlUsm9E9Hz4sMFjwJ58HDwMXfu3Gw2Ozo6iq3ZTCZjmibqRSA4G7t6HK4ATJs2zZOA8+Dhvwwsy3r66aeJaOnSpa/1u8FgMBgMQnYMZ7BPXKvVarVaqVSCVcS5Lry9Data+RT1QLlxqTQdjUYjkYji89m/f7+kQIrhgj/L5XLPGqNSOU3CcZx8Pi/9PEpFFJ40+a1Wq8Wi1UQEOscjRQkjv99fKBQQeMM2LnXbW6iOIs9wBjl3Rs4A62uz/eqeByKCerJyr1gsBroC1SzpuIORynahJFSQY8ZwpH4djnlQEFrgrjou5WJksYODYYx+vx9jUXSZYdy//5wFP/j651p9S9/z9itGjl3E7UQ123GcMDkcKHjX6h1NC3JhVHt5x/xNz8+p5LPxwG8fAv9xiLR203rxseenHTubiDI79r7y7Itr//A4Z+GQY6fnzLjyA+f5NSKiU089dfPmzf3J5NiZE9oJvlp5xYoVK+bE9rYzO4p1O1P+0Tj/cYg0fzC4/KLTiGjHM5vabZuIbIf2vzSRU5QO6H19ffw4MpkMZlIS1Gg0OrVqOa9hnnNwTvmW8cXMiyYrvqSoaEA+G9sETqeWqLxARsfxGaXNySSwZeUiuWKhYa34J+v1OruR4fwJBoOWZXGWFCaBfZK6riOEFVGpU/MZBKxiuUq36sDAQLODw17z3aNAHjy8Kejr6+vr68tkMiMjI8h/rdfrigIMEAwGcfFrrTPowYOHIxb5fP6zn/3s1q1biejCCy98fY305B7uxG4+wEehUEjmn1DHscCXKUrTkUiEbRGnU66UW3Zn+DBYPlv20zAM2FuO4xiGoYgKcHWjnhVRyLVlTkK0msT2PMe/cVVT6rYdZW8TiQRy4nkvHMRASlFPFnAIz0m9Xp/MtaWckZLEcmIZ8XicM0WdSUr3yKIrhmEoPgEl1cqyLMuy2M7GPzc4VsrXKrrMuPVzL2c2JS92bO1r37z96CXPnvmpDxDRDL9zdsTSHb/MpF+7bSLBdW+m9Plv3olBdCLoOjWpdu0hoo2rnnnyZ/d0jdyxibTM9j1f/8fvfeAHfz29P5pKpT796U9v3rz5Nl99m20SUcqq/NWKuX3xGBEtSIZXTE9/7dY/8riJqF6p1ss1Mxoae2VCaLE0lsfJoI/e3j8x4VIJUC5+RQPDDbmGTdNUBC3ks1AK9R7gIgkEAsxGotEoGuFlLxfwZGl1UySG8fNS3krW0Hc6uuryRWu32yijDAbFM8b8hzr0G7szByhsret6MpmEaIrP50skEshGw9cPe2kgjwJ58PAmIp1Op9NphKxARwU7doZhYO8zHo+75U09ePDw54V9+/ade+65/Ge9Xl+/fj32UK+++uprr732IN7LbVHFYjHEyCF2JRAIhMNhabcp6QFKjA0RhcNhto+l2wG71D2NMJo8DQBGEhFx2SIJBOCxNDNyfiQFsm1bKgrIXBrwFh4UG7Ic/6OMC+03Gg3TNGOxWCgUglByrVaTG1IwSflPwzDk0MLhcDgclpyN4TYEZeVZ6b/qCYW7Yp8ekney6EowGIQYg7yYhBeo0WgwjXTXn2GbWHmCqIP0H/dtdDrsZeuG7Z8beemUlfOXhDSi5Noq7W3QcToNB4iI5s0dWvvCTvcglL/ff+rsU5s7f3vfE92nJ5jSWKHy/d+t+Yd3r0QBqNmzZ3/Gtp/P5zZbgf5gO2zEIX6AiMpypSpbmdYf+dqi0EiTnPMW3fyH53HyrSfMxcnlEfL38kwoixAFpnpc16uoDnTM3I0ACsVttVpu3ybCDtnjB8qKYFcUY+W6vbqum6YJ6qVkLrkdmEos69TgZYmNiXg87vf7pfQC+A91Xmr3bgu/UFhvpVIJheDxUrAkgxuGYUz9FhxGeBTIg4c3HYgVOdy98ODBw5uFer2+atUqecYwjFNPPfVzn/vc5Zdf/rqbDYVCMqhMiTdDgH4kEkFIDJvjbmNdsX1ls/huo9GQe73ShWLbNoJe4JfgRqR8dk+0223btt3XuBNXbNvev38/b07DPkMiASt3A5xggLo9PBt8HnanzJ+Rw0cOA2xH2SUulir33RXgdlJr2zRNd+kC6RNAeSJY1cjgwqTh2eGacDgMmxgMB8QpmUzats02tKZpqVQKO2iycovsJ9NIpfOVSiWXy8GgD4VCioOo1Wo1rS5htGglP72eo1DqR6P0eImI6JdjdP0w/WqMwsctph4UiHtD0/ojHzh3wbwT590VmFVr2vJDI+C3xusHOURUazRBCeAYNAzjjnoi4xhE9GAr+nehsXQ4qOt6vV5PRU1unzR6z9mLZwaoz6p+9cOnxE39D09tP+/4Of/9g28Z9lkzo6pBGwgEJnuak8HNYJXnxTFsPWHbNktWSN8m6Hc+n2dHX6VS6evrQ8oNEWFpOY6DNxfLTIazIoQeQWiI02NOFYlEXtXAkMsSKpF4X/gk/3rISXOzGumbymaziBrFvPX39yuEsFqt1mq1nq/JEQKPAnnw4MGDBw+vE5/+9KevueYa5aRhGAdF14R1EVBGhkO5UD6oZ3YK176U4LQB5AVhExoSzzB9lNgzbE6zJVQsFk3TZOvN5/PF43FFS5qBXW2nu4Ypg4mTNCulB6ZWqxmGAWUtjn9jIF2bXCE0nHiA847jFItFNvuQByUFD9wRhmzb0SRiVpqmhcNhyUCazSZyP9jTgloxUpQ8m81SJ7AQm/2xWIwTM6CnTEQjIyNyAjOZDHwCyWQSRAg790QEpXI3VeM5DIfDPHCfzyfLEyHiGonscLUR0dXnHXv7Yy/h+hXz0mcvn9lsNvfWWo+XJpjqr8acfS1twRnHrb/niXK2SEQ+n2bbXdTi79514heuOsGyrH/ZFyCixW896elfPYSPFp934onvPu/XX/gevhsM6FeeOV9+d3UjAP5DDpVs3wYtfqZdQ87MlWcd853fPLd7rEIaBf369ZefUCqVqtWqRvTPV6780odOMwyjUqmMjdXkdPH8p9PpUqmEqDNewD2zaAAlqg0rip+XYRjNZhNuUuw+4O6KNw9gUgrRdsMwFDLWU85E+RPMJxgMQuMETGlsbEyuwymcWtR5H/HE5VeUyzioFb2Svy3RaBQKddwl6lbywHG1WpXdYBcTSgYfmY4gjwJ58ODBgwcPrxPJZLKnDNTBAgeVkUtebIp0ZCWRQNZAhCnTaDRisZjc+pWOkXA4rOSfwHynjp9kMv6Dujccfia/QkR+vz8cDjuOg244jgNfhMLZONVb8hz+FhEZhhGLxdxERcofJxIJRDGZpgm/kxQ8kGFyfNLn8yGESU4yk0ZuRw62VCohZk+OFO3gDB/wnKCCtmKFy/mXygfValVGxBFRLBbDxPYMMsQk9/f3w+qVLkTkCPEoRkdHcf60RcMLivc2U4s/9L4rPnnJ8pyjW44Wa3f5cJpth0jT/cZl//PajaueiWb3/stFCzaPttdv3z97MLF519j5x89dunJ+s57zEbUDQSJaduFpfTMGtz+7+aTlcwLHLSYifHeh3/rXd60ciOhd7k1fF6GtNlsNamCu+pLx+792xc33bWxa9rUXrzxmRh/3nIhYA2Oy6SLh4dQ0DZxfhi/Ct8YVgeSD0HWdV1Q4HG40GngpeNoR7ca+NYVmOJ0ST0inwZ4Ff4odDb5SrkM+7/P53K4V1CBWHn0+n0e4HXcY6X8+n09RUFT8ogy/3w/9d54r7km5XO7r64MunJQ6VNqUwMV8Hs1O8Xt1uOBRIA8ePHjw4OEIAm8b40+IqSgmzmTw+Xxsiil7zErFmHK5jKREcgndopoKBHNxsTTRFHEF2W2kMfAdlXAaGN9caUfTNMuykIYk21EUtOBjwbdglkFOE8Jf2CZXLsaxQjMUyYdYLNZsNlHUBeF2sPCazWaxWGRaq5BGhQW5rVhlB/1A/EvUHeAndSzcKsyyshCIEI4lKQVFpE4uENuycIJBcU7XdXYchdrFucb2T16y/FeNxJqWSUSLWs3jIvR8x1Vwur/8YCNaIV8gbB73jtOHf3fDg3etv/b/VzKMAAAgAElEQVTaaz92yUoi2lClm/fTvRkKaYNhzW4Hxh/HjKXzZy+eY/l0VE4NhM2VF59uO/TNCr03RMvM8fWmaZrZaGoU7jg+aKkx7oqp1Wr9/f3THOdTl6/AmUKhIHuuuMLc06V4WpBsw5/CoYQvWpaVSCSQY8OcqtVq8ROHDCPfEasd2byJRAL+onw+z0w7FAopJZ74vkjICQQCLOPB52Xn8TugUCAueitP4qYs5s6hsOx60jpS4Iq/l8EqcNQdDsr5ZtCLi0Qisuy7nH+pOXmAFREPOzwK5MGDBw8ePBwRyOVy2WwWcTuIwEGyBD6FiePO2JYtVCoVuRUNwMaS1RVhqYNIoJgpTDTUZyQiv98fjUb51hKcOU1EEHpBb9l2VAgS21Iw0xXZa5AuWIrgM7yRDzaCoCPOjuDh5PN5jDQcDoPP8MXRaFTXdWTgBAIB8Bls5GN0UNMGR4LxKne4Wd1YIY1I36fuOCX3eBVg+x+KW5MFLMlAPtZxpl5yC9Ig5vtO1nI0GmUnAB46Hmg4HI5EIvxw4bba3A6C/xDRxlZg0dZn+kZGzFnzT+0PnhANLTYav99VemX3nsi2tUZ+lIhWr14dj8djsdidOS1nERHVHK3mTNDRuNMs+gJEE6VNETpXten3OTrjqATE1izLeqwZZ/6TonbaNyEITt0ChvV6PR6Ps70ejUar1epk05XNZhHxxZa6wpFky7VaDRWT5HTVajV+vySrB2Rr6KoS4iir4ki2gMw6Xdc5LtFxnJ5S8uDn8oxsR9d1n8/HGwoQc5fjUhQU/X4/OL9yF+kaYq7O0nAkSJqu6wMDAxyOq3XqFyM0V86GfCP4T/65QMUh93gPMTwK9BeHWq12++23H+5eePBw+OFOmfDg4fACLg4Z2CPNJpg4cArRJJpjIBjK7jjklUE2lLKM0KgsFouy4H0oFDIMA+JsCqdCLSBulo1RFCPilom6HEdEFAgEUNVHekIQmxQMBnVdh7UKuwqfIuaHG5cBbCSMUXRYXgxCBaCcaDqd1nU9nU5DQwJ2LWtq8d15Wur1ulSiYyjb9sqzk8d8TSKRQEJXpVLZv38/Mtp7VkSRZjQemZvYQDEMDjGc8fv9k4Vi+v1+ZdJ4xvr7+wcGBsrlcqvVwvMdbXcN9pV6O7X5Kdr81M5p0064/PK4Zp/S3Fd49n6eIrjvNE3b0Yx1po6kc6KmB8hWT5JG5FCmRWWb6qUSbr3HmaDxOUevOr6wZmudwk3S7YN5Qz4YHhzqfirTpQhM89gty5Kle9wOJYUz4E9sOvAK55nvGQ4qfY8yAAzbBJZlsWOwVCpB/IMfitOd4oW3QzbOshlAPB7nLB2nI+auRFSyXxFhqMFgENMFwXoWZuQ2nY5Ud7lcRlPwP/MFUIRDV6HE0FNGb+KBa1oqlSKiSqXCPz5wQbtn7xDj8PfAwyEDZ+a5M+E8ePiLxWRZDR48HHrAauc/uXgLCROHg0wQSKZoBqDch2JLccJ0NBqV9RCpY88p4THQJICrRCmKImvdyE0E2W1U5+TOQ7eX/92p1+sQpwYl0zRNUinYRm5/kRL5o3A8xCzxnzA05accIMfvu6wPiw17eSNUEYXaHlcTmszVo+u64nmT3qF6vY44N/Sq2WyCkvE0KurGrHwwGaAWzcNvNptcyNUNJUFFzonT0R9DU4uM5t3CRxLauQkD2bt3L5QA5s+fP3PmzF27djmO09/fj4K/jUbj5Gjsj0VM3cTXA5pznL+5uhFUsk40hxyixWEKWM1Kp2jpcqP+dGs8jGplhGalU9AuxzRKh5XjOFgqrOTRc7okK2ASopAcpWXqJq64HlQZ9j0HNPLaQ7ThFCiXy3y94zjpdHp0dJTfccy/4zhgdKZpctgeWDreDtk9xYEDIsq+TV3Xs9ms4rbiyXGvrv379/ccOBLGeH1iLwZ0tOer6pbRU34ZdF13y1ROFpJ3KOFRoL8gLFiwgI6MZefBwxGCYDCI98KDhyMBMm+EiLBly5/CMEKMCtthuVwOCQOoseg4jmma7nAXblaGt2F/lwNpcBJJDtSpDS/7Ix0jULx1t0+dnB+UH0WIFysFA61Wq7+/n/90S1TDoEfJSIXOyYniYyVgzzRNpUwQjDMZgSM7L+mTQh2HhoZA2AzD4K/gAswGhmnbNiKplKa4famLgNkDKZVM7EDUjYkIRif/CU+XpEByj79nIBYRwXmC4+jCFVpxJO2zPmjmn2yFS7YvvuVP9b0v24GQFUtNo0bGZ0ZsO+az3/nOd+7atUvTtBkzZnA7H4hR2EfPVehY09GblU2tYEKzzwhW5wapLxR8rkJRnRo29Rlk6rS95gxQ61Kj3GoFmZ69M1gKac6mtrk04ru8nwyfYRhGpU37LZoTJASVgenV6/Wa48s6+ozukkcSGYsqZpy6ST51O3YA5LxB3JmXGZcQpY4KCFfUkU/QzX+UikDKasHmBZx4XGuLiOr1OigQVNehzRCNRqWfECRZeaPhI9I0Db7NarWK9whPH7cIBAIsyA6XIH+9VqvJCsiIVYMYI1QNpa2IAsokXlXMVbPZROFg2VWwa9lVy7LcMRcHUs7ozYZHgf6C4PP5jj322MPdCw8ePHjwMCkQsYZd8FAoJCkQ6Ec0GuU0GBKxOoVCgYPBFHtXRpfBoKxWq/DzUEd+wJ3fwqn2fF4a6NLCw345LCfpp2q326BDSkSZW9Ja/sm2EdTPFM8Y9y0QCMBgNQxDzhIRxePxarXKfidd1zmksFKpYOvaHfzjJlrUyVyvVqtgWTBMfT5fLBaT0UG8bY9oH0kIQ6EQkv4Vi1yZRuqlbqzolVFHGwNJHdwgLwaZEBUOhxWmxMfJZBKP7EUr8OtGfOFXf2xXy89Ydpza+2296OiFo08NJaYXBmY7mi/r2M9XfUR0VqByYaA8c+ZMeDZs20bsmU+jK/vpyn4i0vJ56/zG+LTHQvErQzg/jueL1qaytsEJvFxKXdQsnRk3QRtCfuP9ST0YHDf6R0ZGHnWS91aDbYeG/XTdoD3NsOHefKgZeagVbTuU1qxPRJ05Lit6vJzRinde8IPfsQdGTj4CI1k+W+aYUUeErV6vg5c6jgNfhzuBDRWfeCVLLwdXBFL4J7Qc3L5Edi7FYjHJrCCHwOxdfgXRZWgWioVyH8GyLER+cl4ZC7Kr89WBaZpy7Sm7Enx3LpzKgaaIbuUfDUQnyspj8seHB6voUhwueBTIgwcPHjx4OCKQTCYRN8+QIk6wq+AI6qm55OY/uq7DOyQvg8tInpFJEQzZDowbdjWw/U0dmx5fTyaT0uHDpnk0GpUeCcUUw7Y3EnjC4TD3VtM0tuMVtw/mAd4e9wYz2FowGISAAcxEHkilUgG9ZCsNTgYOT+JG4F/SdZ1vgRElk0nJfyTxQOelQwyaCpCLkLyI+yN7LrmTW69sstJGIBJQgOCEKIUWwuOBW7daLTymVc1I0dGJyBeO/q7uJHztoq2TRnXSm4Nz0TNLG2cmjzQjx+n1pG4/2IhssoIhw/e2sHa6yGmq2vS9/for7USiUfrIkG+oM0ZEAOq6fldew+1qjvZQM3KGU0mn01L0rF6v33rrrTtGMnvf+1lHI9JoX4vuGG1eGSwEg8Gmz/9QK9J2iDTKOMb9Fbo2QlWb7s7TrgadHKOwb7ycKxHNOveSF8c2L3Ec+OhkwV8pn61UPoX7RXkoLGjBZzC9rMCmFONCRSDTNDlmjBuUMai8EnoGWLKaNkfxKU8TbIQVC+XK8fl8uq6z48jpFmTnFiSzknpuRASJFP6TdyXgXWQ+yZmH+BTEuFaryYJmeCNYX0HrlmY5vPAokAcPHjx48HBEwG0ZYPMbx7AtiIhLkfSEYsC5d1tZdBtlExuNhlLPxJ33onX03BxRn4e6DS9oVbv7A8eFaZpoFt4b5ZpIJNJTIQq2FDopbweTrmdeK25ERHBMkUv4xLIsGSjo9/tTqRQnaci4KcSYTWaGMiTxaDQa8AXBUmSyQZ3IJb/fL+WzmImB/imhSnyMojQcsuj2jIECSR7rTgFqtVrIegKPchxnj5OgcYUCapGWsQ3yETnEvVDEDMYc/be1+I62n4ioST/eTxWbLkiMf/rFlxo5X4x8tN9vfqtQv3G4a7UEAoGd1oRsQ87WW/4gda/5xx57bOfOnVb/dAe8yyEi2tM2MAMjPl8bnXGIiHbUHSLt3/bS1joR0doqndC9ggrBaDgchmocXHP8kfRyuCvVKm5JlBIaL8kqCADkSdxZWHzBZH5FfsqKL5Eh1bTJ5Z+E863dbkvFQrlybNsuFApQ3ZC7GPIWiKDrqedGRHA84v0KBoOst6EEuUn1CHQAPQ+FQrKgGRGlUqmxsTFen4ZhZDIZGTV6WOBRIA8ePHjw4OEIhSzoySZXIBCAnK4MxJfJPHwMs1iKL/HuMswjJR4MjhdYpZqmVatVtqSr1arf7282m9JwUbSqUYqUDSOkVcjUo0AgAJok7aqpAVsKIT3MbXRdl2UxtY74FaSulawMd9bB2NgYH7daLaRnuMWClYl1m7OAJB7tdhuKEYikUoxX27YV/xuIH2xNCHNjP16atnhM/KDdYXs+nw9jREo9z5thGGjZMAxOWJcFZKFD0O2H6vq/HHFEc/p87XH+07noT6VxCrSrSTk9yF9vG+adW3afPT3BA2k2m1L2YGHA6g+p5GFkZISIAmN7jELGSqRxcqk+/qBn+Fppzco444v5+JC9q6lvFVsBI91lgWZW97fbEfg62M2Ij5R9AXelWiYA7JZElBq75jjDh1yuJPaoyMdBrs2F/v7+yVTRJNNwrzrItcGtOhkth3o4Uo8we7Ztj42NyRw8tzdYuUs0GlVugVeP3xSMFIRf6by7Y/39/Uw1edfg8MKjQB48ePDgwcMRCqWgJ//JLg6/388lTXVdHxsbYzML+cpjY2OcnCB3l7l8qoyf0TSt2WyyZgDqpeJT27ZzuZw7q4cJAJqFyYgYGCmVBoIka+9kMhmk9CQSicksOQbvqTuOw3oAipmYSCT8fn8ul+M9fgwc1IiF3aS3R+tIYHMMITeoWH5aRwla6Rji39ieg44Zz5Kko+RKguKp4CeCHXRMtRKY17NjnIOEP5FSD305HMOKZe0v6tYDeGewpGvan5qCDzhEyqPQKKTRohBdmKBAI0gyvM6hOLVrtaZpmhGfRt22ep/pVySnIXuw0QouCtFlAz3sz2OOOWbLli1E1P/IL0pLz2ilhodyu85fNgNzEIlErrZKqxqhvW3juKB1xYA5WmsRTVCytGFfknTuy7ZHc4W7/tc/f+ATH2w2p/MEcqEeRHW67y4BAuA+r1SX8vv9XOsGWXzsSiKhcAB9gqlLAEsoTEMpmFuv19GUXAl4QaTrr1gsKml+8NMiLBMVkNGOz+dDQpFpmuizbFbpWzKZLJfL4HuIz5TKCkQUDAZt21ZkspvNphRmcIfdHhYcEdF4Hjx48ODBgwc3wuEw7GYOo3Jf0NfXl0wmkfPAxEaazpwWwtY2uar3UEdmAFU+YOKwO4ivUcKrWH6aXRPIkscONHWTCuXWKLTSaDSkT6YnELrGt8DGtmKcgaVkMhkZ48QDj8Vi/f394AN0AI4d5QKfz5dMJvv6+pSoJ8S5Sa8XMkz4jOyn1il04x4dH2MHHTp45ErWd3cskUjg0eNkvV5HUpNMu5eUjDqJIjiOmsG/mu4fvfNW/GloDluFCzq5IUGN/m4a/c0wzQ9ps5LRtwnXnc9Hg1QvFouZTCbhs082J2a+r7z/tKMG2dmC3hrkvD1QOttfmRUkvzOuoZdv0wMFWl0mIpo7d+5b3vIW0zTb0SS12+buF621j4+MjPj9fqyopUOp0xL66XHtrLRJRL5K4fTA+CM2Necso3xiXP9YtLhi7V1bfvkjEsuSiDjdS+sU9ISIyMjIiIztnBqoLpVIJEAhIBKNuMpGo6F1dLR55mOxWDqdTiaT8XhcWbGFQgGZM/l8fnR0dGxsTEa3JpNJlOdSdALd/MQ0TSwDWZuLiMBAlJcOk4CCy5lMplgsFotFxFg6jlOr1aSERq1Wkyl8gGEY/IohPlP5TYCTSspkExEqjyGHKpPJTPbeHWJ4XiAPHo5o5PP5AwwX8eDBw3896LqeSCTgE2g2m7lcTtFLkJBWrxLhhgOu1ejOUlDOIOIOe95KplA0GgWVgu0urUzHJdAMgxuUIBgMwniCb4RvJ+v2vOq4MCduGetWqwUPmPyiHJFhGEgrkpvrPp8P+eiKrLZy30ajUS6XFRUHqWcNsA2qhD/19/fLQjcKlOg1xYlELquX5z8UCslJm6y8EnUXwEGxI1ki9omf31v67UtHzRr6zGXL3/f2E1+0/POCNOCnXU0aadLyCPlFr3/04/v/+MjaaH9y2QWnpOdO/8JvHv7Imk1nL5v++atPN2bMpzoRkUZ0ZtS46l9/c/sfN5274qh/fM8Jxx89iLKe36r0ZxyDGvTbnH19uFxy9BtrQWT4rCrYHzbaxx133CPxozMD84r7c2t+8/CONeXfb316KPbCg2u26T6tfzC18B1nzDt5ya/zdF3amm3bNcdHRLs3vLz2rsdvfmXvVect/tbfnK/UgHJcuuo4dhe0cT8dNzDPaIG3J5yO1nm9Xu/v7++Z7s8i7/izXq/LLQnQEvQc7di2bZomqgPhlfH5fBCCQ5Aevotl4M6Lw/ONx+Osbkfdr7mizeB0qyawmly5XJYj4iHg+mazKWtPaZrGUZc8XdLLyq6qI4EFeRTIg4eDgPXr1y9btuz444+/8cYbTzzxxIPYcjqd/vjHP37DDTccxDY9ePDwZwS5EducvBwKder8sAA0A7FVMNB78h9yWSS4Bfa8C4UC2zSIkYtEItjK1UQhIxwou+lap24JDDIUMAFjOfAZgISutBdZYErpuXvgSlPIfW+1Wsgp5/PIqvL5fG5pOMclqNVqtbLZLDNAHj7il9zd0HWdo57AdlizgboLwgSDQbTMZqVhGNFoVNM05L6jbEvPHPrJyivhjul0utVqcQ+ZHnzsSzdlwwvJoZdeGfvbf3/o3ecsPyU57seYGaCZASIiOAbr9frnf/b0/X94nogalX2rfnhHcsZAfvd+InrwuV1j5VVHvS+cnj2NiByiL/7o4eef3ECk3fv09lypcdX5S6y2vaXUesEXnXfyYn8wWCbf6la44HQUDog2133bwsGkZu0bnEcOrfnNw9tWv0BE6zbvWzf+jJx9e8b2/fCO6YvnlscKX7zv5aOdyu4lK1MzzMd+cmclVyKiH/3h+VTMPH04TETRaJTXCXg4PxcsDHdBGzwIn8+H+eHwLbhYQTtlO24WAUdHzyA6UCCtW2hRuaZWq8mcJRazhjeYw1+xjCUNZrlqbgouR3yxVCq5xegA/kHAd9Ea7xS4R8RBoexGjkajzL1xU/l6QnxfFrfl+7qn6BDDo0AePBwEfPvb3yaiNWvWrFmz5uBSoHe961233XZboVC49dZbD2KzHjx4+HPBa9oujcVioVCoUqnAe4MKNrZtg7FIA93v90ej0VKp1FMOu1KpILOfiBKJBKf3ILSpWCxylotiQhmG0W63EeFjWZZicLNOVLlc5n1rwzACgQAsy54JEvA4SV9WKpUCj5qCziUSCaZA3LhhGIhVUwAdBRJy0qFQKJvN8jAl7axUKqxwLT1UGHUoFJqsLkrPnXVNFIThC6izYY+ykpxJUq/XObNLgQxh4g5zg6h4o3gn8vn8j/44Is/c+dimj158grvlWq32H/dv+tHvn+/6+u6JFKPnt448/9UfJ6f1n/Pxd6VmDKx7aiMnFa3evHf15r2cZvTsHY9c+j//OpyIWkQtp8sODobDTqOCnKLtz2x0jxF4+rYHX3x8LRHdQ0S3PR0fSIH/AL997MXT3z0Nx6lUCpLi0hMSiURQcUsuHsMwZApWIBBIpVLQOidBL8vlsrIBIasGTW3Wsw92imvgK5N7CvV63V3PR9FbI5eGWywWY18iXIu5XK7ny4IbgSIq+wI9R6TrOmcAIrYT+m/IQIOAOBfCQiBfNptVbnck8B/yKJAHD28cGzduvOmmm4howYIFH//4xw9u45dddtmmTZtuv/32Y4455rnnnusZSu7Bg4f/wpAS2CgKRJ36Nkgvdpf9YSlnhM+x/wTXIwAMEsxQZ+Lvah21AMuysP+N0vXS5FKqoDid0ivwWkACW+uIUMF34U5hknV7wuEwV5bsqRSXy+XcPK2vrw8CU1IaGHyPOjq/SFWqVCrcOKTAQ6HQZJUZHccxTRNMDDJibtNQieRxXIrA7rooNOXOOiDjhZSgRHkZ9OvgG2QnAMuRO51KtYivc9+Rq/QQ0df+v6eU4S+f2yMYDA/0prs39JyxCWiU3zu27u4nzvrrS4N+o9ZoqR9jHkqVzQ+vWXnpWYv05h7NWGuNz8+Qn1YmAkSBxZbzQk0LhIKNSm/l990bt8k/i/tzRsBvNcdvd97xc4gmZgwqCOM90DQkAikpLnC1Ke5WPHpymezyGMWy3MVwe3Ybb8FkOxpQNAG1lnsKrHDd81sAXjr4bEE/lAskQWIoLwsXaGq1WoqTVhkRtN3wHmH5cUUs6i5VFAqF5OuJK8Ph8Hhu2OSCEIcGHgXy4OGN4lvf+hYOPvOZzxz0xi+66KKPfOQj7XZ769atCxcufOSRR+bNm3fQ7+LBg4cjAaVSqVQqsQQCwBLYsB5wku0MeHtkZJRSu4P3azl2f3BwkD8Nh8P1ep0JhpJ8wjftKWUGIJ2m3W6zBU/dCUKNRqOnABdH9UAMmjrVfjKZDPtk0H/FIGMeyNcodV3QgWw2q3yx0WiATjSbTWXSAIWJwZ8ja3fykPkYtqOMjMI8u/fp2ZPApm2tVqvX64ZhhMNh8DSmoDLQiLrtZsdx2FlRr9f7+vr8fj+XDMI1SoY6rOpms4nyR5i6WCyWr3Rdpvt8x8zsfyBPz1dpYYgu7iSdwdFRqTML1Uiqv7GInENE1Ni97++n0+9Nf4cCdV+MC9vt+Xrzh/VU26E+3dE1bb9FIy367A5aFKKNNSKidqstbuCTjbQbKh/unzVUHxktlJsrFw4teMcZa8qFmWdeyJ/y8mNuKZX6HMfp6+vjBBv5LYQjKowC+Tn8aig7CO4aOwzJQ+AegbY73iAsqkajgWQbyamgcN2zTXzKYWZcrVUCpJdFruGelS8LgA40m818Pi8jBtFPpc1wOIxdD8moqZs+gW0qPCcej/N7cdh9QZ4inAcPbwhbtmz5wQ9+QETz58//xCc+cdDb7+vrY86TzWZPOumkJ5988qDfxYMHD0cCUKPGXWAUGsdIjCYXK2CfDL4ra79QJ+1Euiyk0QYHiwxpU27t7g+qoMgGi8Uib5mTS7XM3Wa9Xs/n85yfoMhq27ZdKpVGR0eV2vMAyhlJ5WsiCofD8XjcHatGNGnugbu2LDuLiAg5S3xH5Uo2c4PBYF9fn3QoTaZ5UCqVZCo8EdVqtWKx2Gw2q9VqNpvFrWWiOc+J4oXAGRIMk4gQgCSZWLValRlHiBvkpqrVarVa/fonzpUtn3vczLsasZ+P0Qs1uj1L3xshIoLEn+M4Hzp/IXch0jfhlDjrvecePX3iz78+f9HiEF13yXF88ThDEjxozsnLXm4H2g6RRtm2tr/DaLIteqJEDmmk0dyTFncu1xbPnjDrjaD/2POUUD1t5aVnXvO16x781ntO+Me/Xq9HdydmXPjju3c746Y2uAdN4oFh9TzF1eM4TjQaxYPmFwqa7/w+cpkgZqo9YxQZ0Wh0aGhocHAwHo+DLaMdXmM9q/32dOww3KXD+CNsBIyNjWUyGS5U5X5Z5MXMrnFHqR8oBeIqlUomkxkbG5ONE5FbVkS+HZqmTaF6cujheYE8eHhDuPHGG3HwZriAgGuuueZLX/oS6rjbtn3mmWfedtttl1122Zt0Ow8ePBxGaJNXnSciFCFR9vihkFYqlWD0N5tNlE9F0n8kElFU3er1OkKwmEpJAQA2B/nPdrs9MjLCJT6IKJlMooolvgVa0jPTACaXPOPetOY6P/K+juNUq9V4PC6r+hARR9w1m01FL1jCnZ6hbOdrmgaZBx4X3wJ9mKJ0YzAYhMaDZVmICMJ56aZjlEolNhzdRjbPMIc/UbcWOWQkZAuSfMqvKy0jIwslOxUnEncsFovd+40PvOPvb7J9gUtOX/jrL1953cY6BcZt1qfLlAlX7FoFU/fpK1ZMO2rwe6v3DS84av4pSzetWpPfs3/2ygXTFs398Mqh++59bsOOsXefdez//PCZpVLpby5ePG8o8sBzO+dP73tpX+nBNdvMWEgfHg73xeadsiw1Pd0ZQ9dcaVxbyKHTPnBhMGLuWrPpfafN//yHzvj5A+t/dM/aaqJvyQUnDx9zVN+MgWd+9WAlVw6EzWVvP23aorlFop3pWLs40doLTviCTl1g+EA4M0pOF9iREm2IVR0MBkOhULFYrNfrfr8fXkG+hr2XAIrtHIiJXy6XebHJNSy3NmQPpba1Avlqy8UD8EYAEVWrVahsT9YrznBz/xpQdxpbKpWSmg3cOHVXnQJM02StEd7EOULgUSAPHt4QfvrTnxJROp2+/vrr36RbXHrppd/4xjfy+TwRoWrHFVdcsX79+sWLF7/qdz148PDnBUeI7SqQqscMRKFks1npK2g0GoODg/wnCpjwV9gM6mmO8K0VCSlFOJglyxSbibqNJ/cGtnvTGlFnsMCkXcV+Hmg8WJaF4fM1lUrF7/e32+1AIKBpmqzGCP0GvpHf7+c4QOqYiYogsmJKwpZFHcxAIKDYjm5FbCJCRUieIlRZcZeg5Wg3vp0S7SbnE7/58mEZhqHrOgaCIDoUXVGcbyCWGKMziRJgrVY7b+Xs5ZW7h4eHf/3lzz/77LO6NdzuG9cSCLSb7WpZ3vqi42etO/Z4HB97zvHs4FkxN33N56/AZRtq9Jsxc7cdXbg0sXLp8pv0F74AACAASURBVE2WeUKYvvB3re/to4LWiYeUwXEcR8cf2UQa6QHjpCvPP+NdZ4X8/rU6ffrdJ1199txvV9P7bZ2I5pyw6IOnHPWYJZJjHdra7dgz281arSa1BKQeYDgc5gx+DoCc+K5pgu0jcYg6IV7YPsBHSuFX8CXqBLPh0WidajxcGFTXdXmvSqXCFEh5UwKBANQR6vV6TwXFKboNKBl07XZ7Mgpk2zbeF7lCNE2DD0dJKutZyAs1gql7qaNMqqZpkUhkav/YYYFHgTx4eP34+c9/jqrbH/rQh968uyxdunRwcLBQKCCS4YYbbpg3b95RRx315t3RgwcPhwtQF+hJThTVY9M0kXDSU3AJOUWweFAHBl/XRIFO6WDBHi3n57Tb7Vwup+zpQjiYa6Eo3VNM8CnSvuVl1Wo1n88HAoFYLFav1yuVimRu/C2IuclwO9wRe0MkdHglpeG9Z7YLUcUyGAyyFwvjqlQqipJvMBhkE1PTNMmaqLvyT88pUviqEslG3ZYi0vFhJfP1k02jLPKDNCQlqA/GdyAQYBEwplhKTJ3CtNvtduyFx8fOeDf+PHr/i5SYiEDTNC2h2edEWqsqfgKL8RE5tNSoH5eOcrM3j1Ku7SeidR2dg3VVKjSo5PgmqI4ckzypuTKLfP5Gm24boyGfMz8UusrOP9KK7G0bS/R6WHMmqJRD5KOQjxYE21saOhHlNq9bGBrz+aYpMyOTarDAFHkPXMMLRvEOyY0A9l4y5ySiYrEIrTkiqlQq0CdgZTmI+3FreBzFYhHC6PJ91DSNi5CyT095WFN0mwcoNwIUDxXrs1uW5Q6+xX1rtVrPwqzs++XzmqahEUm2pfJEIBCIx+OVSgWlhHoKux9ieBTIg4fXj5/85Cc4eFMpEBG94x3v+Pd//3f8hn7hC1/YvHnzZOEfHjx4+PMFrAfLsjKZDGsfs9yTYt8Eg0HYcErICkwTBO5zI6lUCuJpSrIKHCxgBbJxqEs1Gg0ZS2MYBmwadEbWQ2TzWtlF7plIDdcKuqrwlkAggEg/tz4vdVv/1E0PUM8HQ8OGvdRUqFar0GeDVht1ly6BB4mnTtO0YDAoTUyOi5NnZDfklObz+UgkMkUcHdMSHECumoiKxaLbUcOX4b/wISg6bwp5Q2skeBR/FA6HEbxHndx96ShYtmzZ/fffH/zlN+rT5gX273rHJRe6B3jVgO+cPno5V5lPlRetQESzj9Jb1WokEAgEAoGtdcqpUgVERK+0/UrQW1yzik7HBAXtUTh1t4zCU/nW0SltyGddGSygSzc3+vgCTSPHodPNxjFWfpsefHL16s9cdsH1Dzxw4JpjvIahQo4VSN3rBGCWaxiGUp8Ha0b69EqlEt4vnkbpANQ6eVmapsFbBZU2pI3JyMwD6T9+HxAriy5FIhGobuBVrVarvP0hA9umCLQDTNMslUrKq00dHy+kHaSeXs/Ay2azieQ3Imq324VCYYp35NDAo0AePLxObNmy5e677yais846a+XKlW/qvZYsWaLr+t/+7d9+5zvfGRsbu+mmm/7pn/7pTb2jBw8eDj2U8PpgMCgzZ5BXA8MIadk4L6vQ9GwEx3CkuG+qnEdleiR8B4NBn8+HLCPDMDhhBmxK3hGWorx1MBhUYnLAiJhc8bYxAMvSLaQmARmrarXabrf9fr8Sisamp6ZpUoaOc9ZRIgb6wqiJ1Gq1ZG17DlqrVCpTiOBBDljmL8lPLctyqxhrmhaNRuGLUyxFMD2I1Mkplcco20Lde/98Xx4LvEk8FsWuTSaTGBSYD7S/nns5sy24cm8j8vDzr5x93FFXXXXVunXr2u32wlMuTKVSyo36+vp0XZ+pUypK5bKz2D8+lj2juRt+v3bjzty7zjw2vOzEqnBXNCr15+98dM/aF227bSaT4VT0mLcsnzN/8HPpyp+aoQ12JKC1Z/ia9zeiRK4AOYH5erNarSO1CV2ap7e2WuNujXqlbj/0yFd2jV580pz3nX3M5twenJfrfzJA3oObpU7eP2hJJBIBKVICEXE8xXLF9fV6vdlsSl8cZNmlF0XTNA7YsyzLLdRBwg/Zs9vU0a2WvsdyuYx3ll8TnIEYvWTRbsV5BprVNC2dTuOXQao++nw+FqBjwjYFFDKp+LUOPTwK5MHD68QvfvELHLzZLiAiuvbaa6+88spWq/Wd73yHiG699VaPAnnw8F8biM6S9hBCnoaGhhS3Azwb0BZTNv6n3tx1g3P3kfaQSqX8fn9fXx9iV9zZLwzZH9RjZYbmOA5LeEOLmYiCwSD2qqXzagrWIRtnKx8lj3CsWLESMl4I+sLYMu/r62u325wwowAZIzIOilsulUqBQCCZTCoJ8QpYAZlH7ff7i8WiZVmwTZFAgolCOtNkzysej0u6KOcN8nQYi5xAeBKkx4k/RfnaWq22L1e99Iu/swKzyaLz/v6W53547bzB9EknncTjha/PsiwlnhCq0Gw6f/gb967eMkJE96955fq/stNnnpxp0Sy9ZZP2g+/+YuSlXbiskCkS0bbVL3z9s+8YWrLinY5zqaZVKvVyudJytMeaYcvRFoZozKJMi5ZHaNhPD+Ydi7TT/NVlRp2IEokEazpfYll7M411rWBYsx//f36+eetedCBfaczukAVlPqGl4d4IwF4DU2iQE8dxisWiYRiosVsulxWS6QZoCdfF0jrq5z6fz+fzgeHH4/FWq4V8IflAkfajxN2BsdAktYbgg5IK1wrHaDQayjul6KwwK3NHYJLgzNR570zTzOfzYNeapqHD3EMekWEY7OCVY/H5fEq+3+GFR4E8eHideOCBB3Bw5ZVXHoLbYU/xqquu+vnPf7527dqHH3747LPPPgT39eDBwyHDPffcs3HjRnlGyeJA8NJk4T2wh+SZUCjUsybPZFDSV2AOIrOFXIFVyo3ge4FZj5vu27dP1/UbbrhBGnbcJY7IAqC4deBdBZrNJjxCuq6jQiXOR6NR3jVnTQIMQebHu7tBHYKBfqJ9IsIMbN68mYjuueeebdu2wfKr1Wo9U9W5A5Ku4GKke3FwHZdP5bJFbkgjlYQjArVren7FPS5kt3Mtpkaj8eg2y2pP7MT/w9d/+t4TEnK6YPgqlFtpf2/JWb1lotu/u33V/6itnRMwqVreMdYYeamHyvO9v1uV2PW0bKrVah1nGHrQ9NntFNFsv+lv1YtESxuNhmUV2u1biVDvFWsS3hUiWmgERnONzVsnOnDT71afn9xCRHfdddfmzZtlVg9ccEhEwbzB66Io8lH3UudH6a4Q1RONRqPVaikuDqw627bRbany574jQ5bWHRsb8/l8P/zhD6e4tfLQ8VYqZ7D2+GXRhA6hz+eTZcR6+rh45t09bLfbcPYiJpAnFsuVAwV5ZnrKKhxKTPpz5sGDhylQLpfxi3bmmWc+8sgjh+y+d9555yWXXEJEH/vYx77//e8fsvt68ODhzcP69euXLVt2uHvh4S8O2tBybcn7+E9n6x+cVx59za0E477TPzfRyP6NzrpbXB91ZfY4W+92Xvnj6+vza+uAhyMe1157LYorHnp4XiAPHl4P2AV0/vnnH8r7XnzxxXPnzt22bdstt9zyb//2b1IxyYMHD3/u+OlPf7ps2TJO/JA6B3KT2DRNxZXBaDQa7MlBfBQRZbNZlh9IpVI+n4/P6LqeTCZ5b7tarcrijIrQgkQ6nZa5N4qoFCp1XnPNNX6///vf/76yuR4Oh1FWkqOPiCgYDGJQPYfwOoBIQihAQAZAZnH0RD6fZ5eO+9aFQuHhhx/+5Cc/+bOf/eyss86S02JZVj6fZ2UwKTvG4LmdzJnGz52IEokEOo8/IZkAOTuEzB34JEBNlM/wgyuXy81m89rvPr76xQwRLZ6VuOWb341GozIdZbKxADxd37zjhVse3kZEEdP/k3/7+5MX/G9cYNv2//jRH295+GX5rUWzkr//8c8Cxqu7UwCUeeXoMpxUjv/PbzZ0OmB891+vre8787rrrrv33nuXLFmCa9zrEw83k8nIyYnFYhBwU7Q9pKsEb9Cr9rlSqSDhDSrtPp8PIuncmmmaPSMw0T1oV0h/7wUXXDB79myFLSAUDSWM5Hl23CnvPmYS0nMIRuU1SZ0CRNLJ4/6pabfbUoLSvUIQWarrOpfwos6E8wwAH/7wh9euXTv1TL6p8CiQBw+vB4eLAhHR1Vdf/ZWvfKVWq915553vfve7D/HdPXjw8OYhnU4PDw/LFBQlAgqAIBvsDATo80eFQgEyaDCzksmkbduw+2EVRSIRaBLwmVgsJgVq6/U61JmnsLNRyYf/RPq42wgLBAJ+v39oaEgx+qPRKCiQEqkF/Tr3EA6kokir1UKZF1b+zWQyPDOcjTM1DMOQ/ZS1lYho+vTp27ZtI6K5c+fOmDFDfrFYLMpOplIpd4lMy7I48ocnpGeMGREFAoHh4WFWwlCe0WuCrB7DDy6TySC4+rdfvvzMi69Kpvp++7+/S0SGYSDvBdF6kh67genSNO3r1w1ff0Vp+77C6Uumz5g+oUPdarW+ft15119x0p827UvHzWQsFIvFT1s8HVYy7vWq4yoUCu7JlCIWfr//69cNcQf8hv6HP2wnokAgMG3aNE3T2u12sViU1JELkkajUffk5HI5qRYo5SvwBr2qIqvsM7LOiKjRaLCGO26taRp023kvALfjr0ggDnD69OlyenO5HCL9lFcSgHgj9xzvIwt1DAwMcJEfHiZKKk/xFlAnBwlPIZlMylDbarWq67qiBcLtZLNZWQTpQMrIvqnwKJAHD68HoEDJZPKMM844xLd+61vf+pWvfIWInnvuOY8CefDwXwnsdTEMw7ZtbMEWCgVObecrsX8MbdlAIMB2qlJ1R1qKblMbdo9CsZAuMjY2pugpI1kCXghpArK6Lt+3542QV4Om6vU6yskr1Aip1e4hvOq8yUKlsFChL8cXuHWNocBmGIZpmtxh0zSlQeweCHblITQst94PJKdA0VCGuAU7ndw6Fshx5/Kdr9r+ZEDNGWiC48FJQTDHccJWNqmNW4OWZfFMQlt8Mv6JUpg8ybMHY7MHY9S9ANBz/giPBusZnsNisVgul+Px+BQRDbwdoIhAhMNhJJZgAcsOcA8hA10oFFA6FpMsOYx7cogomUxCF4S6nyzu3m638amu65FIpGfPZU4X8oKwWlhiG34YTdMwCjlGmqQyshsymwiZTkwquBir7LmSntRsNk3TTCaT0k/YbDalNxKqBsoaACHHT4HSIPuQlfWMt0nqcxzIAN9seBTIg4ceyP//7H17kF1Vlf4+955z36++fTsvGgmQhECCaSQOGEAJJDigCGX5wEJHnaFmrNIZtXQGLbWU0fqJgw7MlFpjOTNiDQzMFKMpcAQCajDPwQTC0IEQExJIB5Lue/u+34/z++Obu2r12ufedDpJd8Dz/ZG6fe45++y9zz4369trrW/lcvfcc8/IyMjNN9/seMK+ffuUUqtXr57dfiml1MjICD4899xzs393Fy5cnFaAIeAzSr7E4/FwOIxaOjBJhfMEpgw+86o7IDOmaaKmB4yPYDCIUB+cD/tP9AFxONw659pQHGRME8i4EZp1oVAImtRkYZfLZdQDpdNgUYkh2LY9OTkJ2SsYrGpqnR81VfMN8WOC14mNapoQpVSpVBocHATRgqcIhLPT6TSbTUcxiXw+jwn0+XxQjuZyWKiQo1+lNA3lUChEFVoFiYIyhMfjmU60M9m7wWBQd3Z1Oh06jhpTPL5L9Qh0BISAmGIzj6g8/hWmFJFXRA/A+rBuwTEwUTwXP5fLzZs3T+e6zWYTatR0MlL2/X6/1+vNZDK6qjLir+hPLANayWiH9KNBIfRJMwwjFotBukB31tGDhvo534CwbRvLz+v10gr0er10gt/vp8I4WP+O0z7Nun+OxFuIHPKe46nRmdiVEJ5PpVQgEKDouE6nk8vldK8UPMnYgkGbgUBACLtzYIZJSv4MkSFwKZALFw7I5XJ33HHHJz7xCUcKdPDgQbzz559//qx3TcVisWXLlu3bt2/37t2zf3cXLlycPkBLmrMC2KCidI/QkuJfUdUdj8cD893oVhOybRspOsLkhZUjomiSyeTk5CT2zm3bzmQyZCn2Uhamlu2pUtepVAr0CTE2/JJ2ux2JRMrlMhKEYO6LIZCXiUq16HV+hEUl/AYQ6aZvqTCoYtVFyT0CUTulVLPZRLVWxex+ahYfGo0Gtt59Pl8ymaQsC3UiEOJj7XabNI6niXw+T7UvVdfcBCgKDurbFFknnpHP53MMuRTdwMwbhsG9aoJQoRHQg3a7jfnh6SLkCeHcJp/Pg0zS6up0Otlslj9Zy7IikQhW0eTkJF/GUPDDQHimimPxTeieUeO1Wi2ZTOpcF+QNRaiEXhwH34Ag8XcO3k/B1bHqROFRxLhSDdNeQMfoTyLehUIBOUiq+5TxCwDxdNRdBbXOZrNw5YneRiKRUCiUz+fpKTebTaTSiT4UCgUaLxYG3ZTPFW6tuvL9vNry3MKlQC5cnDBefvn/kjvPO++8OenAyMjIvn37Dh8+fOzYsfnz589JH1y4cHHKYVmWMMUcTeFQKEQ0CX4e+or2oUn+GCY+LBKEBsViMYQwkXEGu5/+tLuVfHjKSqVSgW0KxgIdhUAgAH8Iz2TA52AwCMOau4/00QUCAUdrD84H0qS2uwVPo9GoXueHdpd5sA31ClF8dD7fqIaBCKtdz01CNB3sYDU1zkeH/ux6gbuwLMviguPwP/S6UCeftm2n02mq6IrcEqJAVLYIU9fpdPgDollqt9uIu6NFhXN4+V2Ax4aJBePoSkKDvCKtUioSiYB+cCsZ59TrdVpdcABSP3k2lwhrRAfwrSPnCQaDtGZQWpeXtbVtmxfS5QiFQtg+QN8cKRBdCGlv/QQEzoHZihZs28ZriMKjjUaj2QXNmKDfAK1Vo6tcH41GG41GoVDghA0PJRAIkFspHo+jLhbJJNCqwAk4k9SxCY4UiD8IcdNgMIicRq6arboRcVyaYg7hUiAXLk4YBw4cwIc58QIppUZGRlCY9bnnnrvuuuvmpA8uXLg4HYBlTCU1HeOgkL7SarWEeaHYPjRM3lAoBJuSTkBmgjDFPB4PN2FpmxZ2KucP3G6mfV/FzGIahWMwz3RGxyHsKhiCPMoIPcfuMoasm6rBYBBRT1yiivus0Jpe5BT8jR8XxjeZvyIwrw/IeG02m2CV1B+lVKvVQglOqNjxC8vlMiefsEfL5bIgNhwiwwRUR019WJQlEg6HoQWHKqjI1ELgHFxbCOgijiGcMLqTRKwcWN6YtHA4DMUF3ggU/NAIsq1457mzAtPOb0dzheKkdBwxb7FYzO/3V6tVuNfS6TTn9qpvKCA1zlUlkGKHiSKGzxsRQ8MTh0eXJjAYDIqSwePj43QJZqxUKhH95uyOmC1NVz6fR9yacMJQ/CGBO+uot47uR76V4BjhJjyHgUAA7yBuSslyPElJTf0RmFu4FMiFixMGUaC58gINDg7ig74Z5sKFizc6IpFIr3qUiM6C2YTQJv6t2IdGoo7wbHg8HvgNRK6OaMexY8LM5aH/vLeO4lToD/xRUITTTxBZ5iIUimiVZVnUQ2RG+Xw+pNmgOCOMRdM0UW7V6/UK7WM11WAFN+DMiuaBcnUAGOKxWCwUCtm23Wg0stksTQtcGUhwqtVq6DDsdWRocHom3CAAtv8RaYYwPHLlET0gVx56KB4KJwBi/Zim2Wg0hKOMcwByEeD8Wq1GgXP1ej2VSinNuMe86Za36vIix84Q3eITy5NSxORAIZr+5Da0aZpCk8Dj8eBaXmyXsrCE3BlO63Q64+PjfeQN1NSXwujKGFBQmeoqHJBUGpYTlxZQSrXb7UQigSBPXiQU6iA6t+f0W18t/IhQPkALCKx1HE4wGKRfBr/fr7+PlmVxCu1IgWKxWC6Xg9/J7/e3Wi2cRulP5JhCjV16HPiJO6GqzacDLgVy4eKEQT8ciF2efZA/+gwJqHXhwsUph85/uO6ZUqper1cqFW4aiku4B4NCm5BHJOxRaoRYimObkUiEZyBg05fKyeNgMBh0DOVqNpukwVAqlcrlsrA4Kd6Msswpcd/oKgV7PB74c6hv9Bna2XoqFFrm+Sq6KYngnHA4nMvl+jsE0FvTNKPRqAglwgkw6/EvVArw3wRlqOvMFke8Xi/C+XgPC4UCNrzIgQPQ5hceAW+WrEx8LpfL/NHw/H46DXenz3ScLGDDMNrtNoXS8WmEPySRSPh8vk6nk06n6XLhIoAPhBZYMBicN28esYhIJAKfm2Mkm1JqYmKCL5he2wSI/cNB+NmEMw0idXwNW5aF10qXN1Cs8A4fC+0sYFWTeGA0Gg0GgyhFhUlTSvE5gZPK7/dT+CJvE+J1+BOcRKfljsDj4CGO0JPU+Q/fZYDICnfY8ipDIkeoXq/rfl3LsoaGhsBw4KXEcTA60zRLpRK9I8VisVgs9ueZswyXArlwoZRSn/zkJ/mfCBTesmWLOH7TTTfdfPPNxECm89t0OqB34Iknnnj22Wf7X/U3f/M3p7dbLly4OKXgtW5AeITN12g0uIXH96Fh08MrQlcJHQWPx5NMJsn85SxFdcPAEOpD0sxIpSCBL9M0iTbgLvq+TC6Xg13FDyL8jFucQpgO4rx0supa53oiPu5bqVTIASJEzHgykh4BSJFCgUAgmUxyrw4H0kJ4y46//6jxwkdBKTo4Qo/PmJqwNDg4CDORt0a30A13+tBqtWhXjhLAANM0UQ0TlCMQCIAVqG7WO/4r0XM8aCx80uDuEFLRFIhVqVQsy+LLjzvrlFJYA5wGw7fj9/tLpVImk4EtjnwY0kW0u4V3lRNF0fmqeCiOhAo6B8j/icViyEuhd6RerxONROEdGj6NmmvNI5UITwRKhmCDIL3C0QFig6g2vsxs2y4Wi5FIZGhoiMugc1LE3yBQo17hfBiLrmbOdxlyuRweKMoTicFiCHyS+2wNoKv6zAsOTKGeOs+cK7gUyIULpZS699579YP79+/fv38/P3LOOeecURSIWxu33357n0sWLlzoUiAXLt4oQBl1XvyRkub5afV6vVQq8d1Z0zQRhY98IZhQRFHEXUipCdATXcifA9uXjGl+fN68eQgz4+k6AHSlwW16qeWSoBYJhdHdwbhwEOY1PugBV46jI3XgXnJnSql4PC6yFBDGprsXkAzDjxAfEC41VGjBnzD6DcPgHYC+H2dKiUQCrphwOAwjFcPh5ERXlwbgDxGOL4KQ4RZuCn1CxJB1gXXDMEAeqPKSaZpEbILB4ODgINoX/jpUmOHtwy9E/jHQRaR1oYinED0DsGDQMq/pROPlgoqO3gYEBMLjkU6nYYtzPx5RIL5lgBQXJOAhoY4aJCk2LrqAwYodASIY+hqGwPTQ0BDvM68NxTkD3mviZlzaBK1Fo1FdSYXvMqADpLIoBksbEIJl9QE5JBUre8oLbXFwGb05hEuBXLhQSinU/CaMjY1dddVVH/jAB+666y5+HAHuXAFm1nrIoXfgHe94h9g+dOHCxRsU8MaITHF8EIkciknrKlalFM4NwzCQUYMfB8f4K/qzWq1yg1UpBXku7FuLMDY4iGC1I4uDemhZFrhHtVpttVr9w/1t2y4UCo1GIxqN8nR80zQzmQyF6yjGrHTzEdClqLltDQYFq5S7VqhZIbYm8vsdi5PyqpqhUAiD9Xq9CKwiPQnK/0GDpmnGYjFMC2WSYKojkUg0GoVmndGtwom0e6UULhR9oIpAKJrEv+pVvlMIrPeBo8B6NBrlinMejyeXy9GkIUkJ7VPGDgaO0EfePiafU0F4J/A5kUhgLYlecZ10XtOJRkdaEb2yTXhlWM5kyOOEukZKs/tDoZDP52u32yLeDySkj2yGDlBiHp+JD8VikaTzAF4bCr5T1PPlZXPz+TwtM2xS8HhIAG4ZckvSeKGyqA+Wpgh/tlotUjWAm078nuCnhuQ0arUathKQ1IQQVjp5zrOAAJcCuXChlFKLFy/WD0YiEcfjc+4FOnr0KD5QtbJpVlJz4cLFmYxCoZDL5YSl6GjxA0SHkBXDDTuqdYMME70FwzDK5bJpmtiwJ9LFg3NgXgtL0TCMQqGAIwgPExoM9Xod2nG6nyGVSnk8nkwmg66KrWik41erVZ6bMTQ0JGJmuCY4kitEABggbGs0wrPG6feTi61RXjjNg9/vB/dot9vcIhd8gP5fQB3JcrksqkDato2EJfyJwdq2TVINuVwuGAwKdxntl8OqFlv7JIKMaaf0dz2xSswhkoumw4X0eCrxFS1CfOA1piCLTHPebrfJn0l6gNz7x1cp5PI4UYdtzXXS+TrnvcIRvecIHqM/yW8J/oBQN2Q0QaKNV7wlwizcGoZhIOlfHNTfOGqh0WhAGZy+opNrtVogEHCcc5RqxdYAaB5Ro3g8TiwIrKZarXIWRB4qhFPSj4ZiK4oPFnIOYudFTZU3gM4e7yF+DdTUHRPbtlFBOJ/PE0FyrLM8+3ApkAsXJwz6fX/11VdHRkZmvwNzLknnwoWL0wFstcJa5aYz5YEIuwoRVoJp6H+i6ohSyjRNxM8Q2ykWi1SxXmQUAJxIUH+oGzwDh77llen5V4FAwOv1wsvRaysan/lVeswMsvztrjwa+I8uSy1sa9SL5IE9MNaF2Fqz2eSy3eFwGI8DRqSwdHuh2WxSKgs/rj8ayILRVOhRQ5Zl2badyWRo0pLJpGmalUqFk17VVUaGEnr/OeT1Uh21+04IwtwH53GsbYpOzp8/nxObSCQCp5meOiJ0CxG1KHyV04TdLXWlunWiqGOQVRBa6kjop4q3Ho8Hxj1IF28ZWwzCWwWXY7PZJB8IVM45hQiHw+BdtVpNJE2hNBDSt1SXURA35pKAfHIymQzawZImCsQj9NrtNryX5XK53W7zoEqKAlVTw1YNJn2BzquuvEEvesx9TfSn0BtU0wiuO91wDl36hQAAIABJREFUKZALFyeMVatW4cNzzz33vve9b/Y7QLVZ56owkQsXLk4TbNvmxUCh+ev1elFdMRgMWpYF5wzOb7VaFBvDa8zzPWAobuEz8knoq3a7ncvlYGc7UikexIXjQrbLtm1s9tOfSBbnFA6ROdhvpr1qHtQnEnJ4HBF04Xw+H+0cC6U4OJ2ofArVlIxEIvl8XnSVDxDGOmd0aCGVSgm1MaoxSh1QXZeCvp8N01+Y73gKenqGqMjE6a7qksZisUjziYgyj8fDK2PyBmu1GuK1RGKV6np+eMgWNDbUtIGOiSFHIhHBDBFzhcck1hX8TvwInGaIPYNyBo6D6NJphmFks1nTNOPxOHc6ITINLgtks+gxYEqpQqFAyx5a1WAXSIcTcY98FKLiraitBB0/ikLHwYGBAXAD4h7ooWEYXCGtVqtBZ9yyLO4RIjcXEpYCgcDk5KQYjh5o1+l0hGYd5gd1qAym4wcWBH8j6D1tH+jqBXxaUCKW34JaEBAuWXIIc1JUKBTmKo6G4FIgFy5OGOT52b1795x0AF6gs88+u0+IggsXLt7QMLoyu6iViYPlcjkajQqpXPgulFKDg4MwuYTOAUc0Gs3lctjlJQoBSSsuryzMQfwJ/0O9XieVKqRxU0F6bofx+CVQLKgp6LoInGmQJi+cNnRQdctHKmaCk5XG7XjIcCGqhwzWXh4DbIQ7iq3xS8SgOp3O5ORks9mkifJ6vfF4HJYf97NxUNQZpfJXKhWeu09dguVNdSpFKRsStlZa7VrV1Q0TdU69Xi8PhaKxEN/m4DqE/Di1QH3DiMBVeDtUwVZMo2EYvUrH4mRIPiC1yefzEbUgttxut8vlcjweLxQKGDvIA6m9K6Xw3Pl0UbggLQaE5NF/oAiBE8uejHvSecNzoVgy1d1o4MIYXH+Ce1BR6tSRpUD7gd5x3nkIQuh90//rF95acg6TRLjqvi9+v5/niZFIYKPR4P4x/i/NJP9TKDRwoGQz8TSd+et+szmBS4FcuDhhDA4OnnvuuQcPHnzuuefmpAPwArkuIBcu3mTQTQqENvEj1WqVn4aNXlJBENnhOizLSqVSxWIRZV5U176EQW90y8DzbAGA8m0o7xl31IVY0Ag3vLglR6dxcwr2Kw9GCgQCwqqjYiN+v18oxVEoEd/5poHwjon7wjjrJbYmLqRrUYKWt9Nut1HJVPXOEQW5olR+zJsICMSZrVYrmUzSn6FQiBcsgnFJd0E2FExwEB4c53FH3ItFpicZxGKS6YGGw2GaDWrBMAyEaaluLSacCQFDuMUmJiYgz0CPCfrXJOAmVBz4M6J4s2q1alkWhWiSaQ5CIl4K4sC0mJVSzWYTTFVN9WZQWJdifE/4NulFAPEjrpJIJMRqQbQbicXx9aOXOuUKaVyUj07jywB90OXUVdfbyVO5xJYHPVaxXQIaxvPEHKm+47KkKULHdGLDAWlEfMYuBnWJtmzmHC4FcuHCAYsXL+4fpbpq1aqDBw8eOHAgm83OcoHUbdu24TdxxYoVs3lfFy5cnG4g84SbdyIjXCll2zZtrxqGEQqFEC9k98gO12EYRiwWq9frUN+iTBI1lR4YhmFZFoVgcXsLdqogP9zEFHEvZDnRt+BRIuCNt+ZoJMFDopQaGBjI5XLYlq7X61Q+hduUehya7oAql8uQHQuFQn20AUTckU6uVNdXg8QP/UaBQCAYDIrsHb0R6qogn5FIBDlUfr8fqnG8hibS0OHR4u3oFjaYgN/vhwuFohMJPN4PGm5k3+OgSJjBHcvlMq0fnAnnw8DAQB8VBzpNaNnp1Xh4sCIxHDFj+gIul8t0pvgPnfLHON/DJXQOQuy47nmj0YBwH+Xh6IxR1B4VpU7x7NAZKGuDiRFR0fcIQCz5gsEkZzIZJBfhOYbDYb4vQEyY90E50Q+9cd4NimELhUKCkWKvwVF1UGmvDKdAuudzrjD3lYlcuHgjgmLhNmzYMMu3/tWvfoUP11577Szf2oULF6cVMCUFDxFWskhu4cbKCd0LvhSllbkkYIceO+4o9ciT7B3LfZADKhAIQO5M7xj+RBJFr2FSgJbw4ZAljewFm9VXFQVVxE3B5fSvKpVKLpcrFovpdFpICHAIxw4ZcyJuCi3zWK9oNJpIJJLJpFA6NrrZLPxy+sxbaDabsMuJQNq2HQgEhoaG4vF4KpVqt9vj4+NUJcYRosOhUGhgYCCZTOppM2LtQaIwm82iBTGrdlclTC/0qbpVaEzTbLfbfG65pJvqZv+Xy2UymkU1HtElx8+cc8ItppzqolqWhcdhGMaxY8e4LU6i5AiQGxgYED5DPiiCYIwQ4hPLEpWOSqUSOZQU27DAtfqD6PVeCwqKVMBSqZTNZhOJxMDAAJ5so9GgkELO7cvlsqCjfLE5alXbth2LxSKRCP1i0Jl8sIL2i6aq1Womk8E2h66wMldwvUAuXMwEH/rQh77xjW8ope67775PfvKTs3nrX//61/jgUiAXLt5k0N0Lfr8fFgNFpvEYM8QXkaCZcrKlVI86HsiKxh1hwfBwL2Q19NnK1QuqIFeHysiIgCs1lbAhW4kXEimXy7y0Il0IRwTOoct7KZ5x0kU+GcRuKa3aDwe2tPUUC9A/R3JYLBapP9AIpm95zRZxoYh/Q5eCwWAkEoFbjF+FZCERBjY5OYlwR2QT9RG/rtVqtVoNbBPhW46eHw7om9HzounNZrP61GGxcZFlHj+JEqLkz4EyMj7AaYPTPB4PpfuHQiFdFlwnV/yz1+u1pyaYUfifHhGKED6biRZy2LZNss4AOikGJS7hfyKBjRYhliXlJvEQVnIrKZZkheXaS/tR77BoikqEcQm4RCIhmkINK3rvEKCYz+cbjQZFLaInlINHmwvcrcclHJSmOkhVoegILVGh1TGHcCmQCxczwYUXXrhu3bonn3zy17/+9Z49e2YtJq1UKm3atEkp9c53vlMvk+fChYs3NLjRBqvLsizU2CGnAec/kUgEXAUmHTL7eYO96ngIWeRIJFIulyl4jMw+sZVL9h/lEdFx2jXnSQjCsQOr3ePxkFqDz+ejPsNGR5gQDwpCEpHIvXZUPMNEqamJTNz5IxwvwqZvt9siv4LqBemOLNiFoB8+nw+5K41GIxQKgbMhY0cv8YS8Hc7xSK+PF8EE4DQQHSANQNWbCmI2KAKqVqsNDQ1NRz4HLgto5fGIKcGQFdM946D5RJ4ML0jVaDRqtRoKs2K9IXKPqLJhGGB0wtUjwrTEbCDznsxxruKAZ4HFT8uASrWqqTQjGAzqewR4vjR2JJ7xczhjxKrmOuzQuOcCj4LdNZtNnqZlT1WnIGVF/sqL2eZsv16vRyIRrvhnGIZwD2KYQp/aZrG1uC+F9+uL3+fz1Wq1XC53XJIWiURQ/og3jppIkEE/Ucf1KYcbCOfCxQzx0Y9+FB/uv//+WbupGwXnwsWbGOSrocAwGGG0xY7TYAgmk0kop9GWdr1eT6fTfOeVi/BS0gK3uqiKIoqW8u12xMxQnAzfDBab6JZl6daMCB5D/xFRg537ycnJTCaTTqepY6FQKJlMIk6JG1gIGeK7zpR74PF4IJGnGEPjPhYymnXnD1gZP8INUF4vyNFxBOoC7w0KU1InG41GOp3OZrMTExM8VkoUjRWOBVzOHx+RXtGBXlpbnLJyhQCRdtUfKAUr0vr5JIABEv8RtE11w//4clJdczyTyUxMTHi93sHBQVI+6DNYftAxGA8+pUQiEQqFIpEIbHeK0ItEIkNDQzqD5R+g5ie2FAuFQjqdJgcsDmLp8tPC4XAikQgGg2hBcMJ6vU4bAcL/QwDP1B01kUgklUrNnz8foXSQ9fN6vclk0rIs0zSxc8EXkm3bpIxCs8db5llMfeiH3U1VKhQKhUJBrBxQa4Qv8rvncjnkFgroSxQy6KlUajqVeU8rXArkwsUMceuttyKJ87777lNKvfe9752FCNd///d/x4drrrnmdN/LhQsXswySnSXDhbaQhTWJiopKYxrtdrtUKtH2v17HQ2kSz1wPmhtGcL9EIpH58+fPmzeP56yLzWxHDTrdcO90OuPj46AE2AbG8UqlUi6XC4UConEMw0ilUkJS2TAMkVISj8fnzZs3NDREG/ORSAQcwDTNgYGBoaGhXj0BLMvigzK6uUYw/mj7/Lh71aTfDbJRr9c58xSxQOL5kguoWCwWi0VIpdHjI9eE6ANNuCMVBETwWH8NYjqZxq6USiaTsMW5PJ1SKhqNcsKA54V0/EAgMDAwACEBNTUsk/vlstns5OQkErqEjAGfc875DcMwTVPooaNEbCaTgfFNoZKY80ajkc/nS6US7wZEBXkjsVhMsDguf8fn3DGAEIwRLYjHZNt2Op0WT5wvRa/XK/x4oMe0eHAOmDZ5opLJ5ODgIPxs/KHDbVUoFBy5otKcSASI2vEpwjOqVqu1Wo1KygJCfC8UCtGIHMtM9VqivVT7ZxMuBXLhYoYwTROOoMOHD3/5y19+8skniZ+cJhw9evQ///M/lVKXXHLJlVdeeVrv5cKFi7kC326nDzx0Ch8KhcL4+Lij5hWpTnHbzu/3w9ARyfFk2EWjUW4kcdFeYU4JW8rRNMSmtZrK37BRnU6neayOUqpcLpO91Wg0YC0pzXAUXEv0Ctbh0NDQ4OAgAueI1IlYIPIYIKuHZ8CT8afTUeVktzUaDdLyxki5YrVixTTFlKpu4BOmQpRexSWOmV2IpqM/dSpIs9HnTwJk0+C2Qs4PPQilVDQahUohSE44HAY7FVUyQeQGBgZisVipVCLnns/nA4/iwhuYAX45FSqlc/SZx1WJRALPlNgUJ9JoE4GCdCHCDslXg+A0ahPK3WJOHOXvphO15fV6+VPgj56gx16qqWRPKQUWzR2kvQD/La0H0KdgMAiyIUIKHd9TeHUo4g5utEwmwx8Wz9PrRa3FfgofL+3jnCEpQASXArlwMXN87nOfw4e/+7u/W7Ro0Y9//OPTert/+7d/wweKwXPhwsWbD8Iewp+BQGD+/PmCA9i2DYkCoXZgGMbExMTk5CSyF0zThP2HbxFFg4KMsViMDCPDMGCwer1e5FQ4Ok+UZg722tBFOyImCiaRGCOnSajcCtEzvm1MhYn6g09RNBrFcPx+P6SxwuFwLBaDZW901X6TyWQikaCEIpp2wzAQdBQOhwcHB2Hii9vxdBdA5IVz2oOZ5zFRhmGgog6fQxKXQ2e4F8uyLEq7IhzXOheyYATupIL/kC85snpR9QhkqVgsQkMvk8noGnpchxqcBK42XvxHuDRpWhKJBKx2sTZU1+EAaQpekUl4I3UVQaBarcJXY5omd2hwxoJsLoxI7BGgw8eN2mo0GpOTk9VqFXKIiCAVb6XYZXDcWeCTI6hmL4hgQjhnEG5K55AfSYA/REwCys5Sg4ZhQEAfrFi8g4K76ulhWBJ4go1GI5PJHHc4swZXDsGFixniRz/60d/+7d9eddVVmzdvhq7R7t27T+sdiQJ97GMfO603cuHCxZzDmJq0DRMZpRVtLQ1aXEvR/K1WS8+FUErxGvbiplB1g3ZWuVzmtVYR5eXxeERpEW70U61JMCvDMCAMIES0aWgwefmIlFKobuTxeKDQRSpzvAXU1gwGg32y/Gu1GkKtYBQSCURnROAfIEKt/H4/ZUORicxLPSK2Tbd0UYAF4Vti5pFQLiZQryGjtCQc1S3WhM99qrJUKhU+4aLwDsaC6rG8cT0tB3+WSiV0WOziU10ggh6WieGbphmPxwuFAm4B+o2gKcMwMN52u00BYHogHKaOWqDZ4DQJS87r9Qp3Bz3TXtRdV66DOEer1aLOYCH1qTtMxY4gthYMBknNHC1jP8Lj8dCDjkQi1WqVJo3XX9LncJogr0sgEOASi44eRaUlKeFB0wLgfBWSceFwmDQeAoEAXqI+YoO8ZrHdrWhkmiaVM55DuBTIhYsZ4rbbbvvpT3+6b98+qF6+/vrrSqnNmzdfddVVp+N2f//3f//8888rpT7ykY9QjLsLFy7OKNx4442lUikQCPz85z/X08SPi3g8Ho/HIV3AbVOSosJuOpn1wruCECkeHQQ30Qn1hJfv5LVWuZko3D5klItKkdS3aDQKPqY0s1U5hRvxI8LQp1QiChmCGDfvDylZFwoFmodSqYRkklwuhwEWi0WIQPBrQVGoxCSmHVvjqpsIUS6Xc7kcbGXqEsG27UqlQkUkUX2VUwVS8OMTCMNdiGLDg+TIUoQcNhxudJquFEeBkYZhIOFHTQVMZxJPM00T2/acsBlOWgUcwuzmBrHf7x8aGuKVUoPBIKTtyuUyqfnRXYgFgQDoAtyqK2gBcC8Hj0YDxYKPCxLh5Czi5FYY+tgj0NXMer1KQvmtXq9DE4LrE6Bl0kyHl4bTgGazGQqFeGdU3wQerBbDMHgjuDteFi46T6GD2FCgBanfkeB40Ov1plIpvivRaz8FoCVBrVGkYi8n86zBpUAuXMwQXq9327ZtN95441NPPUX/Q/zwhz88TRQIWtjKdQG5cHGm4p//+Z9/8Ytf4POGDRtuueWWE20BSRGw18k+iMfjZHjB54CKOmQL8j17RMSJ9OV2u80LIE4TfMucaj7idmTVwboik11UikQ3oCsAJSiY1MgCx7VgWUiK0H0ywtAnmQHRN06BSMlaTxwSAsG2bedyuWQyKW46MDBAEWj5fN4wDEepG1i0uDVPbUKpSn4mr6eklMK39OAo2E8XxVZKidgtMu45yTEMY3Jy0uv1JhIJWMxCNJzmDW49x5QMMpEhUw4fSLlc9vv9wutIcxgMBiFpQMqBjmY3BydFEMjO5/Pc80CdwY0g5k40gBcUUt2IQdjTtVpN+AkTiUQ8HgeNpLvAqRIOhylAEdsE+oTo04j2QWtRdZSelyh2hGGC6+rpMSj+48hCsVlAZayUUs1mU+w44KWgZkFW+QnNZrPdbiPMj7NBxzJN2FzgKzYUCkGaXDTLBcenI7AOBAKBZrOpyyScCXApkAsXJ4VHHnnkT//0T++//378UJJo9anFb3/720ceeUQpdeWVV15//fWn4xYuXLg4STz11FNKKZRDuf/++2dAgQDDMFKpVKVSQdoD2TrI1EdoisisoD9RnASlD2HEwKJqtVqxWEw33XSgfCc3c4vFIlkwwioaGBjgu9RExridSvwB+8f4zCkZSuWQRcizQYRt2kvWzGZqY1TJp0/EFH2GrUklRJFBwStL6oaggGEYsVgMm+v6/ADc7id3AaZIJNDrAJGjiSVrmKxz6iEEwZCtFA6HaQ34fD7qG87plVKFeWu1WnyeSe8O8Pv9lmVhFZECGBQgEGdIZjfqunJddUc40kt9ULZtZ7NZeqao9wo2giOVSoWrvampKgv8LshQokGVy2W+VEzTpOdF0whGhwBISkZC9STykcKrY9s2tNrQQjAYpFsTheB66xzwdPn9fkqeUd1AMmJieBn5E+GRZjQEx/Q83dmF/ohhwq1q2zbEr3G+3++nONI+cOSHIPnkHz7uOzVrcCmQCxcni3/9138dGxt74oknlFLpdPro0aMLFiw4tbe4++678eHzn//8qW3ZhQsXpwS5XO6hhx5SSv34xz/+yEc+8thjj53MTwEi3GD3gMDE43Geqc9Ppj9JhA1VSiYmJugc7EbD4oeCWa/cACJgqkuoRKAXh0hUQKVIHsXEm4WqteP+MeddvG+maTq6LLgJxVN6SIPL7irIiXQXHZzwIH6JBJF5IoSt1Yjkm+JIHeF78wReTwmVankoVy+RLqJkYiYbjUalUsFXMFv56PhcwR/IXRzk9AAt4Wrd/ATh+uBTYRgGr43D68DUajVebZNoM2dHcPQJ65zfzjRNv98v6AG+JaciOgN/lyhEo6fN0ExalkW8Am5S6oaIImu1Wul0mvxpVEWUbwTQyQjhi8VivFQoNPRodMlkEuwCXsdAICCECgzDAGGg+EA+AxBL7HQ6oKa9XkbOf3hNJw7xInDiJ4qlokFKiKLgPcflykEK2gjWJXofCoVQ5Rnhc6VSyS2N6sLFmwQbN26888474Y8+5bpwW7Zs2bBhg1LqHe94x/vf//5T27gLFy5OCR588MFarbZkyZJbbrnl6quvbrVa995778k0qKsk6zu7ghERyVFTPQZKKWgY0Jn941Ko6Cda4O0II0mYRIJv6J95cBpqzCNZwujWliHZZaVUoVCgfkImW98/Rl1L+pMn0qhuEU8E/DjaWyLRpd1u9yrvxi8PBAJUhZMQCoW4XpxlWXo9JQSk0RBM09TdcVR6EpVSOVP1er2QJ65UKrlcDnLYfLzUWqfT4bGU3AMGqzQSiQjnDAYIDwa/KWmp66WHHFXsALF6O52OXgkX4NWcsOoQCyoGxRPJaHeAz56+Guv1Os1ku922LIvocT6fp6VFjQjXk5gZjEj3JfZR0gOgiVev1/Hs8vm8iG2DoiO9GkJK27Zt4ioIb1NT36xgMEgVnAYHB1EySDkBj5UeUz6fp2eBVScqqyq2qlHqd3x8fHJyspe2davV4kGbgq1hHlA/yi2N6sLFmwq33377z372M4/Hc8op0D333IMPrgvIhYszE+VyGSWS/+qv/kop9b73vU+x/L2ZQbcvkalPR7CfSjvK3PwqFovj4+PCTlJTM5JRgvPYsWOi9KEObisHAgFYbFRIh5+JGiy92uGq1sLQVxrvovKU1AcQD2Hetdtt0tdSXavLMAwYlFQsUjG6SJPAi9XQByGI3Gs4vRJdyBh15F2coCqlWq3W5OTk+Pg4lyHmThtYw9QmzR6cFQhRQ6kcBH3R9j83o2k21FR7WvQNKuTQ7A6Hw1RIp9PpUKK/YM58YQhCJVYvojrxJxd6rtfr0B6IxWJku8fj8cHBQUS1IWmnXC5DL5seClqgsk6WZQWDQWG+89mGzDr/llYXGhEZNbqVjxeNB6DyZ0EHEQnGH6jqcgOji3K5jOlFxFqtVuMi4yhpRdfyx2TbNg+btCwL3htiFyAVkOceHx/PZrOc0mN9cuKBZ6G/jAKg7hRY2+sXQ9+e0M+Z5rezAzcQzoWLU4Ybb7xx8+bNd9xxx6lt9otf/KLX6z106NAHP/jBU9uyCxcuTgk2bty4devWt7zlLdddd51Sav369QsWLNi4cePGjRtxZAbQVZIh2KW6+6kwiFGyQzGTnSQEYLWg+COEsLg9hOgapVSj0SgWi7oqAIHCYDgt4RY5AWlIIhcIWe+IhKEzhaGvB8iRWUmGF+21m6bJjc5qterz+YLBoKPQGTpDOmDcSuMVZgCfzydEfj0eDxS9OSPqI+aL0DsowvEpQgic0hQF8BnUEf4i0F2KwWu320i/UUrRnj3lokCrAJGN7XYbhj4JV/CTaSoymQxKZ/r9fp4EHwgEyPLGU4bbjU8pmBW1TAtDON+azSZ/RpBR5rOEiDWEINJs1Go1cqyB1SilKpXK5OSkPs/UIAICq9Uqcu4TiQSvE8pnQNjc/E/kL6XTaSJRuneOv4+KBUaKJUQuIzwOrCK0xsl2u92OxWJcCgKrDp0fGBjI5/P6MoPWtt/v1+ecA/LchmEg4adaraJkba1WE8W+DMPgIXz9X0a+iVCv18XrD2rEjxw3am7O4VIgFy5OJdasWfP444+f2jYvv/zy//iP/zi1bbpw4eIUYuPGjUqp9evXX3DBBUqplStXrlu37r777jsZCqTbl1SeBRUqQVp0EWeeIAHTCpdHIhFOgXgmAElI9eoMPE7cBEQWBIyqSCQCXwG0E0TaDAymVqvFy9cIuTY4NISGMgx0Cl7iLiwubayUKhQKsAtxAucYRCT4hDiOEbvvx44dw4jIwoNCGuiHozHNwUvocGJZKBRADrldTja00ZVRVl1vA58ZnlDBM9ph2uIIGoHJS9eapgnazPWaVddZB9Vm5NZzDQBiAhAz4J3hZV4BXcWOC6P7/X7Eznk8Hi6rAI4kQst4gj6BewIF+8IHkR5TKpVKpRJoGzLZqIKN3++H1hna0csrwY/UbDa5ngGB3kewXOTIIePF8YHSg4AaO5KRqLV6vY7aOPhTsCnTNAcHByEe7fP5EEFndPXBHZUDG40GKmVZliXYPug3JRbyq2ymtkKX6LWPUPmD3kTl5B3VBR740j0z4VIgFy5cuHDhYub4/e9/j40PznbWr18PCvT6668vXLhwZi3D1iETTZQQIdIyMDDAy62IdHbIWKFqIUxA1S23QvZQLwmpPiDp3kajkcvlyBAUpp7q0g+oWquu8RoKhWBUwWyqVqvVajUcDpPpaZomDHTsows3Atl5fJi9ZOvoIGcgug2HkCTFRAuQCB6NRsE9aP4xz6guiu5RGBgnmfSMoAIn7ojOkN3MayuJbvMeEp+hb/sE7Pl8PtCqbDZLDAR3rNVqyERCWCOXNedVofhwoE+t30WAE5J6vZ5IJJSmjIzAtuM2paZqABqGAV+fI0UB8IywGlutlqhgg5tiHkqlEuTaSHW9VCphv6BXjgpxDwgA+v3+QCAwOTlpdCUr+APlqNfrkUiEO0l8Pp9QTldM8RxsGe5TpVQ0GgWT7BNlSoVZMV7xCtDrI1xAxGo4t9S9u/AHEv2melkEaKOLVD04b3HrGYjyzwJcCuTChQsXLlzMHBs3bjx48ODq1avXr19PB9evX79ixYrnn3/+8ccf/8QnPjHjxnlhHLu37i3fO+cSt7Ztw4qt1WrJZDIajaIeJerQE3XpY1oRvF6v3+93rKDCHUr43MvZgpRrJNxDC5ubTeVymSSGYW8heVoxfgKQ5DcdaTQaNBZh/xH5EYlAfCxcF0GxUDeQHGSnkHOjWCxSCJPqbvMjdkjom+EZUdEYMTM8AAnDJMlsAugfPV9o7tFn8gw4zjnZsiDJ+Xyeykl1Op1CoVAqlQYHB7Wn9H9dEjMJAiZOoydFgY6Ok6803wKYDH8EXGEP0IuE6hysz7IEFecxXXrFWHHEtm1wdTwyvU2lVdch2WuoYSthAAAgAElEQVREqSG+lB434PP5cCb4IWgGr9trGAZ8pLZtU6aNXvPXEbZtE/9RTusftFl/oESn8ZVlWY7RrTgBNIxvtXAIhx7g9XopiLFcLuPH57jDmU24FOgPCK+++uqWLVvmuhcuXJxZuOyyy84///y57oWLNzAQBXfddddxibCFCxeuW7duz549GzduPBkKJCpgIrCnv+4tIlJQSgVWOw/fp63lTqdDVhp26I8btQK3DFLYybTV7Spu/PGOGax0D4q6OJ4GK5DyQ5LJJIzjZDLJ3U3icmICPA2JugSXF0w9VP+MRCIejwemm9/vTyQS2WwWFp5t27SPDocJROe4J0oIx5XL5Uqlggi6YrGIQC/+jCKRSLlcbrfbkC7ApHG3FXnwuJA3gqAQzAbeCBkG8Ad4JMLhcKVSoVGTF46LcaMp6gPND9KWOp0OQitxCVcn54xOt1+pUJXqZvLoSwKhWYrxMeoP0pZ4DKe2HKagl9AZaTd7vV7uWtGdOXqp03a77ahv1mg0AoGAowy0qK4zMDAQj8cxq5Rfx1kQZrXRaNCaqdVqpHpHTeFhkfa3cqp05AhQJmNqAh6fBPiU9NcNFVGJmUM0j27NK97yCaTP+AGhHxM1VUc+EAjwXRv8LvEldFy1+lmAS4H+gFAoFDqdzuDg4Jmfo+bCxSyg1WpNTEzo+dMuXEwf6XT6l7/8pVLqZz/72bZt28RXSqkHHnjg//2//7d48eKZtS+MNiro3ut8XpeDDA7HWCmhN4D9YOS7Y3fcsaglEscnJia4sBiPzoIhy7OG6DT6jLtg+5ybQT6fj8fbiMRrYUMTn8GFoVCIiqIKg8/n8yUSCYobhGB0JpNR3YKPRlcPGgIJuh3ZarVM03SkdgDFBAYCgWQyyROrarUaOgY/AI0C8wzzNBQKUYcjkQjC8DBRZFKXy+VAIEDPl68B4jY0HH0U7XYbHSiXy8QT4PTAXWD1plIpURWKV4bBVUQMeKEq27Z5Yr3++HgxIqJnVEfVEXqVXnECDGsQQjiIeGoQp0xk0yOtBap3Xq+XXKb63ZETBfKJgcCZ40iZ8JT52DudTiQSwdxmMhmhbVAqlcCR6DFha4M3jreyVqs1Go1eRIh0qEUmEu8JPhCrJ4qCzD06k7QuHGs6ccKjlCqXy1jVXq8XNZSwLUJ3RDye/tYb3eQ9Hlk6V3Ap0B8cVq9ePTQ0NNe9cOFi7pHP5x955JG57oWLNzbuvvtu/Ee+d+/evXv3Op7zwAMPfPnLX55B45RMAlMMRhvF0jha6jwPhwtzoZgmP1noDfj9fl4kVE01gATI5obWHIXBkE434qPofBiv3DZF6BeqRmI/GGkDExMT5LvQmVsoFCLznecyIX4Mtrte2wexZOQA8Xq95FuDxh1mBiadPVWxDYD1xs1QjFSPv0KhTM5/iA1Wq9VGo5FKpfBnNpslExAGJZxRPBCOk652u83FiMGI0KVgMBgMBuF5wLdibZD2GornkoPCYFn7BlMD4/4rvmyQJUXTSMPkk8YzTERPIHreK0hS9zwYWpVecQlNCEg7ygfTtzS93KYPBALz5s3jHfD7/SLlCY41PIhOp0M0rNFo6KGGPp8PBFWkwaipCgHCS9NqtWKxGG3A4XWo1WrcY2MYBnauVbc+MmX74NVD9VsxJ4L/hMNhoRiJIYMxBgIB8VYqraZTLBaDkxMvOHZhaGjQnU8kEul0WuwRCIcwaBKG0Kfa8mziZCnQ5z//+d27d3/84x+fsaN/7dq1Sqm77757ZGRkBrfbvXs3iqX85je/mZ0Ou3DhwoULF8DDDz+slLrttttuvfVW/dtf/epX3/rWt374wx/OgALxKCOlVCKRsCyL1Looo4bvIosEa14cBpYK9+pwvQGfz0fpBNxChQGkm1nc5j527Bi5HWzbTqfTiLUT0XGI4IKNSxY2aR9PTk6SuwPnOMZHhcNh1JgXqTu2bU9OTkK6AFkNYFa4HFFedDKViDW6ctuTk5OiYg9nQYZhIFdeMfsS/UR6w+TkJFnbYueb54hzjsHJKt0Iig59tsZ1nQnByvABqnQQyIYoHHFUiIwpjajQh14JMNQyLRI0pRMePReIRkeGu94yZynwJ5AWRR/lAz4hjUYDi1l1HxOxO2HTg6WTj4jrsyOCVMiFc+qiD1NPSwO4LLjS4jY9Hg9CGRG/R2+Hzr0VW3WtVovvUyQSiU6nQy+LYRjQRcQLCO+ix+PBa86DPGOxGB403hfxVnLlFfiOaGI7nY6u1g1mmEql8CLQD4iQETcMg8iYIweefZwsBdq9e/emTZtuuummGbdwQsXj9NvlcrlNmzZBcmRmLdRqtR07diilrr766un3xIULFy5c/IHjgQceGB0djUajf/7nf/72t79dPyEcDv/DP/zD2NjYI488cuONN55Q4yLKCLrSXO62WCyWy+XBwUFYM6VSSc/t5sZZuVxGhRaI58K+hCGYTqdhzqqpu8jCoBfAffXkH+onAcFpyKh2bIobVe12e3BwENYtiQTwPlNEljBeSetZhFfpUXk0P6qro+Bolnk8Hq/XG41GeeY6P6FWq4VCIb2CE2/BkWPoIt0UjhgIBGAK9zcTYUPrx3lxGwheOzblmIYh1MDEtBusBqhiqwsmuKMjCH1AaB833PWe07fcMcXLJenoMz/CAcVtegR6KaV8Ph8cGrxuLP3J3SM8MUzwRpSiQnUmul0gEAiFQp1OBxY/nxY+1el0mu6IaRf80zF+ldM5kr9HtF4gEMhkMp1OB/5b+mXw+/04qLpCf8ViEf4r0zT1t1KsZ4pwA/SNErhtsVR4h5vNJtEz7rM9Q/iPcgPhlFJ79+6FJ2rOE7NcuHDhwsUbCBBCWLt2rSP/UUq9/e1vX7t27cMPP7xx48YTpUA8ykhNTcKmoH9E4Jim6fF4RPRXJBIRTiFcTt4esi8dJZuBcDjsKP0s+qlfzsPGppPprgfk8JxVvc9Kk56zp1bX6QOcj21yy7KECDX1H7fwer2WZfUyD/CMelUIVUqFQiF4P2iYIq9JuBdQ5QnZSvxx8w5AtdnxWSC/wjEnRIxOEF3LsiA7wU/j044HCueboMpk+KKf4XC4VqtxjidK91ABUA4ykcnlYnfFuzEn+igQicfJdjgcJhVmxWoHcZueZpLKEPFnRA+Iu0dIvQ2pL4Le27aNOTG6YgCRSISUAMEfEHwIyTjbti3L4jFyoiekE9Cf4/GVg6pcNO04AvIpLkQ/UdFL9aCjYj07bhDQeAOBAO6CLRvxMqZSKTwOr9eL3EgAP1lzzoVOlgJNM/zsVOHkbzfLHXbhwoULF29KjI6OggJdc801fU675pprQIEOHjx47rnn9m+z3W4jZcWyLFTyoRAXXVKZAvf1LWpIXQnDPRQKUSw+Jwxcsll1g9ZgFnc6HZK15dLPHKS0Jm6HyD3TNFEe1JFKIXgPgW0oHcMDcgDHPquuC4hujdlwtJW5kDQd4dnzfdgC0rHQgjgHE0Wf9WqVSimv14vSNHimxDFwLRLoMQTVNT2VUohfKhQKmFKQCjAN6nkviAlR3XUCo1wEVnm9XmRzkSOCIKadCDbWJLd0hZsrHA53Oh3iPCgAxVt25JOhUIjGy/uPcFBeMIrQbrc5G7EsyzAMyH/jZO6mQHWmZrOJZYMbQb/B5/PF43FEdXJqyt0jCDADJYC2Gyd1UOGzuzVziAaLgl29JsEwDKrlitWCrsIJyfc+8ALyIrPKiSnpRyAsoaaWGLZtG/GHuvAJX88ej4eqePGeg9pRriCpO4iXkcbOtcuDwSBlss0hXC+QCxcuXLhwccIolUrLli1btmzZe97znj6n/dmf/dmGDRuUUgcOHDguBSoWizDWsZ0PE6rZbJJuQf8NfnLIwAYlc8Tj8USjUdg0XIfKsixonXFJMcoTUJr0M/JY+BEhUY07knIDbq268UI0b0SlwH+UUkhggLSUGBQxNEFyiB+STdarYmY4HDZNs1qtmqZpWZYw93WLnE8vavugBaEeyeUH+oMmjWf8I3IJ2R2YxkqlQl4Iij7y+/3hcDgcDvMSn70gJNQ4BgYGUKcFlJVCsHoRKj7tnOc0m814PI67kD+NYpzg5eDLJhAICP7paPgGAgHwYW5D8xjOXhlBjj0Xt6AwPOF8o0jIYrEIoi5A2negBI1GA6TR5/NhmIhAM03TUQld9eDkSimqJqS6jjKlFCYqHA5jwXQ6HQqWU11N/EQiQTWp+EINBoMej6eXgB7IIVVxpbcVNLKP8AkQi8VCoRAy2Tj346OLRqM8d1F/GUm7HJF4xWLxDa8Id+edd7700ks33XTTzTffjCN79+79zne+o5T6yU9+sn///vvuu++pp54aGxtbvnz5hz/84Y9+9KOO7eRyuVarhZN37ty5ZMmSa6+99lOf+pRYx/rt6HKl1P79+x988MGtW7cePXr06quvvvXWW1evXt2/w/fee+9zzz2Hr77xjW/QaTfffDOXZ3jyySfvv//+0dHRdDq9ZMmSlStXfuELXxgeHuYti4GjJ3v37v3sZz9rmuZ//dd/jYyM3H333frYt2zZ8rWvfS2RSPz85z/vOdEuXLhw4eJMwuWXXz6dsIJIJDL96APu6iEXDYrD8KQROp9L9PL9Xa5YrZTyer20p0tsB8VGEWiUSCSEpBig13Kh5BA0KDgSdoV1G1foCBcKBaTQ0OWGYbRarUwm4/P5SFGNCANnaGRXgRXAoEfyj55KUS6XqbeOmTOOhTXhT4BFGwwGMVd+v5/C+egRIBdIb9YRutawkBK2uxLS3NCERkIoFOpVFYfDYBJqfr8fktaKyamR8DfOJ3btCJp2cZw7GPG8Wq0WSU5zTQK7qyXNh+kYwqemLhKd5OtHxLPrVXaTTyanf7xlkl7knUEcIEiO1+vlfwaDwXg8zpVChBL6dAA5xFarBa8aeoUNAsQ6Csl4TGa1Wo3FYjxbDIsft+4joIe3QzTIV7Kj8AmB62oQOAUigUfQRcepgDYJOZbnPP3kZCnQ448/vmnTplWrVtGRo0eP3nvvvUqp22+/fe3atUePHsXx/fv3/+IXv3jppZe++c1v6u20Wq2PfOQjDz30EP4cHR3dsGHDf//3fz/yyCP8x1S/HQEpPXS73bt3f//737/rrrs+97nP9enwT3/6U9JjuOOOO+i0xYsXgwK1Wq2vfe1rd955J44nEoknn3zyySefvO+++37yk5+8973vPe7Ac7ncyMjIpk2bXnrppT/5kz+55JJLRM/vueeeTZs2cQLmwoULFy7+AAEzRbg7RA1B4W+h4xQsp4Ob6RBz42LNZGTrPg1Ry6VSqVDRoU6nQ4YXodVq5XI56D6LGpT8NOS6tFot7snBiBqNRjqdRoe5kDHVqeQeKqqIUqvVdC8BL5HU6XRQEofzN4A2p2HkIewHlKxQKGC7OhQKRaNR6NEpZrrBeTXNUnu61jD29XGEp384lmyaJmCj059iWvA0+RJyJDkA6f5Vq1ViSiA5dI63C2JoYkTNZnNgYAC1d8g96FhyVJTc4WseBaOUVp2Gnh0vW0Qol8u5XI4HBIowMNpTMAyj0WhwEkXad0i3o8pXVNhXafFm4l2gMQoqLsgVQuz4E8nn84gxw1tA/joaFOLlHKmOePqiezrb5xf24T/UZz51lmWJ4E8e6tmruCo1MueJQEqpaflwZ4a1a9euXr36d7/7XbPZnJiYABW588479+/fr5/8l3/5lzt27HjggQcmJiYOHz581113mab52GOP3XfffdO/3ZIlS55//nnbtg8fPvylL32p1Wp9/vOfRwRCLzzwwAObN2/G54MMH/jAB3Dwn/7pn8B/vvrVr77++uvZbPbFF1+8+uqr0+n0Bz/4wUOHDjn2ZHh4ePPmzfjp/OhHP3rDDTesW7fu9ddff/TRR8XJv/3tbx999NHBwcHrr79+miN14cKFCxdvSvDdejJluIXKc6DVVAkpsaVqmiaUqZLJpJ6mIgwR3QiuVqtIQohEIvPnz583b14wGOQaxDDokarOe9VqtfL5fDqdBgOh0qWwhHgna7UaSIXIMVBKVSoVThjq9ToqYBaLxWw2SwdpCK1Wa3x8nJJJlKaYXK1Ws9lsuVyu1+v5fJ67PriOHHgOhkMUC/0BLREz2Wg0stnsxMTEdOqcCFPV6FZo4bY74h6JTlAs3HEbnyagWcwbV0ohmb7XJeAt1EmRY6bXCdVHlM/n4/F4PB7H3GJt6JMWDocpVlMEcUH1t1wup9PpTCYDAUN8GwqFYrEYv6Nt23i+tVqtXq/zeDORQsOnghc2VZpEofizv/sCNB5jLBQK4+PjtPAqlYogVz6fjz9u6hVuinHxriJdEFSHdBemiUQiwQUVOfx+fx9BdvRZZJf1WZawfqEoKPQY6e5z7gJSp5UCLV++/JFHHlm9erVpmqlU6u6777766qtbrda//Mu/6CcfPXp0+/btt9xySyqVGh4e/uIXv/iZz3xGKeV4siMikcijjz66cuVKpdTw8PC3v/1tkC7u29GxYMEC+m9mMQMO5nK5r33ta0qpu+6665vf/OaCBQswrieeeGJkZKRWqzk2vmDBgu3bt1955ZVYoEuWLPH5fAgWf/TRR3l1AqXUY489VqlUrr/++j/6oz+a5khduHDhwsWbEn6/P5VKDQ0NJRIJojc8wRrbw/jMczCEPQFWAIUox+wRYQcLayadThcKhUKhQOUOKWWfwHO+yazBadVqlTLpybZ2TJuBgwXaxAI8bkfY3DDUuJax0RXFJm6jSxdQOSClFEzSarUKI5WPlCBi/OA84WEp5FLodDqFQoHXLVVKtdvtfD5/7NgxOs63w/lnXuUWeSlIi4IWmbDvlVLNZrNcLuvcQ0BUGWo0GpOTk5lMhjrPJ6q/PYoEfbo7n1tHEQiRX1Sr1QqFQj6fLxaL+XyeEwBxYTwenzdv3tDQUCwWi0ajlmX5/f6BgQF4OEU5zl69hcuFH0ECD9e25mMH+hMbfiaVEO0FTnLEKkKOn7ip4G/0udFoDAwM6F4d0WYv4ImLrQG8bnjfaRR+v79arRaLxUwmUywWdU8R+sz71l/mUTg8+YWoU9Srruss4zTKIXz9618XR2666aZNmzY5eoFuu+02kVpz66233nPPPb2Kbev49Kc/LRbKF77whe9///u7d+/esWPH5ZdffiJ9/z9s2LAhl8stWLAAfIxgmuZnP/vZT37yk/fdd9+Pf/xjEfd8++2365HQN9xwww9+8IMtW7Y8+uijH/rQh3Dw6NGj8AvdcMMNM+jenCCbzVar1VqtVqlUoFkEgZpTuE3VB/V6vVAoVCoV7M8Fu3D8H/R0IJfLQdeoWq3O/vCR04nh27YdCoWwy9tfIOgUIpPJYG8YYTMY/uDg4Ozcfc6H78LF7ICMeyj8WpaFgB/4ByKRCOzRQqFA5pTP5+P2N9kcMF71fV9h5fATOIGBHlcymUTIFmLhlJbRAWVtYVVTT0BRYBUJowcuI7ApvtWN9guFgqORhJKgUBAWGtCkFyd6CzU8bopRTRUaqaOIMLVcq9W4RIEofKm0rHqu9IDjjtrZpVJJMAHkpfj9fsf/ViqVCm2kOuqkAZQxr7rCxzyQSWnuRBjrxGeEfJ8IzAMHoNWo3x2K3nQLj8fDy/7QaSAASMonYcBIJALSLoo7Hdf7ROCeLgDBijxrTr+KExsuwgaAHoNKHVeYgS8MXlYVLViWJfTfuSeHzxseRyQS8fl85PxUWsRdLzhKydNd+JncoVqpVCqVCoQceU+oz6iURYtTPDto5QnOI95iv9/fbrd76XbMJk4jBYJDhgOuTC4NTrj00kvFEQQTO57sCF2TZ3h4eHh4+NChQ2NjY9NsRGD37t1KqWuvvVbf58DoWq3WgQMHLrjgAv7VmjVr9KaWLVt2ww03/OM//iOnQI899tju3bvf8Y53nPlRcEe60LdtgIULFy5atGh4ePi4NRlmgGKxeOTIkbGxMcqwEgiHw2d1ccrvrpR67bXX0IE5GX4mk8HdKYlQIJlM4u54a04tbNs+dOgQOuDoJTdNc3h4eNGiReecc84JOeWnibkdvgsXs49isQirhfwS4XCYU33Yc1yzuNPpgCaBctCuLWwaiPbyMpfC+EBZd2zNCiYDlhIMBv1+fzQaDQaDrVZLbIRDM80xsZ7cR33MHdoyhzmIojcIkIO5L1rAB9KbhqKaSKBSSoneBoPBXuFqOtFqt9tCUgI0CWNEm8hLoUuQyITtITW1TEqz2Ww2mxCj4+YE/DlqquGL1Jpec8WH0EsnjUd/qW6BVL5aYMqrqcrX0LuDNLmQ7xMzD7l21XU06QpsVDsIQBYWP4G+rVQqWDmCLuqDAm/kFZZ6TRH3qqkune6j+oAis44ldMSihYif3oKgAUQY9HUFaUGjW3EIN0XoIBga0mkEvUTJID6cXmMh9JKSpwaJEIqAQJzfarXS6TQVV0WVJGwotNvtQqHAKzLTsyMXnxiy3r3pBI7OAk4jBTohcwQxZjNGIpFYtGiRfvyss846dOjQq6++OrNm4TJ2lBkhrbkXX3xRUCDHniil3vOe9/zwhz/85S9/uWvXLlA+uICuv/56kMMzE2NjY5DCM03zrLPOWrVqFf5fQVw43EETExNHjhzZtWvXrl27LrroopUrV04zPfS4aDQao6OjL7zwglIqmUyuXLly3rx52P7HVgoiH44cOfLyyy/v27cvlUqtXLlSeBRPBkeOHBkdHZ2YmPB6vcPDw6tWrYIaDIRNTvfwc7nc6OgoUs4WLFhw6aWXDgwMwP2iuuHyuVwOnRwdHT3nnHNWrlx5Cn1i+/btGx0dxX/q5513ns/nO/vsszF83H1sbKxerx85cuTQoUPPPPPMxRdfLF6Hk8GcD9+Fi9kHdmHFwXK5jHrzZGvqUtHkN4DCqupaYPV6vVQqUfFHkCufzwcrBJoKJBtAVVPI7vd4PDgO2ws2nN5t+Apg+4o9YHzgxXl0Fwr1liot0iV6Cnu1WiVLFJai0IuD0h0cQXRmIBAQMTlqKvcQ/9frsYWqu8GPfAzRAv4tFouBQAAVXYQNqkckcjOUDvbfSBK9KpVKuu0uzP1OpyNWC6/bw1vO5/PValX8/1WpVLjLJRQK4QRSmlZahU0Y8fgMnWheLJUzGVAsTthInE0oH+AuWMk4LZPJ2E4VewOBAB6lZVlIVGu320JrgXdVZ1y9tMV7KZILCofIPZLCI/9VMBhEC4FAgLYqMJlYw7Zt87Qrjmg0it2BoaGh6cSP9ZKSB2C/4aU2TZMng3HCT4KHOA0n4Ktisdhut7nnWWkphSRVhz0dbJTgfZxz/w9wuijQidr0J8kB+IaNOK6m7TTsdbkjhSVaJZTUHcsaANddd90NN9zw8MMPP/roo5deeunWrVsfffTRoaGhM9YFVKlU/ud//ufIkSPxePyKK67QK1pAaBX8c9WqVYVC4cUXX3zhhRd+//vfj4yMnLwp/NJLL+3evbvZbC5duvTCCy/U452QbTU0NIS+HTx4cHR0dNOmTWedddZll102fa1SR9RqtR07doyNjcVisTVr1px77rl6KPxpHf6uXbtefPFFr9e7atWqpUuX6ptPSDBdsGDB8uXL6/X673//+9HR0VdeeeWCCy7oVat++jh27NjOnTuz2ezChQsvuuii5cuXixPw60ZRcPv27RsbG/vd7363f//+Sy+99CQ3NdRcD9+Fi7kCBaUIKwEVQlAYBGLKjlLRamplSXIEUZugEOA2dhf8QjW1vCanH/AjIald/48VMsFKqYmJCbqKKBC4E1potVqwg/EtPthdATE+EB6Bo3okrsA+g+KCx+Mpl8vEAVCfHp+REYFrqb4nsReRWc7ls2wngWY+n2IeSMKOKp+qHhAmNVrrJe4MwKNCHSiXyxB5I8ExPamdG9mIIeROQr3zeuqRPnahj1ypVIgC4RHjs9frjcViKD4j8nAIRBXwJyShy+UyhkkLXk1lznS+Y8Ve/Am/HG6BulikSmdZFj5bloWFQa4thFaiig5vE1p2ygmCwnU6HSqritVodAU2cJDq59RqtWQy6fV66Uij0Ugmk45cCy8d5fgJYUMOPETH3wekUeEXADyTZBV5MK3+ogm63mg0HIs180vAf2hPh6JekUTQxy83a3iTlEZFoJRupR05ckQp9Za3vGVmzeJCNOLYssfjOW6pO46PfexjDz/88A9+8IMvfelLzz77bLFYXLFihV686EzAxMTEli1bKpXK6tWr9Yl1RCwWu+yyy5YuXbpp06bf/e53xWLxZIa2c+fOvXv3hkKh9evXO7rFdZx77rnnnnvu3r17d+3a9fjjj1955ZVDQ0Mzu3s6nd66dWuxWHzb29520UUXTeeSUzj8RqOxbds2VNNauXJlH48/we/3r1y5cunSpaOjoy+++GKxWLziiitmnKF04MCB7du3x2Kxd77zndN8fVAj8vDhw7t3737yyScvv/zyJUuWzOzucz58Fy7mEI7b1QbTiYKJyUV1hdIASrkbXdVsQYfIRoHEE7EdcYJhGCQEzB0dcLDgLnrcL04jxV4U2OEnkAnbbrej0SiyOnmveCyZcsr8RmIP/SnUvXn0ILb/Uc6VnGCqqx4uiCJuCvMXli4JLqOWjpoqIcAv504P1SU2qOZEBx2JDW3V0yRzt5UjwuEwFd4BhPa3oNDI3EAHUKVUREDpnAQFkShRRxBORx8FnYOUKk6ALcvCzPeigj6fD46CZrOJJa0rH8RiMTglhJ+BPGyOv/acClar1cHBQV76xrIsXnu0VqsNDAxQvU4UkuIpc4hzcxy+TuH4ffmZxWLR6/XSK2bbNireiiO93E1QOMBnEqYXJ3DF7VQqxYt9wXHHf0xwnDxFkUiEJx3RrBaLRR7YCUcQvxYArcLdiTGKtMNcLjc0NIQNkWlWFj59eJNQIKXUli1bhKV+9OjR119/XSm1cOHCPhfSFlE6ncnSO1QAACAASURBVBbBe0j4efLJJ3O5nPBT7dmzRynl8/kWL148/U7efPPNCxYsOHr06IYNG370ox8ppf7iL/5i+pfPGl555ZXNmzfHYrF3v/vdJ5pfkUwm3//+9z/77LN79uwpl8vvete7ZtCBp5566vDhwytWrNDLKB0Xy5cvT6VS27Zte/zxx6+66qpzzjnnRFt49dVXN2/eHA6Hr7vuunnz5p3QtSc//FKptGnTplwuB0J1Qtf6/f5LL700kUhs37798ccfX7t27Qxyk5577rnnn39+0aJFM2ARZ5999oIFC7Zu3bpjx45SqcTrC08Tcz58Fy7mFhRRhrwROC44EyCTgpco4bAsa3BwEDYlcRv6lm/Z4gM3v7gti9gbIRtAnyuVSjAYdIx6oOIk/BblcpmcUUa33I1wR9DxXpODE7Dxj1tzA4vr9lJvYWYR0RJZIvSh0+kcO3YMfxK7I/uSfgm5DB19BeUG0CfsfHc6HT5viUSilwOB0yqllfFxRCgUwg46aKrQ/hbPlwcGE1lyZD50FZ9SPWCpXq+j8CVnCPBj+Hw+IVqA24mTw+EwRRIS5YtEIrDdC4VCMBjkjdTrdeSq6ZTMMcrLESS5wQ9S4j6aRXAXvoLHhpYo6HQ2m4XLERIF1E4kEsHrhq/48LnvCy+y/t4RnRCOMlFaR9QHQ/8FBRKK28Fg0OPxYGW2Wi2KfaXZ478PzWYTYTV6xSGR2pRIJIrFIu82fdVut4eGhji3gXOJD7Zer4Mono7k4RPCHDOwU4jvfOc7wq32ve99r9VqjYyM9JeDGx4exi+pnmr/gQ98YHh4OJfLfe973+PHS6XSd77zHaXUpz71qRPqpGma4Dx//dd/PTo6mkgkbrnllhNqYRYwOTm5bdu2+fPnX3fddTPOL7/kkksuu+yyw4cPP/300yd67dNPP3348OHLLrtsBvwHSKVS11133fz587dt29Yrh74XMPxUKvXud7/7RPkP4WSGD+/TunXrTpQAEM4///z169dXq9WtW7eeaMTtgQMHnn/++Xg8fs0118zMi2JZ1tVXXz0wMDA6Ouoo/9gfczt8Fy7mFggaCYfDkAZG2cQ+GrjC4iQh5mKxGIlEHKO4HUkLxLjJcDG6xYL8fr9jWSG63TTHhZo8wtTD9j+3n2xNoVvUh7G78mXZbDadTqNAimARHMgaVVNVwoyuNgBvVrC7fD4/Pj6eyWTE5AtrG9rlMNBV18ZVTAjY6Moh9JoZPrder3diYkK/qUA4HE4kEmTd8q9s2+b3CgQC9Lh5oSRwJ11jw+/3Cytcp9A0NBSZgU4G5PJKpZLwUImgKUS1BYNBKjZFu1RCSJobx51Ohx4frRav14vlCpGJ/nNr9JAQ4LU+FXub4OUjjxA5PbBUms2mEJtGQlEqlRocHITANIoXUXgbX2B8ftB57i0ksWm9tI5Ypcopy0MobtdqNSzjdDotKrLorcHFBCKkx4XSZ8MwULxV/FwAHo9HPA4eQIg7VioV1HfqVYZo1vDmoUClUun666+H+FupVLrzzju/+93vKidtbh0IWLrjjjt27tx56NChQ4cOgU0FAoFvf/vbSqlvfetbIC2lUmnLli1r167dv39/IpH4yle+cqL9vPbaa2OxGDK8v/CFL0wnyGc20Wg0tm7d6vf716xZc5J9W7p06Vvf+tZ9+/ZBzGCaeOGFF/bt23fxxRfP2AIGAoHAmjVr/H7/1q1bj1s/gdBsNrdv325Z1po1a/oHZB8XMxv+9u3bJyYmrrjiipPMpZk/f/4VV1yRTqe3bds2/auOHTu2ffv2RYsW3XjjjSdzd6XUe97znuHh4R07dvQS8XPE3A7fhYs5R61WQ3UO2ApkF6quWeb3+/lPk1BmE2nZnEsgviscDieTSXgqkDXu9Xqh7O/xeMhjwKkIJLmHhobi8Th3qxqGgf3d49aoEVVK6XLbtknSmiBKN0ajUVhjQpcMCdxwBzk6NGCVUrIu/XcGy093FgnA0Ef2As805lMKF5lwvCD0Tth8/HZUc5YGiMeBgDHHmxaLRcHH/H5/KBSiZCoCV69WmuUq5icSiYRCoaGhIQjEDQwM0NLiYU7iQq5xjJoEPLKOoFgNq0KhgAXQbrf5UoHHCdGGwnaPx+PwMWIx8Gfk9Xrnz5+fSqXAaprNJgi20hAOhwcHB+Px+NDQEMLeIClO/ijxgnDiJ4gcjYj+tKfWoaLZhp4eQlX1xUaIRCIDAwPJZFLk2Hi9XsyVXlpHPAvB6yBxwSPo/H4/F3XgM2ywXD6+NdBsNnO5nL5xTDeimUF/hoaG5s2bx1Piw+GwXo+IvKBEicWt5wpvHgr0m9/8Zv/+/WefffbQ0FA0Gv3yl79smua3v/3tm2+++bjXfv3rXw8EAg899NDb3/525JM89NBD+OqWW265++67zz///O9+97sXX3xxNBq96qqrdu7c+f73v/9nP/vZDJwkV111FaoAzZs37wwUQnjmmWfy+fwVV1wxHdXF4+Ktb33reeed98wzz/CQgD7I5XLPPPPMueeeu2rVqpO/ezgcvuKKK/L5/DPPPDPNS5599tlsNrtmzZpTEkB1osN/+eWXDxw4cMkll8w4e41jeHj40ksvPXjw4PRdMTt37ozFYldcccXJ310ptWbNmng8vnPnzmmeP+fDd+HiDIHRFTDgVguMj3q9Hg6HYTSDuvALRVo24rJgOfl8vlQqFYlEDMOIRqOpVArqBalUKhaLtVqtycnJyclJZDvoFTkRlYcIMSpYWa1WJycnS6VSNpvtk9ysh94ppYLBIC8bT8YQdxYB4XAY++v6nrdhGNVqlVtglmUhRq7VahUKBZoQSIELW5bfuldgmOrqC8O9hueCEEFyGogNfpi/ZIzyIpKoOVssFicmJuDFoschRk1mIhyDOjXSB8LJCfnZ6Fvo49G19F88tu1xIdSZxWwII54upDnhZ/IJgZ3N1ZnV1MDFQqGQy+XA+YXtjhU4ODiIPvNh8uJFdBAskdcABUzThEZ2s9lMp9PwU+VyOWS80HiVU0CaAE04H6NeRVRX+XNkL6FQyLZtrv1od1OS8Dbx1e7xeLCSQZWRtANehxMwukKh0Gg0oEaI1K9eVNa27UQigRKl+sonrXYCXnkxqFarBfn1crlMUW31ej2fzyPyrVarpdPpdDpdq9VSqZTP59M9hHOLk80F+vjHP/6ud72LR/wvXry4l+NlZGTk61//ukiewcm6IlwikdDb6XO75cuXb968+cEHH9y6devRo0dXr1794Q9/eN26dcdtQSn1x3/8xwcPHnzooYeOHDmCTWvK5DZN83Of+9y6deseeuihPXv2pNPpJUuWrFix4rbbbhMxu30GLgCtsPPOO0+vhjS3yGQy+/fvX7Fixfz5809Vm5dccsmhQ4f27NkzHcN6z549Ho/nbW9726m6+/z581esWLFnz56lS5cet4JnNpvdt2/fRRdd1D957IRwQsMfHR0dGhpasWLFqbr7hRdeePjw4T179kxHmWDfvn3ZbPad73znqVIR8Pl8IyMjTz311EsvvTQdfby5Hb4LF2cIsMFcLpdrtZplWbqDpdlskt6UgEjLxrY3/oSwNd5u+E+QZoC4HQo0ajQaQudAaBPzgpVUPUY51aghhsCrlHo8HqR/OBaKsbUSpVQc1ufzJRIJ8ifQRDWbzWq1OjQ0RCVHi8UiV6CC5AAmhG9gm6YZDAaLxaLY4AeD4ua1ZVnkXiNvRq8Uf6/XS2wQVT7JyOY1Z+kpQM1MV7Ul61YY2ZCbo1kFiVJdpxznwCRxRoALUS/rxJ0eAwMDqG7Zy7OH9BiI++F23I1gsFwdEC3EeunqzEJTTimFWrdULYeK7YiWyVVlT1XvgFvGmFoDlMA9b7ZtNxqNXC4Xj8cRa6q6Zal0PmxMTZihnojhEOjBcXMfT5l02KLRKHSi8S3ND98IiMfjtEdg2zaKX7XbbcRe0qBUt24pXdvpdAYGBnw+H+pBCZZORyYnJxOJBB43BdrROeVyuVqtkuA4fi7sqeJvauovAABJEmqNvNkkfqB3aQ5xshToE5/4hDiyePHib3zjG44nj4yM6OnRvU5OJBL6V/1vt2TJkq9+9asn2mFgwYIFn/nMZ3pdtXLlSr3Sa5+e9EGr1frpT3+qlPr0pz993JNnGaOjoz6f77gjPSEEg8GVK1f+7//+79KlS/un1oyPjx88ePCtb33rSUagCaxcuRJyycdVJhgdHbUsa66G/+KLLxYKhbVr157CuyulLr744l/96lcvvPBCf10727ZHR0cXLlx4SjwwhLPPPnvRokWjo6NLly7tr/0yt8N34eLMAVkGZGeTaBjQSy1KaWnZwoolCkSWZb1eR54GWS1Gt4oimE+9Xte1ifWu0p9kIUF7ChpfqlulFMlFjtcCglEgbAmfw+EwUhRIsYpaaDQakITGn8KwLhQKcNoIRQSQsUajQRwjGAzCU6S6WT0kbCWScxqNhvCNoKKlz+fjPv9Go3HceAo8FN2HRj+YQiGQP30EDZLYd7PZpPKvgscKoTC+l5/NZlutFiIncQlWBe+J0c2egn8SEtiCm5Fpi8q2ikVp9lJv57BtWxB7WqV0Ao0Fz9rv98M/pq9evX0RBqa69bL4SDkHiEQiMPohQI/Ow1+K3YRew4F6AYk9oMPQzOAONL5KTdMMhULkwkL3QBtA4LE88C1EDkzTTKfTeCilUsnxNwH91+eZPuM5BgIBqBdy6Xw1laITEdXvIiAoIu8MKDrfa5hzOYQ3jyLcGwUPPvjgoUOHFixYcKYJIZTL5cOHDy9atKjP/68cO3bsKBaLy5cvP/vss/ufuXLlyr1797788sv9OcDLL798XAL2xBNP0GfLsgKBQDKZPP/88/u8SJZlpVKpw4cPO5aQI5TL5VdeeWXRokXH1ZaxbfvAgQNHjx6Ftxe1cZYtW9Yrdm6aw9+/f/9ZZ5111lln9TqBxu71emEKhMPhhQsX9u/wwoULh4eHDxw40J8DHDp0qFKp9PfAZLPZXlFtV155ZS/iOjw8/Nprrx06dOi8887r0/hxh9+nAytWrOhVj3iaw3fh4syE3S0Ug8xmLjXrCCTAQFCuWq0KxkJlT8iyFHvetLFNVVkMpp8LbWJqrdPpwAbFn8FgkNqp1+tk4cGrEwqF4F0hkatgMEjdsCyLyxXQjwk3E8nLJAihAMgJP1Kv11utll6HpNFoTExM4P87cDwEDeLbeDwOWWTVdSAI3QXul4DngdSfCaInjgU38VAExULsFj5zhUD96UMljJ6Rbdvz58/XDVBdKIxmlbxqJPEnOpNMJnXaiXwnGi9/KK1Wy+Px8P+YUEudqzMrTSZO/x9EL7NL7UN9Dq7F47pllFLYF1CMpRNf4qfx2/HUOMwbOo9IUewR9NrXw3/Qtm0j7k51ayWJMpIE27YhbU/y6Kor1cC5PXperVYrlQqfcNrCAMjxSORZ+Mr4fWmw/F3mwNuKZ+34OKgp/jNCevp0pNFo4HVGaCLeNVcU+w8Fu3fv3r1799atWx988EGl1Fe+8pVeFVTnClCSmGZs3tjYGFIsAoHAcSmQx+NZtGjRa6+91v+01157bdGiRf1fiWPHjnm9XqRg1Wq1119/ff/+/aOjo9dff30f39Gll1762muvvfbaa8uWLet1Dgo9HVeDrlgsbt26NZ1ORyKRwcHBcDiczWYPHDiwd+/ed73rXcPDw/ol0xl+LpfL5/P9o8Vo7O12e2Ji4uWXX0Zh6QsuuODCCy/sQ4QWLVr09NNP68LuHEeOHAmFQv070Gg0jh07pqcf9MeyZcv27Nlz5MiRPhRoOsOfcQemM3wXLs4QoJAON7WVUp1OB3k704yep2gxlByB7YLdXCg+8eQEYdYgz35yclIPVuH75cSRUPiFqjSS/C7vPxlDFKIGhwwNeWBgoNFooM9cilf3MpVKJZ3/8GAzqrTDzT6SYKZ2aGLJRgRVw2+L8JlgUJwu8ko+YCCTk5ODg4OY5F5mvWEYqJhEg+1VBQhlcCj+kD99EZdI2+r0ZzweF+uEbgdQwR811TeCryiTCkcosaRUKtFVGDU02eBy9Hg8x5Ud0v9zp8pLPp9Pt4h4pU5qwTRNPEq4/jDbNAMU6SeaIi6t8yUKXOQvAhJdeAt44jQEVMcCbRak1O6Ka5NHji6BEwmMmteSCgaD9XqdvxQcfPmp7ksh3gKv15tMJsGTKU6VyDOPkeO34OsTlYJJ+I6OW5Y1OTnJ1wwBnLzT6ZRKJb5BEIvF/H4/Xig8LNM0abB6HOYc4syywt/E2LBhwx133KGUCgQCt912W5+gu7nCkSNHEolEr10KgXQ6rZQ655xzXnnllZGRkeOKBwwPDx86dGh8fLyXJ2R8fLxSqThSCIFgMLh+/Xp8brfbo6Ojzz///HPPPddH+jwejycSibGxsT4UaGxsLB6P810fHbZtb9q0qVAorFq1auXKlfQONxqNXbt26WmRhOMOHwTsuMPnY1dK5fP5Xbt2Pf/88+Pj4/y4fvenn356bGysDwcYGxs7d3pFfhcvXnyiOWxnnXXWyy+/3OeEaQ5/Zh2YzvBduDhDQKrEetj9NI0GIb9GRk+r1crlcvhKD9ZXTKKNO2R4N8hY55UrsReO+kVUdobLrymmu0UWITkulFLNZjOTyRDfQFEdWPncdQMvkzBMkTcvSqNEIhHY67wPnCfwmXTkeMJnwm13vpuuJ6JEIhEUFYV1SG43Ugom7QGosVFPyKOCI2R0UvwhjhPzpOMI0+JPkMIdyUwX5OT/t3f/UU1eef7AbyRIgkECxhpLLFFB4xKnWLFDFXdxxNY9tad219mhs54ZPOtO7Uxd7XY87Z5O13psl3GcWeq2005XZ3S33VP3jF2d1a5I7YrjL1yp4BBrKiChBIMQIEiAANF8//gM93v7PPlFQALm/frDg0+ePM+9T37dz3Pv/VyxAapSqfgvl0KhCHQrjRayFLuM2FCjme5JDQwMiJPQ5Mfhqf9oaBnfTgPAaC4Khd+8W0wSANOJWltb+RaPx/PAAw/QTDYKfT0eD2Uzo/GTNPqOZuqL7xy62jSMjV4Ree+cx+OhXkfxjU2jMSWr8YppsXw+X1tbm29oWp0YGNDfPE021d3n8/FxaOKnUnyLxsXFpaSkUH+X31eHDS1AJI/HkpOT4+LiKA6hp1NHH3Uu8ZeJEodIQlzGWHx8PL8yknsl4r1IhULBh+rxMZP0cabeMDHxCRuKtAPVZSyNi0LEgrVr1xqNRo1Gs3r16nDWPht7ra2tYeah9vl8N27c0Gq1ixcvbmxsrK+vD7kCJjX9nU5noBiAYqrhrsMTFxe3YMGCmpoavwkxRTNnzqytrQ2yQ2tra8hJ89evX+/q6lqwYMHChQvF7ZMnT37ssceCLJERsvptbW2UqTZ4ASRo9Z7//d//vXnz5vXr1wMFeImJiampqXSF/aL0/PcuP3tCQoLX621vbw+UkSKy6ocpZPUBxg9+Q1rc6BvKPXXnzh3KqsQzBPB9+NxxcSSz5MatfDEc+X8pbTFv4lP3EQ3U4b9cksWIqO0rto9pWUm+CmRXV5dGo6EYxu/kBDHe4PEVb+XTUBz6gqKZ37zMdO980qRJkkThkhatSqUaHByUrywpwS+dJEGzvN+JBqTxQI5fOt5WZkPhGXW70WVMTU3lI6OoE4Pfc9RoNLTWiuQK8/GHtFoOjzz59sTERD4Vnv6lWEtspkuItywpaRgNSUpJSeG9dvyV4h1l1LNBAQNdSdqH5pPQ+lHU6yj5JuchBD9mQkICvyEljpmkOTZ0rcSkF2q1mnoaGWNiMEPBpEqlun37tiQXHL2jKLsapc/mV4OCT2r0d3Z2UnRHL6UYANy5c4fGDohv7J6eHknQSDnQeZAvD6XE94w4E4ZOx18Lmg/mN8iZMmUKDSQTbxwwxqi/i8pGIagkHhNfPjb09ujr66OEE/Rup7QQ8u7WqVOn9vT0eL1eSccRoXx98qJSmCdpC9FrFE6kPfYQAo0Rv6kgxo/BwUEaLR3OzrW1tb29vd/4xjcSExPT0tJu3bpF+WGCPIUGggdZ7o2GrUfQCKYPW8js5PzLwu9MJ6p+yLPT2L9As0qCDNAPWX0ahB387IEsWbLkd7/73Y0bN4L0canVar/DfAn9AoXZCRMBg8FQU1MjmaMsGkn1wxG8+gDjjeSmNeV3ln+C6J40/S2mLOPzBCRtF3HyBhOmCogDn9jQLGqxESz5gqXEa/xQfAic5FxMGLTT09ND3SPMX94w/iwasSZp5Ys5KildAZWQGuJ3797t7u7miY95/CaWJDk5mbLDiYWkIV68ae4bWsSGCYGWQpYgjva5e/fu9OnTKbzhB6QC8P/29fXRmp5iL5zYIUMjo+hRuiXP15mRRJi09I2knUqHiouLmzZtWkdHB73ifClYcbqXeIUTEhKon43CFep4USqVlM6B9hEjEMYYxZk8TOU78NY8RUHiEXi4LvYd8fIPDAzQPSn5175iKMsfLzxdut7eXupkE4OZKVOm0Cql/BWU9JfyEIUuL88ZSEdjQzkDaWUkyTKpVAuecoAT12KSdzCKq3jxV4efV+wFZV9/5yuVyuTkZEqwxu8+UI9ZR0eH2ElI8apKpbpz5474MlHsIcZjdHGYDKW+SE1NZYyJI0vF68ZTvfmNyiSNJZ7PQ+z15TdlKOKieyLUOzpORsExhEBAeA6ZcHZ2OBzJyck0AX3mzJmVlZUOhyPkjKCQrfAwG8GDg4P19fX0t8vlamxsTEpKkmRa93t2OovfEIiqH7wAvb29t2/fnj59emSN9ZDVD5mzmwXIBEVf7sFXWabB/UHOzkJVn2tvb+fXnyiVyvT09CBP4Rc/SAHCqb7fAqjV6kC5ELjg1QcYbyStrsHBQclkbiLmoRbvsNy9e1er1VLjg8YC8eOInTN0S4imqotNPWoi8zYlb1dJ8lPTnBafz0cHlN/oFXsh6CC88H5vLTPGxAkS7Ouzj/iRKW8YDYjiY4doHRWePk5EERqlnxK/J+k2Nr8FTo1LeigpKYlGlFFzXKFQUL5mPsm7u7v79u3bU6dObW9vF08kvgriCDS6kpI8cuIyPmxo5SVxQBE/rNjPIx+XGBcXN336dCoe/43g4RztT13x1BgVAypaEVVyxfjqnGwoM554dorrgvSnieG6Vqulay6WnHcUuN1uySh6yWHpKXQZecNdDGZ4zMCExjo/iNgtRpeXtouj1mkEI72fqdZUYN4XJEbUFDRSzyTvVOzq6lIoFNTuV6vVYhDu8/nE80qWhZW0uCh87ezspJMy4d6E+IXg8/koGQONnZPcShDfUfS2kYxtIxTT0idCjHwkHU0+2fwfXhFx2IhSqaQL6PP5eCp2cZnmzs7OlJSUezTQYyQQAgFjQ83TcO6Ut7a2OhyOzMxMejfPnDlTrVbfvHkzZAgk9nf7LUCQuTSS41y4cIH/d/LkyStXrgw5hYlO3dfX57f3lj8a/CDypbjDF7L68vz6cvIV1hlj8fHxSUlJ7e3t4u0fCb+3kDl63cP8emptbRVHYzPGUlJSgodAdOTgEWA41fdbgBkzZoQMgYJXH2C8EW9pMyHdlqT/hAltFDF1clxcHI2q4tEO35lW9ZGkJVCr1TR/hsbo82no/Lm0oA0PMCiBm5j0ye12a7VayY1esZFEa1DyEcuSdtXkyZOp00Cj0dA0GNoeZHQuXzHJN5TaS9KS4zfReSZieZBG/9JxxDlF4nWmWIgyi7a3t/OzUNcHb/klJiZSjwpdWIVCMWXKlDt37tAALbFsvAryfNl8ASXxZj+NkRMLxvcXO3MkX/6U75sa0HzaBo16EgMYcQ4PkfR7KIQFQ3nAKRkZKBmQKX7ZUg+/+OpIeL1erVZLo+wkDXp5lMUb7pLJZoFa6owx6uCSbBQ/LAqFwuPx0DtW/InnUbq4opHP57t16xZlhBOzn3s8Hrr+KpWKh1JUO/H2riTHd29vL+XP4Bsp4xGPZvmys+K7kTFGn2759ZGsBCUJO8X/8oTUVGD+ykruQfD3IcXz4tEoduJBlPwdKKns7du3w7/ROWYQAgFjQ/fpw+kHcDgcXq+XNzqTk5NnzpzpcDjolliQJ/KUQYEKEOZQpcTExMcff5z+bmtrs9vtx44dW7RoUfCsx/TbFqiC4VSfPs8Rj2ENWf1wspwFyldOqxkGyWaelJQUJMbgIUo4UVB6erokb17IsDBkiDWsJG+SAoSzsEDw6gOMH3FxcTS8RzLHPeQTxRWBxOBEfC5fpUT8sqV1gfiqnTQqmD9KzSbJRr48qFiA/v5+mprCt9BqPDzEolkifNq3iOaF0zwTfj9+8uTJ8fHx/f39ftcP0Wq1NO9cHgGKo/i8Xi/vaqB5L5LROJSMjsm+2yU313t6eqiQ4vbu7m6dTkctv8HBQWoHi2uPUvn9Ls+SlJTErxW17CmRNC2gJMmaxROIi8ehhVwCdebQECxJ1xCluWOBiYu3Sl4m3iOhGJpVTyWngYIUmcgP6PP5+GWnLbS+J9+BFueVD//jHTtih6H8nUBXRn5rQHIciSlTpogZ0mlZJPpQUNkov7kYNtAKqr6hPAdBsp/zPjQq0u3bt/v7+2nukyT0ojLIXzseS/D96dPBvp7IRP4CSX5GxbzzFJPToEpaNIy285GltGAr73BmQkZ+6igTq0mZNnw+H/UYM9k6VEy2npXX6w30JokihEDAWBhDlTi73a5QKMQ78TTi0+FwBG/F9vb2Bln1RZI+MghxVq5Go9Hr9bdv325oaMjIyAgSn9C3W6Agh36KghcgKSnJ7wJ2YQpefX7vMAJ9fX09PT06nS5IKOLxeIJHIHSccEKgxMTE4ebzCDnQbljVj6AAwasPMH4kJyfTUCWKZ2gRMHFEmdjYEpfioRWBqJEhmQev0Wioj4XuwtCsa36c+Ph4HjLxBp9kWkWgcWsiydfv4OBgV1cXtezp1bGb7gAAIABJREFUFIyxpKSkKVOm0IedlpikNMf8hrpKpaIE0Hfv3nU6nfxrITU1VXKLR5xeHx8fr9Fo5BNpqBaUm4G2UCdY8JLzaytfDlVyG+vOnTs0D5b3qvEq8H2Sk5Pdbjfv/qIiicWQP5eCCkkJU1NTe3p6JGMlxM4cvzNyxRvzfD6PSJJUg5O/3MnJyTxVukKhoC9hp9PJl5mi18jvaj+Sy84vCM8JLgl+xJBPjH/8rkNKyaCZMNBALHygVoG8N1V8VFyolEhyaUj6wcTrLI9X+/v76Q4jv08hrupDHXF+yylZ6dhvRcQyS7bwi0N3HxRDuS7EOISPLKX/0mhS/iqnpqbGxcW1tbWJV0z8g9eCLyolFl6cwDYeFkKVQwgEjA2tbB2yGdrY2EhLpNXU1EgecjgcQdZ1odz/QZqhiYmJNOUxZFNVMhhMrVZPnz79+vXr7e3tM2fODPQsmgUUqJ+E+sqDh0A03szpdNKo1uCFlAhZfbVaHTKpHQswEM7lct29ezd491TwfANUMLvdfo/6qSnndZAChFn9iN3rdAsAo0uMZxhj3d3dYpOL3sw8pBHR/mLzndaqF/eRZHmippVkIoE4f4BnAAtSYPn6Nh6Phze4xbU4KVUu/U0NXEmaY8oQwAdrKYYSPUu+vcVp3JSYm1J70QwlPhaOBe48D44WbxV/FCgpmaQZR0MH5cu/iK1wsQNNoVDQoqt8S/Dnimenjq9Ay8IGWS6WUPcg342vUCnu43fxVsZYXFycUqmkRY0YY2q1etKkSbwPSvIa8dV+xLTLIp4rWezm4rcXExMTp06dygM2OvjUqVMDfYfzX3aFQkG/IzzkpqGVwS8LkVxz+XtGMttWHJZG6ybxhyjw6Ovr4xk1+Nwn/rnm82SCk3wPiKfmn1AabxnoUsubPcHjEMXQ0lVsaIUueX9yoK8CSaprWu/r9u3bFJyPz0zICIHgj6ZPn84HngbicDgmTZq0atWq6dOni9s///zz69ev37p1a8aMGX6fSHcRgrSw6aHW1taQiQ0kn+e+vj46ePAYoKWlJXjWOJ1O19LSEvzUWVlZp0+fvnLlSn5+vuQhGnYf6Ds6nOrb7fYwh6KJBgYGKisrFQrFww8/HGif3t7ejo6OIDukpqbS/M5hnTp8NJTlXlQ/HCGrDxB1lG2SMbZ27Vr5jD4++0IR9nrqfAyPvD0txjP8gL4h4p48+5m4nfLe+oYmmgfqHaJn0VffokWLgjS8JMfnqeTENr38RJIODfH4QR4aLl42XgBq127YsIF+cfxeIvlamWJdJI8Gf66EeCjJzJlw3hj8VZbs73A4LBYL//GVvxn8Hj/kazQsknes/F03rINTI/6v/uqvAjUM5J8CyWst2YEFbvoHKpv4PpTsI3kdw/xQOxyO+vr6JUuW8Ks0kgsevpB3QEgEHzRqdJ05cyaSYo0GhEDwR2lpaZcuXerq6gqUWqCrq8vhcMycOVMS/zDG9Hr9tWvXHA5HoBDIbrer1eogy/488MADarW6ubk5ZAjU39/Pbxd1d3fb7fbOzk6NRhNk4cuurq7Ozs4lS5YEOazBYLh06RKtAxBon1mzZhkMBrvdXl5evnjxYt533NnZefHixczMzLlz5/p9YsjqGwyGK1euBF+8lTFGyzDT393d3e3t7V988cXAwMDDDz8cpGMqnIVH09LSaLeQent75aMBxQXd5ex2e5BBgCzs6kdmWOuuAkRXyBsxE5Hdbo92EUaZJCXM/aGxsTHaRRhlDocj2kUYffffpymKEALBH1EIdPny5RUrVvjdweFw9PT0+B3tptfrdTrdzZs3FyxY4DcpWXNzc8iUcQ8++GBTU1PIcvb29h45ckTckpKSsnTp0iBN8MuXLzPGgrfCqfpVVVWBqk+WL19+5cqVa9eu2e32hIQESgvj9XqTkpKCxE4hq5+SkjJ16tSbN28GjwEkdZ88eXJ6enp6erperw/yrObm5qlTpwYfvJeWltbY2BhkfVWusbFR/ku5atWqQNFvbW1tT09P8E6YMKsfmXCqDxB1f/qnf8oYy8jICP5NBQBwfzh9+nR0C4AQCP5Io9HMmjUryDqnOp3uscce8zvfJi4uLicnJ9Ba1DU1NQMDA3PmzAlegDlz5tTX19fU1CxcuDDQPo899pjkvBqNJvgIN6/X63Q6Z82aFXwoKq9+oImJ/IyPPPLI3Llzb9261d3dPTAwMHPmzNTUVIPBEKhLOszqz507t6qq6ubNm4FSPIt1p5G1SUlJITPUORwOu90uyeEml56efvny5eD9MFOnTpVcf/GhQM+y2+0qlSp41mwWRvV5ASRpZ4ILs/oA0bV27dq1a9dGuxQAADEEIRD8f1lZWU1NTTU1NX6bjDqdLkiwEehRj8dDg4wD9RJwM2bMMBqNFoslMzMzUP7oQCPNgqipqenv78/Kygq5p9lsbmpqslgsjzzySPA9k5OTQ65ERMKvflZWVm1trcViCRQDRFB3xpjFYtFoNCGrHxcXZzabKysrm5qaAnVYqdXq4ZbBbrc3Nzfn5OSEHCUcsvqRFSDM6gMAAEBMiXCdR7gv6XS6uXPnXr16dRQHOldVVd25cyfMNmhWVtadO3eqqqpG6+ytra1Xr16dO3du8J4iMm3atIyMjC+++CJkWojwDav6ZrO5tbXVarWO1tmtVuutW7fCPLvJZNJqtdXV1X7zzkXA6/VeuXIlOTnZZDKFs390qw8AAACxAyEQfM2iRYuSkpLOnz8f8TI1opqamvr6+kWLFoU5EyMlJWXRokU0HG7kZ+/t7T1//nxSUlL446AeeeSR5OTkc+fOjUqO5uFWPyMjY/bs2dQVM/Kz2+32ysrK9PT0zMzMMJ9CoxnPnTs38rMzxs6dO9fZ2ZmTkxPm/lGvPgAAAMQIhEDwNSqVatmyZT09PefPnx9hluS6urorV65kZGQM6zZ8VlZWRkbGlStXeJbYyPT3958/f76np2fZsmWBhtXJTZ48eenSpf39/efOnYtK9ZcuXarT6c6fPz/Cjri2trbz589PmzZt2bJl4T9Lr9fn5uba7fZPPvlkJGdnjB0/frypqenRRx8NsliTXHSrDwAAADEihkKgLVu2xMfHP/fcc/fi4CtWrFAoFG+99da9OPgY0+l0y5Yta2lpKSsr6+joiOwg1dXVFRUVaWlpubm5w31ubm5uWlpaRUVFdXV1ZGfv6OgoKytraWlZtmxZOEPgRNOmTVu6dGlra+uJEydoUYsIRFx9hUKxdOlStVpdVlZWX18f2dlv3Lhx4sSJhISEpUuXhrngAJeRkWE2mzs7O8vLywcGBiI4u9frPX36dHt7+5/8yZ8MN8Nb1KsPAAAAsSC20iFI1vcdFpfLRRHO66+/PmoFGq+MRqNarT5//nxpaenixYv9JsIOpLOz89SpU729vSaTKfxBUBIrVqyorKy0WCw3btxYsWLFsDIaf/nll59//rlarQ6SqTm49PR0qn5ZWdnixYvDnMpCRl79qVOnPvHEE+fOnbtw4YLL5TKbzX7zjPs1MDBgsVi++OKLmTNnUiwRQQGys7M1Gk1FRcWJEyeys7NDZjMX2e32K1eudHZ2Pvroo5FluI569QEAAOC+F1sh0EjYbLYdO3awACFQdnY2YyzIyjATzowZM5544omKiopLly7V1taazeaQi5Z2d3dfu3bt+vXrlCN7WJGDXE5Ojkajqaqq+uSTT+bNm7dgwYKQ2ZBtNpvFYnG5XA8++GBubm5iYmLEZ3/ggQeo+pWVlVT92bNnB3/KKFY/ISHhW9/61qVLl65du1ZbW5uVlTVv3rzgkcDAwABlVBscHJw3b96jjz4a8dkZYxkZGRqNprKy8vTp0w8++KDBYAgZz9TW1lL+t+Tk5JUrVw5r/JtE1KsPAAAA9zeFz+eLdhnGyJYtW/7lX/7lBz/4wfvvvx/B06urq2lW/cS9YhaLpbq6+oknnpg+fXr4z6I80e3t7fHx8WlpaWlpaRqNRq1Wq9XqwcFBj8fT29vb1tbW3NxMo+YWLFgwrDv3wfX391sslmvXrjHGUlNT09LSpk+frlarExMTlUplX19fX1+f2+1ubm622+1er3fatGlms3lYHRfB2e12i8XidDqVSmVaWprBYBjL6nd0dFy9epWWItXr9QaDQavVJiYmUv9Gb29vX1+fy+Vqbm6mZbAfeuihrKysadOmjcrZGWNffvmlxWLp6+ubMmVKWlpaQkKCwWCg609nb25u7u/vt9vtPT09KpXKbDaPMPQV3evqd3V1HT16NCsrCwsHAQAAxJTR6QXyer12uz1kLwHfU6fTBV+nMoIjj5Db7XY6nSHX2YyY0+n0eDwGgyHM/V0ul9frvUeFGZZZs2bNmjWrubmZwgybzeZ3N71ev3jxYoPBMKyVK0NKSEhYvHjxvHnzqIchUKa4xMTEOXPmUIQ2imdnjBkMBoPB0DyEmuNy96j6qampy5cvX7BgAZ29srLS724pKSkLFy5MS0sb9TfM/PnzMzMzGxsb7Xb7jRs3vF6v/CWg4PDhhx9OT08Puf7PsES9+gD3n0OHDlksFsbYpk2b9Hp9tIsTofLy8vLycnGLVqs1Go1Go9FsNvtd3XsC8Xg8VqvVYrFcuXLF6XTq9fr09PTc3FwabzJRHDhwQGwwGAQTesiM/L0nkZ+fn5+fP0alGSU2m+3AgQOBHjUajUVFRWNXmjHjiwh90Vy4cOHMmTP5+fkUz2i12vXr17e1tfl9ykcffSR+MZlMppKSkhEemd5nVVVVku0Oh4MeEjf+3d/9HWPsBz/4gbjx8OHDhYWF4qdRp9MVFhZKzrV161Y+rz1fcPz4cdqhsLDQaDTKa9TW1lZYWMhbZlqtdvXq1Q0NDZLdSkpKjEZjYWGhz+crLi7mX3M6ne7tt9/2ez0jUFNT88EHH7S2to7kIB0dHc3NzXV1dTU1NVar1Waztba2ejye0SpkcB6Pp7W1tbGx0Wq1Uspp6n4Zm7P7fL7Ozs7m5mZK2z321b99+7bD4WhoaLh69erVq1dv3LjhcDi6urrG5uw+n8/pdDY1NV2/fr26uvr69etNTU1Op3PMzj7q1Xe5XB988MHly5dHsZAA41ltbe2cOXPo9+VnP/tZtIsTue3btwdq1WRkZIzi7+bYu3DhQqC+9DVr1pw6dSraBQxXkDBg4cKF//RP/2Sz2aJdxkgEee+R7du3R7uMw3bq1KkgNZI0p+8bEd4pocj+5MmTu3btUqlU+fn5Lperurr6ww8/PHv27PHjxyUf4M2bN7/zzjtsKOuu1Wq1Wq0vvvjiiRMnDh8+LOYslh/Z4/FUVFT4PXKgQNzj8QSP0bk9e/aUl5fr9fq8vDyj0Uj3XQ4ePHjy5MkLFy5kZGTQbi0tLXa7XSwhcbvdfAd590h1dfVTTz1lt9uVSmVubq5Wqz179mxpaenChQs/+uijNWvW8D1dLpfNZjMajS+++OJbb71lMBjy8/Pr6ursdvvmzZvdbvcrr7wSTnXGQEpKyrCSE4yuhISEYY3iG3VarTaKt6+SkpJGt5dpuEZxiF0Eol59gInOarXeuHFDqVR6vd5//dd/3bZtW7RLNCJarXbLli309507d2w227Fjx+rq6jZv3qzRaCbifett27a99dZbXq83IyNjzZo18+fPNxqNFovl4sWLZ8+ePXbsmMViaWhoiHYxhyE7O/vpp5+mv+vr6+vq6ugWak1NzW9+85uSkhKxLTSBiO89iQnXBSTaunVrcnKyZOMYDMWKjsgiJ/70vLy87u5u2uhwOCg+kcSL//zP/8wYy8zMfO+99/jG9957Lz09nTG2a9euiI9Me8p7gfgXhLjRby/Q7t27JfdUHA5HQUEBY2zdunXi9qqqqiBXjN7xYi9QQ0PD8uXLGWPf+973eAlramr++q//mjH26KOP1tbW8p3ppoJSqdTr9UePHqWNg4ODFPlotdrOzk6/5x2WUekFArhvoBcIYs3atWsZYxs3bqSxCROoS0GCfjSNRqNkO1+OWa/XR6VgI7F3715qZmzcuJG3f7ju7u6tW7dmZGREpWwRoHZRUVGRZLvT6Xz77bcfe+wxxtj8+fN///vfR6V4EQv03pvQeC+QfJjSfWxEi2ZotdqjR4/yWT16vf7w4cPs6wMlPR7Pu+++yxh78sknN23axJ+7adMmukNTXFzscrkiOPKo+PGPfyyJ1/V6/UcffaRSqQ4dOtTS0hLxkU+ePHnmzBmVSrVr1y4+sM1sNr/zzjtarfb//u//PvzwQ8lTvF7v7t27+R0RpVK5c+dOo9HocrlOnjwZcUkAAACcTuexY8cYY88999y6desYY//2b/8W7UKNMq1W+/LLLzPGWlpaRvILPvZcLtc//MM/MMaKior27t0rny+t0WhKSkqOHj0ajdKNpmnTpr3wwgv/8z//o9Ppvvzyy3/8x3+MdokgRo0oBCoqKpIMCjKZTNSF8tlnn9EWm81WV1fHGKNvJdHWrVs1Go3L5Tp79mwER74XaLq/2+2mIXCBpv6Hg8pZVFQkmW+q1WpfeOEFxtgnn3wieQpNeRK30Ai6EZYEAACgpKTE6/X+xV/8RU5OzsqVKxljFy9ebGpqina5RhkFDyqVamLNud+1axelHn311VeD7DaKKTejS6vVUndKeXn5kSNHol0ciEUjCoGoH1OC8hG3t7fTfy9evMgYM5lM8swzWq2WMqQ1NzdHcOTRcvLkyWeffTYzMzM+Pn7WrFmzZ8+ePXs2JcwZSeBhtVoZY4888oj8IapIT0+PZDufeiSiiVJ80hEAAMBwtbe3l5WVMcYef/xxxtiqVauWLFly7dq1EydORLtoo+zjjz9mjOXn54vTjMc/GuGydu1avy2B+9KmTZsoXq2uro52WSAWjShxZGpqqnzjQw89xBijhVwYY4ODg4wxr9fr9wh6vd5qtcrf/eEceVRQ+gHGmE6ny8vL49m6S0tLW1paPB5PxEd2Op2MMb/r09Mqk9euXWtpaREjw/BTZgMAAISvrKyssrJy7ty5q1atYowlJyevWrXq0qVLZWVlGzdujHbpIiRJfWS32z/++OMjR47o9fqXXnopeuUattu3b9N4mcWLF0e7LGNHqVTOnj27pqamtbU12mUZNrfbHSiL9Lp168Jc92UcOnTokHx5iYmYWSQcIwqBent75RvprczTbt69e5cxNmXKFL9H6OzsZIzNnz8/giNz8qlEYSovL3/rrbc0Go0kPxtjbMmSJSMcRkwfAKq+xFdffcUYMxqNM2bMGMkpAAAAwkG9PY8//jj/DS0oKPjZz35WVlZWUVHBV32YWFpaWlasWCHZWFBQcPjw4YnVBm1oaKDbprF2J9RoNNbU1FD4N7E4nc4NGzb4fYgv6DIR+c0SiRDIj+vXr8s3dnd3M8amTp1K/6WRYFeuXPF6vfLVym7dusUYk4+RC+fI9MSWlhb5ILEwgyJKsbBlyxZJ/NPV1VVbW8sYG8lI4oyMDKvVSseRoABPpVIpFIqIjw8AABCOP/zhDzQKjrqAyIoVKwoKCkpLS8vKyiZoCKTRaCivA2PM7Xbb7Xar1Xry5MnMzMzf/va3eXl50S1e+ALdJr7v0UILfltK45z43pM/NMaFGUUTugtruEYUAv3Hf/zHj3/8Y3GLx+MpLS1lQseO0WhUqVQej+fDDz+UxJFHjhyhnhb5gsfhHJkOLq7YwwVaRV6io6ODMdbf3y/ZfunSpa6uLvb1UCo+Pp7+aG1tfeCBB0Ie3GQyHTt27ODBg9u3b5fEfu+//z7zV2sAAIBRV1ZW5nA4li5dShOBuFWrVpWWlp44ceLv//7vJ2K7R6fT7d+/X9zi8Xhee+21n//853/+539eVVU1UebVxMfHT5o06e7du3SrN3Z8+eWXjLEJFKxy8vfe/WH37t337SpAMiNKh1BdXS0ZCvnTn/7U6XTq9Xoe7eh0uq1btzLG3nzzTXFomcvleu211xhja9eulWc4CefIjDGz2cwY+8///E9xz5aWFjpySBRNffjhh+JUpZaWlueff16+c1ZWFv1C+O2hknvppZe0Wm1dXR3NNeL27dtHc5/kKfIAAABGHY2C6+jo2L179+sCh8PBGDt//vzorjYRRSqVqri42GQyud3uPXv2RLs44UpPT589ezZjTH5L9z42MDDQ2NjIGJs7d260ywKxaES9QHl5eX/7t39rs9lyc3M9Hs/HH39Ma90UFxeLmVhefvnlgwcP1tXVLVq06KWXXjKZTHV1de+//77VatVoNLt37474yD/60Y/27dtXXl7+7LPP/uhHP9JoNNXV1a+99ppWqw1nJs+6desoMFu+fPl3vvMds9lssVh27dql1Wrpb8n+BQUFR44cef7557///e/TdLG8vLxAN5n0ev327dtffPHFbdu2ff75508++aRKpfrss89+9atfMcY2bdoUrV6gysrKyZMnR+XUAONKoDQtAPeT0tJSWlnOarXu2LHD7z5Hjx6VDAifuJRKZU5OjtVqDXM8yDiRmZlZX1//+9//PtoFGTtfffXVzZs3GWPy+fcAY2BEIdDOnTt/97vfiV+pKpVq7969ksVttFrtf/3Xf73zzju/+c1vxIlWGzZs+OEPf+g3hAjzyNnZ2T/5yU/eeOONgwcPHjx4kDbm5eW99957CxcuDFl+k8m0d+/e559/vqKioqKigm88derUs88+K9+/uLjYZrNVV1fzWuzfvz9IP/vWrVvVavUvf/lLsXhms/mHP/yh346mey05OXnSpEmUggIAGGOTJk0SpxcC3H/o181gMPzN3/yN/NH29nb6dX7zzTfvm5YozRAeSU7Xsff000+XlpaePXu2tLR09erV0S7OWKABOxqN5r4Jv2FiGVEIxBgrKSnZsmVLRUWF1Wo1m825ubl+85ksWrTo17/+9fPPP2+xWGw2m06ny8nJycnJkSdIGO6Rd+7c+c1vfvOzzz6zWq0mk+nP/uzPVq9e7fV65WM0n3766aefflqycf369Xl5eZQC22Aw5OTkmM1mpVJZUlLicrkkI/RMJlNVVZXFYrHb7dTLxAew0v7yAZTPPffcX/7lX1ItPB6P2WzOycmRV6SoqCg/P99v9oWXX375+9///qgMzZw1a9Z3v/vdkR8HAAAmhKampt/+9reMsS1btkhm2JK2trbTp0/X1NR89NFHmzdvHvMCjj6n00nrrU+sCbcbN2789a9/XVlZuW3bttzcXL/tAY/Hs2/fPlpdfULzer379u2jW8M7d+6MncknML74IkLPraqqiuzpUTkyAABATNm3bx9jLCUl5fLly4H22bJlC2PsySefHMuCjdD27dsZY0ajUdzY19f36aef5uTkMMaUSuWpU6eiVLoIXbhwgZpARqPxzJkzkkePHz9uMpkkVR7P8vPzGWNFRUV8S1tb24ULF/bu3cvvL+fm5g4ODkaxkBHw+96b6E6dOkWvSENDQ7TLMnZG2gsEAAAA4xPlwv7Wt761aNGiQPusXLlyz549ZWVlp06dki+zM57ZbDa/a0uoVKqSkhJqgk8gubm5Fy5c2LBhg9VqXb58udFoNJvNOp2urq6uurqaRvdNuPTlBw4c8LuEaEFBQWFh4Xe+850go4HGs0DvPcZYfn4+jyhgPJuQ7zwAAAAIzuPx/OEPfzAajcGTDj/11FN5eXl2u/3cuXMTJQTSarXy0VNKpdJoNObk5GzZskW+3uCEkJubW1VVtWPHjiNHjlitVpvNxh/Kzs5+9dVX165dG73SDY9er5e8Rnq93mAwGAyG+fPnFxUVidmtJhC/7z3RRHzvqVQqqtQEjUgjo/ANjT0b3tMUCsZYVVXVqI+1vXdHBgAAAJgQPB6P1Wp1uVwUS0zQgAFg3Iow2qM+vnsxg+3eHRkAAABgQlCpVLgXDHDvRNgLBAAAAAAAMBFNinYBAAAAAAAAxg5CIAAAAAAAiCEIgQAAAAAAIIYgBAIAAAAAgBiCEAgAAAAAAGIIQiAAAAAAAIghCIEAAAAAACCGIAQCAAAAAIAYghAIAAAAAABiCEIgAAAAAACIIQiBAAAAAAAghiAEAgAAAACAGIIQCAAAAAAAYghCIAAAAAAAiCEIgQAAAAAAIIYgBAIAAAAAgBiCEAgAAAAAAGIIQiAAAAAAAIghymgXAAAAAAC+pqKiwm63u91upVJpNBqzs7M1Go18N7fbbbVarVarRqMxmUwmk0m+j81mY4wZDAal8mutPq/Xa7fbGWNGo5FvbGlp8Xg8Wq1Wq9UyxqxWa2VlpdfrLSoqEp9rtVrr6uqcTied12w2+62Fy+WqrKy02+0ZGRlms5mOCTAeKHw+X7TLAAAAAACMMXb27NnNmzdXV1eLG5VK5SuvvLJz506+5ebNm+++++67777b2dnJN65evfqFF1548sknxecqFArGWENDgxjqMMaqq6sXLVqk1WrFI6xYsaK8vHz79u0FBQXPPPOM0+lkjBmNxoaGBtqhvLx8w4YNFFZxGRkZFy5c0Ol0fMvx48d/9atf/fd//zffkpKSsmnTpk2bNj300EPDvCQAow+9QAAAAADjQl1d3VNPPeVyuUwmU15e3sMPP+zxeG7dunXo0CHqseG2b9++b98+xlhhYeE3v/nN9vb2Y8eOlZaWnj179vjx43l5eSMpxsWLF3/xi19otdr169fPnTv31q1btP3nP//5tm3bGGM5OTn5+fnz589vbGysrKw8efKk2+3mIVBFRcV3v/tdl8tlNpvXrFmTnp5eX19/4MCB4uLiS5cuffrppyMpG8Do8AEAAADAOLB7927GmF6v7+vrkzzU0NDA/z516hS14j744AO+sbu7myKfnJwc8Ym0p/h0UlVVxRjTarXixvz8fNp/3bp13d3d4kO1tbUqlYox9pOf/GRwcFBSNr7z4OAgjYvbtGmTuFtTUxN1Q4llBogWpEMAAAAAGBfq6+sZY6tXr6ZgQySCndFdAAAFoElEQVQOY9uxYwdjbO3atevXr+cbNRrN/v37lUplZWVlaWnpSIqxdOnSX/ziF5LZR6+99prH48nOzt65c6dkWpHRaOQ7HzhwwGKxmEymt99+W9zNYDC8+uqrjLE333xzJGUDGBUIgQAAAADGhaysLMbYwYMHy8vLg+xGM4Wee+45yfaMjIw1a9Ywxk6fPj2SYsyZM0c+Y4eKtGXLluDPPX78OGPse9/7niRMYowtXLiQMdbb23v37t2RFA9g5DAXCAAAAGBcKCoq2rNnT11d3YoVK/R6fV5e3rJly9atW2cwGPg+NTU1LpeLMTZ37lz5EfR6PWOso6NjJMWYP3++ZMvVq1dbWloYY4sXLw7+3K+++oox9u///u9lZWWBdvjqq68kuRkAxhhCIAAAAIBxQaPRVFVVvfnmm4cOHaqrqzt06NChQ4defPHFwsLCkpISCm/UajXtzP8QzZgxgzF2/fr1ERZDsiUhIYH+SElJCf5cSiLncrk8Ho/8UYp85B1EAGMMb0EAAACA8UKj0RQXFxcXF1ut1vLy8hMnThw7duzgwYM2m+3MmTNKpZKPIuvs7BR7h0hjYyNj7Bvf+AbfolKpPB6PPCChOIQ6lEKaNGmSQqHw+XwOh0N+UtH06dNtNtvOnTs3btwYzpEBogJzgQAAAADGHZPJtGnTpsOHD3/wwQeMsYqKCqvVyhibN28epZ++evWq/Fk0XE3sq0lPT2eMORwOyZ4VFRWMsTCXK50zZw6Nu7t48WLwPWk6U8jdAKILIRAAAADA+LVu3ToamcZ7bHJzcxljv/zlLyV7VldXUy64goICvjEzM5P5i0k++eQTFnYvEGNs9erVjLE9e/b4HeHGPfHEE4wx6rYK88gAYw8hEAAAAMC48NOf/lSez7qiosLtdiuVyuzsbNqye/dupVJ59uzZ119/ne/W0tLy7LPPMsZWr14tLo26cuVKxtiePXsojxx54403jhw5Mqyy7dy5U6fT1dXVffvb36YJP8Tr9R47doyHUoWFhQUFBW63+5lnnrFYLJKDlJaWHjhwYFjnBbgXFL6hNbMAAAAAIIpWrFhRXl5uNBpNJpNer3e73RaLhca/FRcXv/LKK3zPN954Y8eOHV6v12w2Z2dnu1yus2fPulwuo9H46aefZmRk8D09Hk9mZqbdblepVHl5eRqNprq62m63FxcXb9u2jTEmNgWpACUlJVu3bpUX7+TJk9/+9rddLpdWq83NzdXr9U6nk47W0NDAk7zZbLZnnnmmurpaqVTm5eXRdrvdXldXZ7PZioqK9u/ffy+uHsAwRHlpVgAAAADw+Xw+33vvvZefny9ZFzU7O3v//v3ynU+dOmU2m/luGo2msLCws7NTvmdDQ0NOTo54wMOHDzc1NRmNRqPRKO5ZWFhoNBpLSkoClbCpqamgoEBMGafRaNavXy857+Dg4O7duyWJE3Q6XVFR0ZkzZyK8OgCjB71AAAAAAOOI2+12Op12u12r1RoMhuAZCzwej9Vq1Wq1IVfacblcdXV1JpNJnvM6AjabzW63GwwGvV4vidlEbre7rq6OMabX6ympN8B4gBAIAAAAAABiCNIhAAAAAABADEEIBAAAAAAAMQQhEAAAAAAAxBCEQAAAAAAAEEMQAgEAAAAAQAxBCAQAAAAAADEEIRAAAAAAAMQQhEAAAAAAABBDEAIBAAAAAEAMQQgEAAAAAAAxBCEQAAAAAADEEIRAAAAAAAAQQxACAQAAAABADEEIBAAAAAAAMQQhEAAAAAAAxBCEQAAAAAAAEEMQAgEAAAAAQAxBCAQAAAAAADEEIRAAAAAAAMQQhEAAAAAAABBDEAIBAAAAAEAMQQgEAAAAAAAxBCEQAAAAAADEEIRAAAAAAAAQQxACAQAAAABADEEIBAAAAAAAMQQhEAAAAAAAxJD/BxZGWtNclQqBAAAAAElFTkSuQmCC"
+ },
+ "image.png": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAABZCAIAAAARhIb3AAAACXBIWXMAABScAAAUnAHVi7b7AAAgAElEQVR4nO3deUCT9/048A85CAHCGe5DDjkERQ6Rw4uqKGqts1p76NZurT2sXbtu69bvunXftd927dau3a+10s7ac7ZWaz3wwnojNwFUCGc4cpCDEMhFIHny+yM1hnDleJInwPv1VxKSz/MBkjzv53O83256vR4BAAAAAADgkkhEdwAAAAAAAIBJQbQKAAAAAABcF0SrAAAAAADAdUG0CgAAAAAAXBdEqwAAAAAAwHVBtAoAAAAAAFwXRKsAAAAAAMB1QbQKAAAAAABcF0SrAAAAAADAdUG0CgAAAAAAXBdEqwAAMJVvyhre+uEK0b0AAIC5C6JVAACYSrdYdri8keheAADA3AXRKgAAAAAAcF0UojsAwNwlkStLG9p6+wflag1CSCJXxQb7v7RlFdH9AgAAAGz39vErHNEAk+GJEPKkuUcF+q5MiY1m+tncIESrYIzqdm51R29EgC9CiExyi2b6zQ9letKoRPdrttFh2PslZYeuN2i0WtPHR0a1k71k1usUSj+7XJebELkxM5novgAAALBdC09c3cE1feSdk9fuzUp+ees9tkUUEK2CMao7evefrzR9hEGn7VyR/ljBEohZ8cKXDn10vuJ4dRPRHXE5P1TdigrwIboXAAAAcKbDsOPVTVod9tS6nJggf2tf7pB1q3K1hi8d4kuHGrsFbJ7YEYcATiNXa/afr3z96I/d4gGi+zJLHK9pglAVAADAXFNSxz5h0+kPz7FViVz56cWaU7VsmVJtfDA7PvLAnu04HgUQ4lQtW6PVvfOLTUR3ZMbTaLXf3bg5/nFPGpXJ8EqKCHJ+lwAAAAAcJUUECQcVA0q1YVeGqS+vsB5Zkc5keFnVIG7R6vHqpo/OV/ClQ3g1CFzNDXbXtWbOigWxRHdkZitjd0vkSuNdTxp195qlO/LTGHQagb0CAAAA8PLSllWGHcMarfZ4VdP+85XGE59Gq714s2NHfppVDeITrfZIZG8eu6TSjOLSGiDQnvV5jyxPH1CqJUOqa82co5W3jBdGSs3olSaIVu11o6Xb9O5buzasSokjqjMAAADmCI1W28ITN3b3sbr47YL+v+5YmxEb7uiD0iiUHflpqVEhj33wnXFXcW0nj4BoVaPVvVdSBqHqrOHnRffzoscGB2TPj8yMi3iv5HqnUGr4URcsXbUb584fEyEUHuADoSoAAABHUAxrWvmSFr64VSBpFUhaeWKNVmf86RvfX3q2KK8g1RnnoNSokKSIoMZugeFum0BibQs4RKtCmfxCY5vpIww6bUt2SrCvN5PhOT+Uaf8hAFEKUuOq2nuN0WpVW69KMwrJAewhkauMtyP8Yf87AGBO02i1/UMq4aBCMqRUjYwihML9fZg+nkyG1wxdH6XDMDKJsNJL3WLZT+EpX9LCFwkG5JM9s4Uv/vhCFZVMWpYc44SO0Shk4+1eyaC1L8chWq1o7TG9uyol7p+PbqRRIDfWLOHt4W56t0ciS4adQHYYv+QcAAAsceh6vdOORSaRrJ2rtUozV1TH4dV28us6eVKFavwTqGRSVnxkZmxEZlx4VlwEgfGfVTgi6etHLjpzc7lcrbkTm4pbBZI2gURjcd7uWz19xaWVVAp56fwoh3bSjA3XITjElDd7+oy3aRTKW7s2QKg6i5FJbkR3YWYbnsP5/53v/525cazy9sW/7ia6IwDgoEMoPXyj0TnHemXbage1zOLwT7NazrBahlTDUzxtVIdVtPYYhsMKFydsyEhau2i+g7qEl8ZuwQsHT0nkyh6JzJ66TdPqEg20Cu6Ep3wJf8D2De71XYLi85VUMtkJa1iNbDgP4hBWckR31zImRQTBNPHsJlNO9f0CpjWq003/JIAfmUo9/ZMAAI6nw7Avr7I+uVBl7RRTaUNbaUPbhoyk5zcuC3fVAiJHym8Wl/60872itcdx0SqbJ/75v781q4Noj+oO7l8PXziwZ5u1WaVsZsN5EIehdeHg3VURpusSwKxEIcPYql20OozoLgAAgLPVdHCfP3jy3ZPXbF4NdYbV8uuDJ07VsvHtGC6+vdG471yFcFBhuMvi8B13rBM1TTiGqgYckfR/D19o4TupnJPlaxWMcIhWZ8pqEoALrU5PdBdmNh0G0SoAYG4539D27slrV5s4drbType8e/LqF1fqcOkVXr6+xvrw7A3TRNqsLr7oTuSKL/XIaG0nzxEtX2niFJ+v7Ojrd0Tj9sMh0BxQwEQbAAAAACbAEUlfP3rxVq8Ql9YkctU/T1z96ioLl9bs99nl2g/PlputkeNLhxw0vFrXyW/mihzRMkLows324gtV3WKZg9o3Ze3wMA7RKo0Ke6oAmFv++PXZ5a98RHQvAACurqaD96f/njOtx46Ljy9UHqu6jW+bNvjPj9Ufni1XDI+M/1F9l0Oi1dpOriOaNTrLavn4QqU927Ymw/QZsyi2f2iCRBBTwCFaxf1dCFyKD93D9K4j3sRzh3pkTBEN75mZTdAAFuACAKbWIZR+drkGr1FVUzLl8OeXa6/YvbTAHsWllfvOlU+2BJPF4Y9ocd5Tq0fIQcsATJ2saf64tEo8pJz+qdYwywPg70236uUwLAqmYRaUMBmeRPXEErd7hRK5UihTmC4hQghRSKT5YczVC+OJ6piBDhuz6tcD5iUAALPXieom+9eqTqZTKD1ScTMrLsIsKbgTaHVYcWllcWnlFM9p4orqu/j45jGt7eA6dP+W0feVtyhk0t6ifD8vj+mfbRmz853Z2XBaLnGy/NnbXxiqJb36wNptuQsddyAWh//oB4dNH6FRKN50dz8venJ4UNq8sKL0RGvjfduOixAik0h+Xh5J4UGbMpM3ZSWT3PDca797/9HKtt6pn1P6lydCfL2nbcrDfcybxDVH1KrbuUcqbpa39kwx0u9Jo1589UliM6xRKWNmM7RE77hiCWQytS01k4UKjU6vv9SJ5wZS4cAQQqhzQIljs90yld7ufnKH1BhmaSN50QEekBoFAIRqOrgldY7dv3/ldudpFntHngOrGIw3PDJaXFp14GL1tM9kcXCOVuucEqoaHL7RSCWT927I86LhczFgFm+IhxTeHgGWv9zeaFUzdqDbLLKxBJsnMhb2LKljOzRaHU+j1Wrk2n65qqOvv6SO/c7Jq5uXLPjdfSvx+vdMQYdh/XLVjZbuGy3dP1Td/uCJLXR3V0xVG+g9ZjBVNmU+Z+eTyJV/+PJMdQeXRqEsS54XGxKQGMaMDQ7wGTfJHujjSXjdiqaxM2LxIYFE9cTA2/oPrIE72Q0h5EfH8x2rVJERQh4UEo7N0igkZEc/B5UqKoVCo5Dd3CxtBN/LTgBmrtOsFgftix9zlLqWFcmxYf4MRx/IQDk8sv98xeeWJSXAfRy0tsOxi1bNfH2NRaWQ9hblu+NxBe4xNsKxNpaw9+StHZvi1YNq9VnBNHdabSe3TyYP9XP42+4PPyvISYhCCOkwTK7WCAbkdRzeufpWxfDI0YpblW29n+7Z7ohuGI+LEFIMj3SJpF9eZbUJJNUd3H8cv/qXB9bge7hopt8bj6yf7KcBlo0iU8e+TRXDLlQ41Fg4ZENG0ov3rgjxm36omFia0TGfFwrRhcESAm38i/nT3clubhlheKa/9iVhCKFwBh3HZq97e7hZ2U8dhh2tuHXhZvvtXqEhMSST4aXXI3x/WQBmN5Vm9FilM3ZB1XXyylu7789xxjiXTDVcfL7y62uWpiOo7+K38MVJ4fjUKr/VK6xz/KJVM59dqqWSyXs35Nt/rooYW9aBI5RmxFhRPcveaNVsDFJuZSiD6fVnWC0IoeXJMeWtPToMO13X8qvVS+zs1bTC/BnzQ8cMa21esuC3m1f+/YfLJ6qbuP2Dzx88+eVzD+JyPTHFcdNjwjZlJe94978dff3Hq5t+v2UlvsOrdHdq2rwwOxtJDGOa3jUtXUYsjkj6ZPH3DDrt8707nFkyzh4Xb3WY3k2NDiWqJ2BCKs3oM58cMxsRkchVCEGaYQCscLTyptNyS9d28JwQrUrkyuLSqm/LGix/iUozWs/h4xWt1nZwNXhv27LEJxeqqGTy0+ty7GzHLCcAm2fdAi17o1Wz45lFNtOqaus17DvbtTJDj1AZu6ukju2EaHVC3h7urz+0To/pT9Y2N3NFP1Td3pHv8NUwVDJ5R17am8cujep07X39i1wvfDFMoBtTozV2C4jtj4FcrXl831GdTv/eY5tTo0KI7o6lbrR0m95Nc71/9xz3+tGLE03ezeBQtV+uqu3kNXNFzTxRE1doyAr52kPrtmSn4NX+xVsd5a3dzVyReEhJIrkF+3hnxkXsyE9baPcHU69HpY1tjd2CW73CPpm8X65CehTo47koOnRLdsry5Bg8foMxBlXDW976QqpQIYSe37Ts8dXZuB9ijnDmKGAdhy+UyUMcOSvbJ5MXl1Yerbhl7QtZXfwHly3GpQ+NPX24tGODfefKw/wZdn5pLEuax6DTjJXMTtQ0/eFnqywvL2VvtGr4VBsFWrlh3LAEO5DhmZsQLVWoy9hdbQJJq0BibdSLoz9uLbhws109MvrVNZYTolWEkHHBjQ21yJyARqGkx4YZ92z1iGVsnig5IpjYXn16qUYiV7720LoZFKoWl1b2SO5mXb4/ZyFjJmewwpFMqSZ8wxlCSK7WGKZ6xsuOj3RyZ/BytOLWB2dvOKhxFof/y33fYWP39vZIZD0S2fHq24+vzv71xmX2tD+i0/7uixKzB/nSIb506Fx967rFCW/uLKKS8ZwB+/uxy2YnNWADjVZb3trjtMPxpIN1HP6GjCSHtT+0/3zF8eomG17L4vBFg4pgCzY0T61dIKmabue0Q+GSwaYwLeH7yp8ifpVm9MDFmifXLrXwtThHq1b9Phqt9seb7QihovREEslt9cJ4D3fK8Ii2pJadeO9yOztmMwadVrg44UR1U5doAJc32bT6ZHLDDYdeGtojNyHaGK2qRkaPVTW9vJXIaFWmVH91hVW4OAGv8SEnaO/rN6sWeM/COKI64yKuNHV+cbmura/fkMnB2mtd3OkwbMK5SzKJtHdDvvP7gws3NxTi670gMnhBZHBkoO+f/nsOx8ZVmhEM08eHBm7MSMqKiwgP8FFpRm/19O0vreT2D/7nx+pQP4Y91/wkN7el86My48IXRYcG+3oHeHsqhjUc0cA3ZQ0VrT3nG9rmBfk/h9+/5mozp6SOnR4TVt/lEjNIM1czV6TS2JJsxGZCh23n6hYPFJdWnapttu3lggE5q4u/fnGind2o4/AHidviPC/ILwuPK/YH8hYdr24yfs1+dK4iOz7SwoV89lYHOFffarxNJpGy4qz4fS7f6jRUgNiYmYwQ8qRR70mNRwidrmPrCZ15M678dcLAu1aHGSYX5gX5Rwb4OvpwttmyNMV0uP7Q9frqdqfuTDRzpOKWRqvdkG7v598JNFrt7V7hvnPlD//rkHEGBCH0ZGHOqpQ5Ha2+ffzKcwdOVHdwjUnH+uUEj2n5edHHj6F60qhv79owUxZGj/f46uzSvzzx71/d98y63BV4T52H+ft8/NT9x37/891rl2bGRYT6MeJCAu7LTvn2N49EBvoihA5eqrGnfSqZ/J9ntu1Zn7diQWxSeFCQj1dscMDqhfH7d29dEh+JEMJxH49ieOS1736kksmv7ijEq805S+r0euwOOmJHX/+HZ8ttDlUN6vHIDFDj3GwAZjJjI3BJtZ4aFfLy1gLjXR2G/WrfkbePX2Fx+NNe3tg1tiqUKSpa7w5N+3vRE8OtmME3LAOICvQ1LtbclJV8htUiHFTUdHIJnHqLCfY33OjHu5aDZEhpnAtWDo90iwc+v1LXwheTSaQX712Oe+ob9cjoZMtMGXRabLClqc6YDK+/7lj752/OGx/Z88kPz27I25GXRkj60oYuAZlEykmIdv6hrZX9hw/GP1i4OGFvUZ7zO+M6vrrKmqzMdyJOOxJs89bPN7x+5KJhM1x4gM/y5Jjda5a6fq6JKZAcmXciLiQgLmSCrxEGnbY9d9F7Jdd50qFB1bCvJ24Jxg1IJLe8xOiaDm6/QqnDMMuXvk3hnZNXhYOKZ9blxk/0GwGrOP/Ks1+O88kaIcTmiYtLKw0zwPZgcQSaUa09Neq5/YPOzLQ6Hi4DqwY78tM6hNJD1+sNd3UYZjwdNL7zwhQvtP3PJ1MNv3nsknHzDULo56syLH/5oGq4jN2N7gysGixLmufnRZcp1SW1bAKjVWNhjCE1ztmaXj96cfyDuYnRTxfmZMZF4HsshFCPRLbr399O+KP8pHn7n9xqeVNbslO6xAMHfvwpH7JGq3335LV3T16bHxr4xiNFyRFOjTCEg/LkiCC5WiO3+B9EJpFcIebIiA3fujT1Z0tTie7IT651S/pVtkzYcYfUWgz7odnGCdOvb9yc8HEPd6pAS7a52fFaJQoM01vVYEHukoLcuxs9ywVyJJBb/vJ184M9qVAdABnXZDtoosww8RXm54NLqFrV3nu04lZ8SMATa2FbFQ5wT6czrb4BKz6klrjdK9x/vvJKU6f9TTVxhfVdfHuGV2o7eU7IXDuZYF/vTFwnl17eWpAaGfxDdZNVA8Y2Rqu1nbzvyhtN0/HcszB+bVqC5S2cq28d1ekQQhsz766MJpNI69MTvy1rKG1s+5/773H+O97A+PXqnDzftR28Q54NcSEBfl74l9HC0e61S5kMz+8rb7cJJMYH2/v6LQ8Z8TKk1vClQ0X/96lVryK8lhWZRHq0IIvw6q+mMsL8tFaWvzO4Vu3R5kYqiLVxN+TBST5ZvyjIKkqyN+eaqfZ2z+tuyOZ+2sCDgkPwNAsYqpmH+jFwqdyo1yNMjyGE5GpNl1j2TVnDldudCKFfFGTa37h6ZPTVb0vd3NCrOwrx3bM1Z6lHnLpoFSGE7w6Thm5B8fnK6+wuvBpkcQT2RKvOT7NqKisuwrCwB0f3ZaekRIU8+sFhy+MHq6PV90+XtQv66zg802N40qjPrMuNsub3MSwDWBAZbDYfvSkz+duyBrlac7WZs3bRfGu7hwtjAnwfOs4TWO/9crMxWMEwvVSpqmrrff902bn61qZe4RfPPYjvRpOk8KDvfrsTr9Y83ak7V2SsXZTwZPH3HJEUr2ZtQKNQkiOCdq6wYiwfIcSg04gtu6rDsD9/c74mO+VnS1MJzHphyuZaVlSym5sb8vOw8e+5Pj1h/3nzEtuPr8neuz7XtgYnQ6OQ3NzcbO4nsE0TV2TY0vDgMnzSqnxT1vDmsUumj3i4U54qzHlkebr9jf/7dBlPOvTQssXpMXheKc1lzt8xaWGxG0vUdvKKSysrcM1pUN9l+zy+eEhZS3S0im+DrXzJiZqmEzVNVg11WX2uMs4FG4X4eb+ybbVVc8F86ZDhn7coOvT22FqUVDLJz8tDphwuqWUTFa12iX9KgG+WzBZfJJIbk+G1MTN5fhjz4X8d6u0f3Heu/M/bcS5nha9Ltzp+qG4iNlRFCIX4ebN54nuzknGZBHQoJsNLYrKgSq7WfHWVVdPB/ezZHcSGzsR6qjBneER76HqDRqv1pFGz46N2r822v5IFcAUypfp3X5ToMCw5IujnK3EY+xyPRqHsWZeHS5nu+i7BoesNIb7ez2+yK9kWMGVWr9sZR2Tgc7KubOspLq3CfUsTi2N7Uas6Ds809aGT+Xp6ZMbhuQxAh2H/KrleNm7cetq5Zbt2WZFJpIeXL95blG/tefc066dd/4dvNB6+0Tjhc641c+RqDSEJKVmdP10Gpc1zRvL2xDBmSlRwQ5fgx5sdrhytlrG7XvryjOlKZaIsjAqpaO2pbufmJrr6RquLf90tU6qvNHHeOXnNuPmdzRO/fvTiFEVxZz0yifTi5hUvbl4hkSsZdBqNgkMmP+AKlJqRZ/9znNs/yGR4vfPovXit5np4+eKHly/W65FEruzo6//scu27p64dKqt//5eb7cn9PKLV/eXb85he/8q21WZ1GYE9EsKYZBLJabWsEEJ0W6eJTN1o6d5/vsIR+cvUI6P1HIFt0WptB5EDq5lxEfND8ZwJ/Oh8pWmo6kmj7i3KL0xLmHZjiV1DUzoMUw6PtAqsK5+FECqpZU/7nBGtrrSxzaZ+2UWu1pTebEMIxYcGMnG6XJtWsI83QkiqUBnW8rqgHonspa/GhKrJEUEvby049MLDaTHOLshkSF7DsmNuxZn8vOhbslO+//0u00/jqdpmO7OizA5MhhfuoaoOw9g88RlWy8VbHc5fPzeXKYZHnv742M2ePibD6z/PbLNqbZgl3NxQkI9XbmL0/ie3PpC3SDAg/+3nJSN21KLcd668SzSwPj1xVeqcTieHOwad5syhhECGZ37SPDsbudLE+fBsueNS7dp8wqoktChAAq6L1ipaez4uvbsGzJNGPfzizl0rMyzZA23veeJY1e0LN9tfe2id5XtH2DxRh1CKEPrz9jUP5C2a8Dnb//lVq0ByqpbthOK/Zt48dml4RIsQ+vlK65ZF2qO3fxAh5E4hu+Yafx2GPXfghOkSk4eXp7+0ZSVRE/H5SfOWJcd8frm2KD3R8jxcxGIyvF7Ztvq5AyeMj3xT1nhv1gICuzT7CGWKd09du3izw3hZRaNSnDnAM5fJ1ZqnPj52q6ePyfA6sGeboz+YT6xZ+l35zd7+wfKWbttizS7RwOeX67w93H+9cdmEuR5HtZjh8bm8aMdmWXER42d7HSQzNmJekL89Lfx4s724tIrNE+HVpfHqbS0P+2hB5odnK8RDBOQEoFEpBbheyH1XMSYbzPMbl0Uz/Sx8rdXR6ivbVncIpWXsLuNCCrla89vPSz7ds93CBNoldS0IITKJVJg26bLUooykVoGktpPbJ5OHTvffFQ8pDSv6cxKi7LkOUAyP/P2Hy6dq2QihhVEhm5dYGklcuNneNyCnu1NtW0d1o6W7hS9CCC2yuGr819fq9Xp9TLC/Iyplj/ftjUbTtaqbMpNf3LyC2DWjL21Zef8/vnrh4Kmvfv3gTKlfuiolLjMuwri7kyOScvsHcd9rOWcZ8rUZl1sYjGi1xJYamSNkSvWTxcfYPFGQj9eBZ7YbU1Y7TsidPeDdti7p65PJdRimGB7Z9MbBCZ+w71z5vnPlCKGrf3vKxRO2uCB8cx5NLSverm1A5+pbi0sr2/v68erPhPgDQ6wuQVG61dHq/TkLtRj2wZlysy83J8iKi1iIX21zbv+g6d61zLiIh63ZJWl1tGooo6fDsI/OVxpHdHUY9tvPS7769YPhAT5TvxzT60/XsRFCOQlRU3z+i9IT/326TK9Hp+tafrV6yWRPM+D2D759/ApC6JVtqy2MVgUDcsNb0/BtxR8YYnXyz9a3GGprRTP9/vXLzZYPc35b1lDZ1hvI8Jw2WjUeFyGE6fUDCnVlW8/X1+oNJ9TH7pnmNzX6x4krGKYvSk+cOlqdojoAQiia6W9hcpmGsZMjW7JTaAQlFzOKDQ54eWvB60cvvvTVmfd+ee9MWfiYnxhtjFblak0zVwTRKl7+57/nxn+b6/XI9bfizXQSuXL3/u87+vqDfLw+3bPdzlEuCxn3wsJ6U9eUGRexISPpDKvF0QdKjgiyZ9XB6bqW4tJK52wdrufwi2wqwbgjL21Ui314ttyYsMg58L3kkCpUpjO0MVZ+Udh4jieTSHuL8mRKtXGPlESu/PZG42/uXT71C6vbueIhJUJo/ZT/s8hA39SokNu9wpI69rTRqv7O4Inlp6W3frg84ePuFPJ9S1J+d99Kq6Z+DMcnWZCddbLjkkmkFzcvX5USa/lBEUKk6X7fKaoDIITe3rWhKCNpsp8ayVTDpoXj0mPCsucTVrjB1I78NNGQ8uPSyi1vffHSllUulcd0MtnzoxAqN95t65MULrYiSzHujtzm9Q7acr3OFstHdNi/bthb5QUv6uHhyS7MYqPCndnPx7Pm+cyliWPRoOLxj452iwdC/Rj/eWab5fN6lpisDhaG6d8/XWa4bfPXUW5i9GS1c9J++x5C6PlNyx5fDcUCbLcxM/lqE0epGXHoUTZkJMXZuuxEKFP8q+SaUOakSfbTrJbf27qCbueKdK0O+/Bc+bAT1+LjW7SIIxowvbvEyhFxu0aknt+47FRts3HFz5GKm7/emD/1f8KQZpVCJq2ZLjvV+vTE273CNoGkVSCZOjmlYRUsjUJZaWW0hxByp5C9PWj+Xh5JEcHpMWFF6Yk2zPgYLsvWWRl2uLkhL5p7RIDvkvjIB/IWTVjAcEJdogEM0yOEplhKgSPNiFYgu1smJMwfn+IxuNhblBcfEvC/31144eDJZckxD+Qtig32d+WVrFTymD/dqJbgJZXbUy39vuBLh273Ctv6JIIBOdPHK5JB6yOTfpNPTI658VSa0W9KLox/nMnw+mDXumnnfGYxTK8fUg0bbg/euaHSjBrHoek0qunUxJUmznMHjiOEPtr9s2XTLTQSDip+9eF3vf2DAd6e7z52rw+dNn54m0GnmX5jWNX+vnPlbJ543eKE1KjQEF9vdwpZphq+1dP3TVmDIfXhfdkpZvHxOyevfX65FiFU/dbemTLlMlutSondkJF0pGLiwnW4yIyLMC2Haa0QP+9vXniEzRM188TNXBGbJzLsIXEQmVJd08HLSYiy7eWPFmSO6nQfni13zlr8jNhwHAuuojuRkpG1kzB2fZgZdNo9qfGGABQhJFdrGrv7pl69+rcHC//2YKEljT9WkPVYQZYlzzSkRrs/NzVouvSoGbHhUxeitUG3eEA8pHSnkH81+VU4vset6eQihBLCmKsXThorfPL0NrwO1yEcs5pngR35YhxhQ0ZS9vzITy/WHLreYFjUT6NQYkP8GR7mi1mjmH5/3r6a2FB7QeSYvx7hmWstdODH6v3nK00zQri5udHtKHuNO08a9eHl6cba0wapUSFvPLJ+LoeqCKG+Afn4qm9vHrtkTLb/8tZ7Hl6+2LbGr9zuNFErYJ4AAAsJSURBVJzdpQrVI+8dmvA5n+/dYeGWhvH0esTi8FmTVEjfnLXg1QdcN+UfQAg9sSb78u1O05zT+LpvyYIQ+6pYBTI8lyXHGC6clMMjTVwRmy9i88RNXFGHA1aysjh8m6NVhNATa7K1OsywnNrRsuIi8K3maZa+Y8JpkynYe75ZvfButIoQut0rtPmLyWY1HVwqeapg0cFH5yGEtuYsnDZWxveITxXmOKcwrH7sLhWa69VAZzK8Xtqyam9RfnVH742WHolcKVNMMLstU6q1GEZstGpIN2HkmikgzLx9/MpXV1lmD+r1ek8P11ov+NKWlVGBvqWNbcJBxeJ5YSsWxGzISHKdeYCZwlCOnEahJNqUGxLf9nevXZocEVTe2tMmkPTLVYrhEU8aNSLAJ21e2H1LFkxYTkI4qEAIJYUHuZNd6GpqzgoP8Pnj1oJ3Tl4VDMinf7aVnt+0DN+sQV4e7tnzIw1rS0Z1OkPMyuaJ2DxxM1eE4bFh056iVgZPFeZoMcw0D5SD4F7CSjw45qLF2hIS9n6ezebNVQ5eoTJej0QmHlLuyE+z8wLLZoZY+fHpFtfie8T4kIDCNCetd+RKh0zvhvm76EiVJ426KiVuVYpL5000C56GXaDUwtR6JLLxoapBmsUpLJyDTCLtWpmxy4mJ52aE8AAfqyZ2Ktt6EEI78tMsufzekZ9m2HfroPaDfLzuz1loVURS3d6LEHq2KM+ei3ncp+DmsnWLE6QK1bunruO74PIXqzIfK3DgaZdKJi+KDjUm6mnhiw0xazNPxOaJbU7kzOLw2TyxVbU/zbi5oSfXLh3V6g5eqrG5kWmlRIbgu2gVjTvfUcjWDSXYG60GjC0H3K9Q2dmgtaKZfsR+s7y5s+jNnUXOPOKFvzzhzMOZfcWQSU4Z0Z2lPMYWXFENO/vqzlqTTcIihHaugLhwttHrUXUHl+5OfWKNQ6aqHN1+e19/v1y1MDoU3ySRwE4PLVvsTiG/duQiXgsuV6XE7Vmf58yTUVJ4UFJ40JbsFIRQl2iAzRM1cUVsvpjNE8mUw5a3ox4ZbegW2BOtIoTcKWTDCOuXV+rsaWcKmXHhdHecd4uaVbbrl6usWqZlb7QaP3ZvULvAsRnLgPOZZTOVTjTJDmar2EkSZ+5ameEiqSEAjloF4gGF+ok12f7eDkkv6uj2DQO3e4vyHNE4sMf9OQvp7tSDl2rYPKuLX5ry86L/8p6sRwuyLEnC4yAxwf4xwf6GjDr8gSE2T8zmiZq5omae2LDQZWosDv9BK2ckxvOkUZ8qzBnV6r4pa7CzqQllxuI8sIoQMluhZ0n9KlP2RqtmJUB8PGdGnnZguT7ZmPVGFqZoBbND2rywe7MWmBaJZdBpz29cZu38L5gRksKDHDpV5ej2d67IgCF/l7UhIyk5Iuivhy9MMWMzNSbD6/lNywwDnC4i3N8n3N/HkD9RqlAZYlZD8DpZeoF6Dl84qLB/7aIPnfZUYY5Wh+GedSEuJMDa9FI2sHZTgb3RqtnKg+FRFy1zD/Di6e5ae2tmHBqFonH55aqm3nhk/dq0+YaahMkRwbkJ0VCIEgBgg9jggIPPPnCG1XKG1XK1iWP5CxdGhWzITNqQkcRkOGk3sw0CvO+mF1AMj7B54maukM0TN/PE7X0S49P4A0MsW8sEmAlkeP5p2z1SherirQ77W0MIRTP9UqNCViyIccHibfZGq2YLEUZGZ9JpGADnc3Olhb9n24QChSWLrij04HCEUPco6m6yd0/r7PZAaoS3O+xGBw5BJpGsKlbpgkhubpsyk4vSE680cS40tl+81W42Q2smIza8MC2hKCPRlePU8bw93JfERxhHKNk8cU0Ht6aD29jdJ5ErrzZxcIlWEUJkEul3962ku1NNszNZyM3NLSE0MDGcmRgWlBjOTAhjOi21kYf1i2LhWxVYB3ZZ2SnAm86XOq8YydSKEnCrAQ0AcLSXtxYQ3QV8kEmk1QvjVy+M12GF1e3c9r7+foVKMqTkS4f8vOlMhlegNz2K6ZeXGO2Cg3w2SI4ISo4IMmQs4Yik+O7wiQz0fWpdjhbDztW3TvvkIB+vxPCgxDBmYjgzMYxpYbF63NmQIAKiVWAds9F0YK1RHcH1qwAAwEWQSaTcxOjcxGiiO+I8scEBuBdcjAnyN6S1Gr8kgEommYSnQfPDAv1d4AIgyPpluzhEq0yGl+MqVQBXox6BxR528aa527UnFgAAABgrIYz5yvbVHNEARyQlk0gJYYFp88IWRYemzQt1wWrkymGNtS/BIVq1OU0umImszegLzPiZlJtTwWcHAAAAHpgMrwN7tnGEA6lRIS64F1ZpUj0qw/oMWThEHr6Q0mhWw8ZWm4ti+hLUkVlicczdcpG3e4XfV94isDMAAABmDSbDK3t+pAuGqmXsrhb+3cQITIZ1ZVcRLmOrGIZD8VzgmjRa7dWmTuNdBp02szZmuqCchKjPLtca77525GITV7Q9d1Gon/fs2E8AAAAAIITkao1ErjxR03zoer1pJbMl8VYXl8EhWg329TYmkIeZzdmkva///ZIy09Ij2da/w4CZ2JCAjNgIFodnuKvDsMM3Gg/faDTczY6PPLBnO3G9A4R54eDJ4TsZAFOjQp7bkE9sfwAAwGaP7ztS3cGd8Edp88KWzo+ytkEcotX5oYGN3QLDbTZPLJErYfht5jpe3XSiukmj1UnkSr50yOyna9PmE9Kr2STc32fXinRjtEqsPvmwWgsVPfAU5etJsSnLW3lrD+wBAADMevlJ0WH+DGtfhUO0mhEbblx7p8OwFw6eeucXm6ytAAtcBE86ONn10D0L4wsX45PQeI4rXJzw9Lqc/ecrie4IapMq+lUQIeEpxNuDQoIsbwD1SGRvfH/JeHfr0tT1OCWEB2Dm2r126RNrltrwQhyi1dyEaDKJZFyR0NgtKPq/T1elxIb4MXw9aREBvi5V1RfYxpNGfawgiwbJVnGyZ32evxf9kwvVxGZ/WzGPmNTQAMx6crXmRku38W72fFhGBeY0Bp22c0X6U4U5ZJIt+/txiFZD/Ly35S40LrxDCOkwzJiiNjs+EqLVmS6a6ffaQ+syYsOJ7sis8vDy9PtzF1a09vRKBofUP5U/jQiAlAtzkUypHh69O8htwxYEAABwHfdlp2TdKTzrSXOPZvplx0cy6DSbG8SnltXT63Iu3uyAGgGzQESAr3ErFZlMimb6pceEbchIsu1iCEyNRqGsSokjuheAeJVtvfo7uVUCGZ47V8zsWvAAgDkO92FKfKJVQ07aJ4u/F8oUuDQIiLIlOwXGwgFwssq2XuPtJ9Yspbu7XLpEYC3BgNz07pI4GC8HwHa4DZjFBgecevmxl7asSo0KsWewFwAA5pqq9p+i1VA/xgN5i4jtDMBFRVuP8faqlFjTsiAAAGvhM7ZqQKNQdq3M2LUyA8c2AQBgduuTyXskMsPtp9fluMNexlnBOF7u5oaeLYLsuQDYBRYjAgAAkYxhTTTTD9bhzA6iQUW3eMBwe93ixOSIIGL7A8BMB9EqAAAQqfLOlPGe9bmwnXF2MF6BkEhue9bnEtsZAGYBN71xJyoAAAAA7PbKN+dPVDchhLZkp7z20DqiuwPAjAfX8QAAAACeqtp6EUIUMumZdTCwCgAOYGwVAAAAAAC4LhhbBQAAAAAArguiVQAAAAAA4LogWgUAAAAAAK4LolUAAAAAAOC6IFoFAAAAAACuC6JVAAAAAADguiBaBQAAAAAArguiVQAAAAAA4LogWgUAAAAAAK7r/wNipCyM7kH7OwAAAABJRU5ErkJggg=="
+ }
+ },
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "NESTML sequence learning network\n",
+ "================================\n",
+ "\n",
+ "*Much of this text is directly based on and excerpted from the PhD thesis of Younes Bouhadjar [1]_.*\n",
+ "\n",
+ "\n",
+ "\n",
+ "Introduction\n",
+ "------------\n",
+ "\n",
+ "In this tutorial, a neuron and synapse model are defined in NESTML that are subsequently used in a network to perform learning, prediction and replay of sequences of items, such as letters, images or sounds [2]. Sequence elements are represented by Latin characters (A, B, C, ...).\n",
+ "\n",
+ "![image.png](attachment:image.png)\n",
+ "\n",
+ "The architecture learns sequences in a continuous manner: the network is exposed to repeated presentations of a given ensemble of sequences (e.g., {A,D,B,E} and {F,D,B,C}). At the beginning of the learning process, all presented sequence elements are unanticipated and do not lead to a prediction. As a consequence, the network generates mismatch signals and adjusts its synaptic strengths to minimise the prediction error.\n",
+ "\n",
+ "There is a distinction between a training phase and a replay phase. During training, the network is exposed to the sequences that we want it to learn. In replay mode, the network autonomously replays learned sequences in response to a cue signal, and synaptic weights are fixed.\n",
+ "\n",
+ "In general, the sequences can be \"high-order\" (similar to those generated by a high-order Markov chain), where the prediction of an upcoming sequence element requires accounting for not just the previous element, but for (parts of) the entire sequence history or context. Sequences within a given set of training data can be partially overlapping; they may share certain elements or subsequences (such as in {A,D,B,E} and {F,D,B,C}), and the same sequence element (but not the first one) may occur multiple times within the same sequence (such as in {A,D,B,D}).\n",
+ "\n",
+ "Network structure\n",
+ "------------------\n",
+ "\n",
+ "The network consists of a population E of $N_\\text{E}$ excitatory neurons, and a population I of $N_\\text{I}$ inhibitory neurons. The neurons in E are randomly and recurrently connected, such that each neuron in E receives $K_\\text{EE}$ excitatory inputs from other randomly chosen neurons in E. These \"EE\" connections are potential connections in the sense that they can be either \"mature\" (\"effective\") or \"immature\". Immature connections have no effect on target neurons. (More details to follow in the section about the synapse model below.)\n",
+ "\n",
+ "![image-2.png](attachment:image-2.png)\n",
+ "\n",
+ "The excitatory population E is subdivided into $M$ non-overlapping subpopulations $M_1, \\ldots, M_M$, each of them containing neurons with identical stimulus preference (\"receptive field\"). Each subpopulation $M_k$ thereby represents a specific element within a sequence. The number $M$ of subpopulations is equal to the number of elements required for a specific set of sequences, such that each sequence element is encoded by exactly one subpopulation.\n",
+ "\n",
+ "All neurons within a subpopulation $M_k$ are recurrently connected to a subpopulation-specific inhibitory neuron $k$ in I. The inhibitory neurons in I are mutually unconnected. The subdivision of excitatory neurons into stimulus-specific subpopulations defines how external inputs are fed to the network, but does not affect the potential excitatory connectivity, which is homogeneous and not subpopulation specific.\n",
+ "\n",
+ "#### External inputs\n",
+ "\n",
+ "During training mode, the network is driven by an ensemble $X = \\{x_1, \\ldots, x_M\\}$ of $M$ external inputs, representing inputs from other brain areas, such as thalamic sources or other cortical areas. Each of these external inputs $x_k$ represents a specific sequence element (\"A\", \"B\", ...), and feeds all neurons in the subpopulation $M_k$ with the corresponding stimulus preference. The occurrence of a specific sequence element $\\zeta_{i,j}$ at time $t_{i,j}$ is modeled by a single spike $x_k(t) = \\delta(t − t_{i,j})$ generated by the corresponding external source $x_k$. Subsequent sequences $s_i$ and $s_{i+1}$ are separated in time by an inter-sequence time interval $\\Delta T_\\text{seq}$.\n",
+ "\n",
+ "During replay mode, we present only a cue signal encoding for first sequence elements $\\zeta_{i,1}$ at times $t_{i,1}$. Subsequent cues are separated in time with an inter-cue time interval $\\Delta T_\\text{cue}$\n",
+ "\n",
+ "In the absence of any other (inhibitory) inputs, each external input spike is strong enough to evoke an immediate response spike in all target neurons in $M_k$. An external input strongly depolarizes the neurons and causes them to fire. To this end, the external weights $J_\\text{EX}$ are chosen to be supra-threshold. Sparse activation of the subpopulations in response to the external inputs is achieved by a winner-take-all mechanism implemented in the form of inhibitory feedback.\n",
+ "\n",
+ "#### Neuron model\n",
+ "\n",
+ "The dendrites are grouped into distal and proximal dendrites. Distal dendrites receive inputs from other neurons in the local network, whereas proximal dendrites are activated by external sources. Inputs to proximal dendrites have a large effect on the soma and trigger the generation of action potentials. Individual synaptic inputs to a distal dendrite, in contrast, have no direct effect on the soma. If the total synaptic input to a distal dendritic branch at a given time step is sufficiently large, the neuron becomes predictive. This dynamic mimics the generation of dendritic action potentials (dAPs): NMDA spikes which result in a long-lasting depolarization (∼50-500ms) of the somata of neocortical pyramidal neurons.\n",
+ "\n",
+ "The temporal evolution of the membrane potential is given by the leaky integrate-and-fire model:\n",
+ "\n",
+ "$$\n",
+ "\\tau_{\\text{m},i} \\frac{d V_{\\text{m},i}(t)}{dt} = -V_{\\text{m},i}(t) + R_{\\text{m},i} I_i(t)\n",
+ "$$\n",
+ "\n",
+ "with membrane resistance $R_{\\text{m},i} = \\tau_{\\text{m},i} C_{\\text{m},i}$, membrane time constant $\\tau_{\\text{m},i}$, and total synaptic input current $I_i(t)$.\n",
+ "\n",
+ "The total synaptic input current of excitatory neurons is composed of currents in distal dendritic branches, inhibitory currents, and currents from external sources. Inhibitory neurons receive only inputs from excitatory neurons in the same subpopulation. \n",
+ "\n",
+ "Total synaptic input currents:\n",
+ "\n",
+ "- excitatory neurons: $I_i(t) = I_{\\text{ED},i}(t) + I_{\\text{EX},i}(t) + I_{\\text{EI},i}(t)$ for all $i \\in E$\n",
+ "- inhibitory neurons: $I_i(t) = I_{\\text{IE},i}(t)$ for all $i \\in I$\n",
+ "\n",
+ "Individual spikes arriving at dendritic branches evoke alpha-shaped postsynaptic currents. All dendritic input currents $I_{\\text{ED},i}(t)$ evolve according to\n",
+ "\n",
+ "$$\n",
+ "I_{\\text{ED},i} = \\sum_{j\\in E} (\\alpha_{i,j} \\ast s_j)(t - d_{ij})\n",
+ "$$\n",
+ "\n",
+ "with \n",
+ "\n",
+ "$$\n",
+ "\\alpha_{i,j}(t) = J_{i,j} \\frac{e}{\\tau_\\text{ED}} t e^{-t / \\tau_\\text{ED}} \\Theta(t)\n",
+ "$$\n",
+ "\n",
+ "and\n",
+ "\n",
+ "$$\n",
+ "\\Theta(t)=\\begin{cases} \n",
+ "1 & \\text{if $t \\geq 0$} \\\\\n",
+ "0 & \\text{else}\n",
+ "\\end{cases}\n",
+ "$$\n",
+ "\n",
+ "All external, inhibitory and excitatory input currents $I_{\\text{EX},i}(t), I_{\\text{EI},i}(t), I_{\\text{IE},i}(t)$ evolve according to\n",
+ "\n",
+ "$$\n",
+ "\\begin{align*}\n",
+ "\\tau_\\text{EX} \\frac{I_{\\text{EX},i}}{dt} &= -I_{\\text{EX},i}(t) + \\sum_{j\\in X} J_{i,j} s_j (t - d_{i,j})\\\\\n",
+ "\\tau_\\text{EI} \\frac{I_{\\text{EI},i}}{dt} &= -I_{\\text{EX},i}(t) + \\sum_{j\\in I} J_{i,j} s_j (t - d_{i,j})\\\\\n",
+ "\\tau_\\text{IE} \\frac{I_{\\text{IE},i}}{dt} &= -I_{\\text{EX},i}(t) + \\sum_{j\\in E} J_{i,j} s_j (t - d_{i,j})\\\\\n",
+ "\\end{align*}\n",
+ "$$\n",
+ "\n",
+ "The dendritic current includes an additional nonlinearity describing the generation of dAPs: if the dendritic current $I_\\text{ED}$ exceeds a threshold $\\theta_\\text{dAP}$, it is instantly set to a the dAP plateau current $I_\\text{dAP}$, and clamped to this value for a period of duration $\\tau_\\text{dAP}$. This plateau current leads\n",
+ "to a long lasting depolarization of the soma.\n",
+ "\n",
+ "The NESTML model description for the neuron can be found in the file ``doc/tutorials/sequences/iaf_psc_exp_nonlineardendrite_neuron.nestml``.\n",
+ "\n",
+ "#### Synaptic plasticity model\n",
+ "\n",
+ "Excitatory connectivity between excitatory neurons (EE connectivity) is dynamic and shaped by a Hebbian structural plasticity mechanism mimicking principles known from the neuroscience literature. All other connections are static. \n",
+ "\n",
+ "The dynamics of the EE connectivity is determined by the time evolution of the permanences $P_{i,j}$ ($i, j \\in \\text{E}$), representing the synapse maturity, and the synaptic weights $J_{i,j}$. Unless the permanence $P_{i,j}$ exceeds a threshold $\\theta_\\text{P}$, the synapse $j\\rightarrow i$ is immature, with zero synaptic weight $J_{i,j} = 0$. Upon threshold crossing, $P_{i,j} \\geq \\theta_\\text{P}$, the synapse becomes mature, and its weight is assigned a fixed value $J_{i,j} = W$.\n",
+ "\n",
+ "Overall, the permanences evolve according to a Hebbian plasticity rule: the synapse $j \\rightarrow i$ is potentiated, that is, $P_{i,j}$ is increased, if the activation of the postsynaptic cell $i$ is immediately preceded by an activation of the presynaptic cell $j$.\n",
+ "\n",
+ "A homeostatic mechanism controlled by the postsynaptic dAP rate regulates synapse growth based on the rate of postsynaptic dAPs. This form of homeostasis prevents the same neuron from becoming predictive multiple times within the same set of sequences, and thereby reduces the overlap between subsets of neurons activated within different contexts.\n",
+ "\n",
+ "Permanences $P_{i,j}(t)$ evolve according to a combination of an additive spike-timing-dependent plasticity (STDP)\n",
+ "rule (Morrison et al., 2008) and a homeostatic component:\n",
+ "\n",
+ "$$\n",
+ "\\begin{align}\n",
+ "P^{-1}_\\text{max} \\frac{dP_{i,j}}{dt} &= \\lambda_+ \\sum_{\\{t_i^\\ast\\}'} x_j(t)\\delta(t - t_i^\\ast - d_\\text{EE}) I(t_i^\\ast, \\Delta t_\\text{min}, \\Delta t_\\text{max}) \\\\\n",
+ "&- \\lambda_- \\sum_{\\{t_j^\\ast\\}} \\delta(t - t_j^\\ast)\\\\\n",
+ "&+\\lambda_\\text{h} \\sum_{\\{t_i^\\ast\\}'} (z^\\ast - z_i(t)) \\delta(t - t_i^\\ast) I(t_i^\\ast, \\Delta t_\\text{min}, \\Delta t_\\text{max})\n",
+ "\\end{align}\n",
+ "$$\n",
+ "\n",
+ "The first term on the right-hand side corresponds to the spike-timing-dependent synaptic potentiation triggered by the postsynaptic spikes. The indicator function $I(t^\\ast_i, \\Delta t_\\text{min}, \\Delta t_\\text{max})$ ensures that the\n",
+ "potentiation (and the homeostasis; see below) is restricted to time lags $t_i^\\ast - t_j^+ + d_\\text{EE}$ in the interval $(\\Delta t_\\text{min}, \\Delta t_\\text{max})$ to avoid a growth of synapses between synchronously active neurons belonging to the same subpopulation, and between neurons encoding for the first elements in different sequences:\n",
+ "\n",
+ "$$\n",
+ "I(t_i^\\ast, \\Delta t_\\text{min}, \\Delta t_\\text{max}) = \\begin{cases} \n",
+ "1 & \\text{if $\\Delta t_\\text{min} < t_i^\\ast - t_j^+ + d_\\text{EE} < \\Delta t_\\text{max}$} \\\\\n",
+ "0 & \\text{else}\n",
+ "\\end{cases}\n",
+ "$$\n",
+ "\n",
+ "Note that the potentiation update times lag the somatic postsynaptic spike times by the delay $d_\\text{EE}$, which is here interpreted as a purely dendritic delay (Morrison et al., 2007).\n",
+ "\n",
+ "The potentiation increment is determined by the dimensionless potentiation rate $\\lambda_+$, and the spike trace $x_j(t)$ of the presynaptic neuron $j$, which is updated according to\n",
+ "\n",
+ "$$\n",
+ "\\tau_+ \\frac{dx_j}{dt} = -x_j(t) + \\sum_{t_j^\\ast} \\delta(t - t_j^\\ast)\n",
+ "$$\n",
+ "\n",
+ "The trace $x_j(t)$ is incremented by 1 at each spike time $t^∗_j$, followed by an exponential decay with time constant $\\tau_+$. The potentiation increment $\\Delta P_{i,j}$ at time $t^∗_i$ therefore depends on the temporal distance between the postsynaptic spike time $t^∗_i$ and all presynaptic spike times $t^\\ast_j \\leq t^\\ast_i$ (STDP with all-to-all spike pairing [Morrison et al. 2008]). \n",
+ "\n",
+ "The second term on the right-hand side represents synaptic depression, and is triggered by each presynaptic spike at times $t^\\ast_j \\in \\{t^\\ast_j\\}$. The depression decrement is treated as a constant equal to 1, independently of the postsynaptic spike history. The depression magnitude is parameterized by the dimensionless depression rate $\\lambda_-$.\n",
+ "\n",
+ "The third term corresponds to a homeostatic control triggered by postsynaptic spikes at times $t^\\ast_i \\in \\{t^\\ast_i\\}'$. Its overall impact is parameterized by the dimensionless homeostasis rate $\\lambda_\\text{h}$. The homeostatic control enhances or reduces the synapse growth depending on the dAP trace $z_i(t)$ of neuron $i$, the low-pass filtered dAP activity updated according to\n",
+ "\n",
+ "$$\n",
+ "\\tau_\\text{h}\\frac{dz_i}{dt} = -z_i(t) + \\sum_k \\delta(t - t^k_{\\text{dAP},i})\n",
+ "$$\n",
+ "\n",
+ "Synapse growth is boosted if the dAP activity $z_i(t)$ is below a target dAP activity $z^\\ast$. Conversely, high dAP activity exceeding $z^\\ast$ reduces the synapse growth.\n",
+ "\n",
+ "While the maximum permanences $P_\\text{max}$ are identical for all EE connections, the minimal permanences $P_{\\text{min},i,j}$ are uniformly distributed in the interval $[P_{0,\\text{min}}, P_{0,\\text{max}}]$ to introduce a form of persistent heterogeneity.\n",
+ "\n",
+ "The NESTML model description for the synapse can be found in the file ``models/synapses/stdsp_synapse.nestml``.\n",
+ "\n",
+ "#### Connectivity\n",
+ "\n",
+ "The sequence processing capabilities of the proposed network model rely on its ability to form sequence specific\n",
+ "subnetworks based on the skeleton provided by the random potential connectivity. On the one hand, the potential connectivity must not be too diluted to ensure that a subset of neurons representing a given sequence element can establish sufficiently many mature connections to a second subset of neurons representing the subsequent element.\n",
+ "On the other hand, a dense potential connectivity would promote overlap between subnetworks representing different sequences, and thereby slow down the formation of context specific subnetworks during learning.\n",
+ "\n",
+ "During the learning process, the plasticity dynamics needs to establish mature connections from $\\mathcal{P}_{i,j}$ to a second subset $\\mathcal{P}_{i,j+1}$ of neurons in another subpopulation representing the subsequent element \n",
+ "$\\zeta_{i,j+1}$. For $p \\geq 0.2$, the existence of the divergent-convergent connectivity motif is almost certain ($u \\approx 1$). For smaller connection probabilities $p < 0.2$, the motif probability quickly vanishes. Hence, $p = 0.2$ constitutes a reasonable choice for the\n",
+ "potential connection probability.\n",
+ "\n",
+ "## Getting started\n",
+ "\n",
+ "First, import the required modules and set some plotting options:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " -- N E S T --\n",
+ " Copyright (C) 2004 The NEST Initiative\n",
+ "\n",
+ " Version: 3.8.0-post0.dev0\n",
+ " Built: Sep 26 2024 22:44:51\n",
+ "\n",
+ " This program is provided AS IS and comes with\n",
+ " NO WARRANTY. See the file LICENSE for details.\n",
+ "\n",
+ " Problems or suggestions?\n",
+ " Visit https://www.nest-simulator.org\n",
+ "\n",
+ " Type 'nest.help()' to find out more about NEST.\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "\n",
+ "from typing import List, Optional\n",
+ "\n",
+ "import matplotlib as mpl\n",
+ "\n",
+ "mpl.rcParams['axes.formatter.useoffset'] = False\n",
+ "mpl.rcParams['axes.grid'] = True\n",
+ "mpl.rcParams['grid.color'] = 'k'\n",
+ "mpl.rcParams['grid.linestyle'] = ':'\n",
+ "mpl.rcParams['grid.linewidth'] = 0.5\n",
+ "mpl.rcParams['figure.dpi'] = 120\n",
+ "mpl.rcParams['figure.figsize'] = [8., 3.]\n",
+ "\n",
+ "from collections import defaultdict\n",
+ "import copy\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import os\n",
+ "import random\n",
+ "import re\n",
+ "import sys\n",
+ "import time\n",
+ "import hashlib\n",
+ "import numpy as np\n",
+ "from pathlib import Path\n",
+ "from pprint import pformat\n",
+ "from collections import Counter\n",
+ "\n",
+ "import nest\n",
+ "import nest.raster_plot\n",
+ "import parameters as para\n",
+ "\n",
+ "from pynestml.codegeneration.nest_code_generator_utils import NESTCodeGeneratorUtils\n",
+ "from pynestml.codegeneration.nest_tools import NESTTools\n",
+ "\n",
+ "n_threads = 12 # number of threads to use for simulations. This depends on your computer hardware.\n",
+ "nest_verbosity = \"M_ERROR\" # try \"M_ALL\" for debugging"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Generating code with NESTML\n",
+ "\n",
+ "We will use a helper function to generate the C++ code for the models and build and install it as a NEST extension module. We can then load the module in the NEST kernel at runtime by calling ``nest.Install(\"nestmlmodule\")``."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " -- N E S T --\n",
+ " Copyright (C) 2004 The NEST Initiative\n",
+ "\n",
+ " Version: 3.8.0-post0.dev0\n",
+ " Built: Sep 26 2024 22:44:51\n",
+ "\n",
+ " This program is provided AS IS and comes with\n",
+ " NO WARRANTY. See the file LICENSE for details.\n",
+ "\n",
+ " Problems or suggestions?\n",
+ " Visit https://www.nest-simulator.org\n",
+ "\n",
+ " Type 'nest.help()' to find out more about NEST.\n",
+ "\n",
+ "\n",
+ "Oct 16 18:53:18 NodeManager::add_node [Info]: \n",
+ " Neuron models emitting precisely timed spikes exist: the kernel property \n",
+ " off_grid_spiking has been set to true.\n",
+ " \n",
+ " NOTE: Mixing precise-spiking and normal neuron models may lead to inconsistent results.\n",
+ "[23,iaf_psc_exp_nonlineardendrite_neuron_nestml, WARNING, [76:36;76:49]]: Model contains a call to fixed-timestep functions (``resolution()`` and/or ``steps()``). This restricts the model to being compatible only with fixed-timestep simulators. Consider eliminating ``resolution()`` and ``steps()`` from the model, and using ``timestep()`` instead.\n",
+ "[24,iaf_psc_exp_nonlineardendrite_neuron_nestml, WARNING, [80:36;80:47]]: Model contains a call to fixed-timestep functions (``resolution()`` and/or ``steps()``). This restricts the model to being compatible only with fixed-timestep simulators. Consider eliminating ``resolution()`` and ``steps()`` from the model, and using ``timestep()`` instead.\n",
+ "[25,iaf_psc_exp_nonlineardendrite_neuron_nestml, WARNING, [118:31;118:42]]: Model contains a call to fixed-timestep functions (``resolution()`` and/or ``steps()``). This restricts the model to being compatible only with fixed-timestep simulators. Consider eliminating ``resolution()`` and ``steps()`` from the model, and using ``timestep()`` instead.\n",
+ "[26,iaf_psc_exp_nonlineardendrite_neuron_nestml, WARNING, [118:51;118:62]]: Model contains a call to fixed-timestep functions (``resolution()`` and/or ``steps()``). This restricts the model to being compatible only with fixed-timestep simulators. Consider eliminating ``resolution()`` and ``steps()`` from the model, and using ``timestep()`` instead.\n",
+ "[27,iaf_psc_exp_nonlineardendrite_neuron_nestml, WARNING, [119:32;119:43]]: Model contains a call to fixed-timestep functions (``resolution()`` and/or ``steps()``). This restricts the model to being compatible only with fixed-timestep simulators. Consider eliminating ``resolution()`` and ``steps()`` from the model, and using ``timestep()`` instead.\n",
+ "[28,iaf_psc_exp_nonlineardendrite_neuron_nestml, WARNING, [119:62;119:73]]: Model contains a call to fixed-timestep functions (``resolution()`` and/or ``steps()``). This restricts the model to being compatible only with fixed-timestep simulators. Consider eliminating ``resolution()`` and ``steps()`` from the model, and using ``timestep()`` instead.\n",
+ "[32,stdsp_synapse_nestml, WARNING, [20:8;20:17]]: Variable 'd' has the same name as a physical unit!\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "WARNING:Under certain conditions, the propagator matrix is singular (contains infinities).\n",
+ "WARNING:List of all conditions that result in a singular propagator:\n",
+ "WARNING:\ttau_m = tau_syn2\n",
+ "WARNING:\ttau_m = tau_syn3\n",
+ "WARNING:\ttau_m = tau_syn1\n",
+ "WARNING:\ttau_h = 0\n",
+ "WARNING:Not preserving expression for variable \"I_dend\" as it is solved by propagator solver\n",
+ "WARNING:Not preserving expression for variable \"I_dend__DOLLAR\" as it is solved by propagator solver\n",
+ "WARNING:Not preserving expression for variable \"V_m\" as it is solved by propagator solver\n",
+ "WARNING:Not preserving expression for variable \"dAP_trace\" as it is solved by propagator solver\n",
+ "WARNING:Under certain conditions, the propagator matrix is singular (contains infinities).\n",
+ "WARNING:List of all conditions that result in a singular propagator:\n",
+ "WARNING:\ttau_m = tau_syn2\n",
+ "WARNING:\ttau_m = tau_syn3\n",
+ "WARNING:\ttau_m = tau_syn1\n",
+ "WARNING:\ttau_h = 0\n",
+ "WARNING:Not preserving expression for variable \"I_dend\" as it is solved by propagator solver\n",
+ "WARNING:Not preserving expression for variable \"I_dend__DOLLAR\" as it is solved by propagator solver\n",
+ "WARNING:Not preserving expression for variable \"V_m\" as it is solved by propagator solver\n",
+ "WARNING:Not preserving expression for variable \"dAP_trace\" as it is solved by propagator solver\n",
+ "WARNING:Not preserving expression for variable \"pre_trace\" as it is solved by propagator solver\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[95,stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml, WARNING, [20:8;20:17]]: Variable 'd' has the same name as a physical unit!\n",
+ "[99,stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml, WARNING, [20:8;20:17]]: Variable 'd' has the same name as a physical unit!\n",
+ "CMake Warning (dev) at CMakeLists.txt:95 (project):\n",
+ " cmake_minimum_required() should be called prior to this top-level project()\n",
+ " call. Please see the cmake-commands(7) manual for usage documentation of\n",
+ " both commands.\n",
+ "This warning is for project developers. Use -Wno-dev to suppress it.\n",
+ "\n",
+ "-- The CXX compiler identification is GNU 12.3.0\n",
+ "-- Detecting CXX compiler ABI info\n",
+ "-- Detecting CXX compiler ABI info - done\n",
+ "-- Check for working CXX compiler: /usr/bin/c++ - skipped\n",
+ "-- Detecting CXX compile features\n",
+ "-- Detecting CXX compile features - done\n",
+ "\n",
+ "-------------------------------------------------------\n",
+ "nestml_53df85df034a42159911f33aede126f7_module Configuration Summary\n",
+ "-------------------------------------------------------\n",
+ "\n",
+ "C++ compiler : /usr/bin/c++\n",
+ "Build static libs : OFF\n",
+ "C++ compiler flags : \n",
+ "NEST compiler flags : -std=c++17 -Wall -fopenmp -O2 -fdiagnostics-color=auto\n",
+ "NEST include dirs : -I/home/charl/julich/nest-simulator-install/include/nest -I/usr/include -I/usr/include -I/usr/include\n",
+ "NEST libraries flags : -L/home/charl/julich/nest-simulator-install/lib/nest -lnest -lsli /usr/lib/x86_64-linux-gnu/libltdl.so /usr/lib/x86_64-linux-gnu/libgsl.so /usr/lib/x86_64-linux-gnu/libgslcblas.so /usr/lib/gcc/x86_64-linux-gnu/12/libgomp.so /usr/lib/x86_64-linux-gnu/libpthread.a\n",
+ "\n",
+ "-------------------------------------------------------\n",
+ "\n",
+ "You can now build and install 'nestml_53df85df034a42159911f33aede126f7_module' using\n",
+ " make\n",
+ " make install\n",
+ "\n",
+ "The library file libnestml_53df85df034a42159911f33aede126f7_module.so will be installed to\n",
+ " /tmp/nestml_target_bzeptr4_\n",
+ "The module can be loaded into NEST using\n",
+ " (nestml_53df85df034a42159911f33aede126f7_module) Install (in SLI)\n",
+ " nest.Install(nestml_53df85df034a42159911f33aede126f7_module) (in PyNEST)\n",
+ "\n",
+ "CMake Warning (dev) in CMakeLists.txt:\n",
+ " No cmake_minimum_required command is present. A line of code such as\n",
+ "\n",
+ " cmake_minimum_required(VERSION 3.26)\n",
+ "\n",
+ " should be added at the top of the file. The version specified may be lower\n",
+ " if you wish to support older CMake versions for this project. For more\n",
+ " information run \"cmake --help-policy CMP0000\".\n",
+ "This warning is for project developers. Use -Wno-dev to suppress it.\n",
+ "\n",
+ "-- Configuring done (0.1s)\n",
+ "-- Generating done (0.0s)\n",
+ "-- Build files have been written to: /home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target\n",
+ "[ 25%] Building CXX object CMakeFiles/nestml_53df85df034a42159911f33aede126f7_module_module.dir/nestml_53df85df034a42159911f33aede126f7_module.o\n",
+ "[ 50%] Building CXX object CMakeFiles/nestml_53df85df034a42159911f33aede126f7_module_module.dir/iaf_psc_exp_nonlineardendrite_neuron_nestml.o\n",
+ "[ 75%] Building CXX object CMakeFiles/nestml_53df85df034a42159911f33aede126f7_module_module.dir/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.o\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml.cpp: In member function ‘void iaf_psc_exp_nonlineardendrite_neuron_nestml::init_state_internal_()’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml.cpp:212:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 212 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml.cpp: In member function ‘void iaf_psc_exp_nonlineardendrite_neuron_nestml::recompute_internal_variables(bool)’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml.cpp:267:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 267 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml.cpp: In member function ‘virtual void iaf_psc_exp_nonlineardendrite_neuron_nestml::update(const nest::Time&, long int, long int)’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml.cpp:339:24: warning: comparison of integer expressions of different signedness: ‘long int’ and ‘const size_t’ {aka ‘const long unsigned int’} [-Wsign-compare]\n",
+ " 339 | for (long i = 0; i < NUM_SPIKE_RECEPTORS; ++i)\n",
+ " | ~~^~~~~~~~~~~~~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml.cpp:330:10: warning: variable ‘get_t’ set but not used [-Wunused-but-set-variable]\n",
+ " 330 | auto get_t = [origin, lag](){ return nest::Time( nest::Time::step( origin.get_steps() + lag + 1) ).get_ms(); };\n",
+ " | ^~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml.cpp:324:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 324 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.cpp: In member function ‘void iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml::init_state_internal_()’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.cpp:217:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 217 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml.cpp: In member function ‘void iaf_psc_exp_nonlineardendrite_neuron_nestml::on_receive_block_I_2()’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml.cpp:523:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 523 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.cpp: In member function ‘void iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml::recompute_internal_variables(bool)’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.cpp:278:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 278 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.cpp: In member function ‘virtual void iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml::update(const nest::Time&, long int, long int)’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.cpp:350:24: warning: comparison of integer expressions of different signedness: ‘long int’ and ‘const size_t’ {aka ‘const long unsigned int’} [-Wsign-compare]\n",
+ " 350 | for (long i = 0; i < NUM_SPIKE_RECEPTORS; ++i)\n",
+ " | ~~^~~~~~~~~~~~~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.cpp:341:10: warning: variable ‘get_t’ set but not used [-Wunused-but-set-variable]\n",
+ " 341 | auto get_t = [origin, lag](){ return nest::Time( nest::Time::step( origin.get_steps() + lag + 1) ).get_ms(); };\n",
+ " | ^~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.cpp:335:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 335 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.cpp: In member function ‘void iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml::on_receive_block_I_2()’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml.cpp:535:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 535 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "In file included from /home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/nestml_53df85df034a42159911f33aede126f7_module.cpp:36:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h: In instantiation of ‘nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml() [with targetidentifierT = nest::TargetIdentifierPtrRport]’:\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_model.h:164:25: required from ‘nest::GenericConnectorModel::GenericConnectorModel(std::string) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/model_manager_impl.h:62:5: required from ‘void nest::ModelManager::register_connection_model(const std::string&) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/nest_impl.h:37:70: required from ‘void nest::register_connection_model(const std::string&) [with ConnectorModelT = stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:694:108: required from here\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:842:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 842 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h: In instantiation of ‘void nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::recompute_internal_variables() [with targetidentifierT = nest::TargetIdentifierPtrRport]’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:859:3: required from ‘nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml() [with targetidentifierT = nest::TargetIdentifierPtrRport]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_model.h:164:25: required from ‘nest::GenericConnectorModel::GenericConnectorModel(std::string) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/model_manager_impl.h:62:5: required from ‘void nest::ModelManager::register_connection_model(const std::string&) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/nest_impl.h:37:70: required from ‘void nest::register_connection_model(const std::string&) [with ConnectorModelT = stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:694:108: required from here\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:830:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 830 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h: In instantiation of ‘nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml() [with targetidentifierT = nest::TargetIdentifierIndex]’:\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_model.h:164:25: required from ‘nest::GenericConnectorModel::GenericConnectorModel(std::string) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/model_manager_impl.h:103:34: required from ‘void nest::ModelManager::register_specific_connection_model_(const std::string&) [with CompleteConnecionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/model_manager_impl.h:67:80: required from ‘void nest::ModelManager::register_connection_model(const std::string&) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/nest_impl.h:37:70: required from ‘void nest::register_connection_model(const std::string&) [with ConnectorModelT = stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:694:108: required from here\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:842:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 842 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h: In instantiation of ‘void nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::recompute_internal_variables() [with targetidentifierT = nest::TargetIdentifierIndex]’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:859:3: required from ‘nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml() [with targetidentifierT = nest::TargetIdentifierIndex]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_model.h:164:25: required from ‘nest::GenericConnectorModel::GenericConnectorModel(std::string) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/model_manager_impl.h:103:34: required from ‘void nest::ModelManager::register_specific_connection_model_(const std::string&) [with CompleteConnecionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/model_manager_impl.h:67:80: required from ‘void nest::ModelManager::register_connection_model(const std::string&) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/nest_impl.h:37:70: required from ‘void nest::register_connection_model(const std::string&) [with ConnectorModelT = stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; std::string = std::__cxx11::basic_string]’\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:694:108: required from here\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:830:16: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 830 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h: In instantiation of ‘bool nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::send(nest::Event&, size_t, const nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestmlCommonSynapseProperties&) [with targetidentifierT = nest::TargetIdentifierPtrRport; size_t = long unsigned int]’:\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_base.h:391:22: required from ‘void nest::Connector::send_to_all(size_t, const std::vector&, nest::Event&) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; size_t = long unsigned int]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_base.h:383:3: required from here\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:607:22: warning: unused variable ‘__dAP_trace’ [-Wunused-variable]\n",
+ " 607 | const double __dAP_trace = ((post_neuron_t*)(__target))->get_dAP_trace();\n",
+ " | ^~~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:487:18: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 487 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:489:10: warning: variable ‘get_thread’ set but not used [-Wunused-but-set-variable]\n",
+ " 489 | auto get_thread = [tid]()\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:598:18: warning: unused variable ‘_tr_t’ [-Wunused-variable]\n",
+ " 598 | const double _tr_t = __t_spike - __dendritic_delay;\n",
+ " | ^~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h: In instantiation of ‘bool nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::send(nest::Event&, size_t, const nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestmlCommonSynapseProperties&) [with targetidentifierT = nest::TargetIdentifierIndex; size_t = long unsigned int]’:\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_base.h:391:22: required from ‘void nest::Connector::send_to_all(size_t, const std::vector&, nest::Event&) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; size_t = long unsigned int]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_base.h:383:3: required from here\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:607:22: warning: unused variable ‘__dAP_trace’ [-Wunused-variable]\n",
+ " 607 | const double __dAP_trace = ((post_neuron_t*)(__target))->get_dAP_trace();\n",
+ " | ^~~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:487:18: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 487 | const double __timestep = nest::Time::get_resolution().get_ms(); // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:489:10: warning: variable ‘get_thread’ set but not used [-Wunused-but-set-variable]\n",
+ " 489 | auto get_thread = [tid]()\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:598:18: warning: unused variable ‘_tr_t’ [-Wunused-variable]\n",
+ " 598 | const double _tr_t = __t_spike - __dendritic_delay;\n",
+ " | ^~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h: In instantiation of ‘void nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::update_internal_state_(double, double, const nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestmlCommonSynapseProperties&) [with targetidentifierT = nest::TargetIdentifierPtrRport]’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:561:9: required from ‘bool nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::send(nest::Event&, size_t, const nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestmlCommonSynapseProperties&) [with targetidentifierT = nest::TargetIdentifierPtrRport; size_t = long unsigned int]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_base.h:391:22: required from ‘void nest::Connector::send_to_all(size_t, const std::vector&, nest::Event&) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; size_t = long unsigned int]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_base.h:383:3: required from here\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:914:18: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 914 | const double __timestep = timestep; // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:915:10: warning: variable ‘get_t’ set but not used [-Wunused-but-set-variable]\n",
+ " 915 | auto get_t = [t_start](){ return t_start; }; // do not remove, this is in case the predefined time variable ``t`` is used in the NESTML model\n",
+ " | ^~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h: In instantiation of ‘void nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::update_internal_state_(double, double, const nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestmlCommonSynapseProperties&) [with targetidentifierT = nest::TargetIdentifierIndex]’:\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:561:9: required from ‘bool nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml::send(nest::Event&, size_t, const nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestmlCommonSynapseProperties&) [with targetidentifierT = nest::TargetIdentifierIndex; size_t = long unsigned int]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_base.h:391:22: required from ‘void nest::Connector::send_to_all(size_t, const std::vector&, nest::Event&) [with ConnectionT = nest::stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml; size_t = long unsigned int]’\n",
+ "/home/charl/julich/nest-simulator-install/include/nest/connector_base.h:383:3: required from here\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:914:18: warning: unused variable ‘__timestep’ [-Wunused-variable]\n",
+ " 914 | const double __timestep = timestep; // do not remove, this is necessary for the timestep() function\n",
+ " | ^~~~~~~~~~\n",
+ "/home/charl/julich/nestml-fork-sequence-learning/nestml/doc/tutorials/sequence_learning/target/stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml.h:915:10: warning: variable ‘get_t’ set but not used [-Wunused-but-set-variable]\n",
+ " 915 | auto get_t = [t_start](){ return t_start; }; // do not remove, this is in case the predefined time variable ``t`` is used in the NESTML model\n",
+ " | ^~~~~\n",
+ "[100%] Linking CXX shared module nestml_53df85df034a42159911f33aede126f7_module.so\n",
+ "[100%] Built target nestml_53df85df034a42159911f33aede126f7_module_module\n",
+ "[100%] Built target nestml_53df85df034a42159911f33aede126f7_module_module\n",
+ "Install the project...\n",
+ "-- Install configuration: \"\"\n",
+ "-- Installing: /tmp/nestml_target_bzeptr4_/nestml_53df85df034a42159911f33aede126f7_module.so\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "'module_name = \"/tmp/nestml_target_68digoes/nestml_27fd8d9de14b408f9e6181b2f2310d41_module.so\"\\nneuron_model_name = \"iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml\"\\nsynapse_model_name = \"stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml\" '"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "if 1:\n",
+ " try:\n",
+ " module_name, neuron_model_name, synapse_model_name = \\\n",
+ " NESTCodeGeneratorUtils.generate_code_for(\"doc/tutorials/sequence_learning/iaf_psc_exp_nonlineardendrite_neuron.nestml\",\n",
+ " \"models/synapses/stdsp_synapse.nestml\",\n",
+ " logging_level=\"WARNING\",\n",
+ " post_ports=[\"post_spikes\", [\"dAP_trace\", \"dAP_trace\"]],\n",
+ " codegen_opts={\"delay_variable\": {\"stdsp_synapse\": \"d\"},\n",
+ " \"weight_variable\": {\"stdsp_synapse\": \"w\"},\n",
+ " \"continuous_state_buffering_method\": \"post_spike_based\"})\n",
+ " except:\n",
+ " \n",
+ " module_name, neuron_model_name, synapse_model_name = \\\n",
+ " NESTCodeGeneratorUtils.generate_code_for(\"../../../doc/tutorials/sequence_learning/iaf_psc_exp_nonlineardendrite_neuron.nestml\",\n",
+ " \"../../../models/synapses/stdsp_synapse.nestml\",\n",
+ " logging_level=\"WARNING\",\n",
+ " post_ports=[\"post_spikes\", [\"dAP_trace\", \"dAP_trace\"]],\n",
+ " codegen_opts={\"delay_variable\": {\"stdsp_synapse\": \"d\"},\n",
+ " \"weight_variable\": {\"stdsp_synapse\": \"w\"},\n",
+ " \"continuous_state_buffering_method\": \"post_spike_based\"})\n",
+ "\"\"\"module_name = \"/tmp/nestml_target_68digoes/nestml_27fd8d9de14b408f9e6181b2f2310d41_module.so\"\n",
+ "neuron_model_name = \"iaf_psc_exp_nonlineardendrite_neuron_nestml__with_stdsp_synapse_nestml\"\n",
+ "synapse_model_name = \"stdsp_synapse_nestml__with_iaf_psc_exp_nonlineardendrite_neuron_nestml\" \"\"\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now, the NESTML models are ready to be used in a simulation."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Experiment 1: dAP generation in the neuron model\n",
+ "\n",
+ "First, let's inspect the generation of a dendritic action potential in a single neuron."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "code_folding": [],
+ "jupyter": {
+ "source_hidden": true
+ }
+ },
+ "outputs": [],
+ "source": [
+ "def psp_max_2_psc_max(psp_max, tau_m, tau_s, R_m):\n",
+ " \"\"\"Compute the PSC amplitude (pA) injected to get a certain PSP maximum (mV) for LIF with exponential PSCs\n",
+ "\n",
+ " Parameters\n",
+ " ----------\n",
+ " psp_max: float\n",
+ " Maximum postsynaptic pontential\n",
+ " tau_m: float\n",
+ " Membrane time constant (ms).\n",
+ " tau_s: float\n",
+ " Synaptic time constant (ms).\n",
+ " R_m: float\n",
+ " Membrane resistance (Gohm).\n",
+ "\n",
+ " Returns\n",
+ " -------\n",
+ " float\n",
+ " PSC amplitude (pA).\n",
+ " \"\"\"\n",
+ "\n",
+ " return psp_max / (\n",
+ " R_m * tau_s / (tau_s - tau_m) * (\n",
+ " (tau_m / tau_s) ** (-tau_m / (tau_m - tau_s)) -\n",
+ " (tau_m / tau_s) ** (-tau_s / (tau_m - tau_s))\n",
+ " )\n",
+ " )\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "code_folding": [
+ 0
+ ]
+ },
+ "outputs": [],
+ "source": [
+ "def create_active_dendrite_parameters():\n",
+ " p = para.ParameterSpace({})\n",
+ " \n",
+ " DELAY = 0.1\n",
+ " \n",
+ " p['dt'] = 0.1 # simulation time resolution (ms)\n",
+ " p['print_simulation_progress'] = False # print the time progress -- True can cause issues with Jupyter\n",
+ " \n",
+ " # neuron parameters of the excitatory neurons\n",
+ " p['soma_model'] = neuron_model_name\n",
+ " p['soma_params'] = {}\n",
+ " p['soma_params']['C_m'] = 250. # membrane capacitance (pF)\n",
+ " p['soma_params']['E_L'] = 0. # resting membrane potential (mV)\n",
+ " p['soma_params']['I_e'] = 0. # external DC currents (pA)\n",
+ " p['soma_params']['V_m'] = 0. # initial potential (mV)\n",
+ " p['soma_params']['V_reset'] = 0. # reset potential (mV)\n",
+ " p['soma_params']['V_th'] = 20. # spike threshold (mV)\n",
+ " p['soma_params']['t_ref'] = 10. # refractory period\n",
+ " p['soma_params']['tau_m'] = 10. # membrane time constant (ms)\n",
+ " p['soma_params']['tau_syn1'] = 2. # synaptic time constant: external input (receptor 1)\n",
+ " p['soma_params']['tau_syn2'] = 5. # synaptic time constant: dendrtic input (receptor 2)\n",
+ " p['soma_params']['tau_syn3'] = 1. # synaptic time constant: inhibitory input (receptor 3)\n",
+ " \n",
+ " # dendritic action potential\n",
+ " p['soma_params']['I_p'] = 200. # current clamp value for I_dAP during a dendritic action potenti\n",
+ " p['soma_params']['tau_dAP'] = 60. # time window over which the dendritic current clamp is active\n",
+ " p['soma_params']['theta_dAP'] = 59. # current threshold for a dendritic action potential\n",
+ " \n",
+ " p['soma_params']['I_dend_incr'] = 2.71 / (p['soma_params']['tau_syn2'])\n",
+ " \n",
+ " p['fixed_somatic_delay'] = 2 # this is an approximate time of how long it takes the soma to fire\n",
+ " # upon receiving an external stimulus \n",
+ " \n",
+ " # neuron parameters for the inhibitory neuron\n",
+ " p['inhibit_model'] = 'iaf_psc_exp'\n",
+ " p['inhibit_params'] = {}\n",
+ " p['inhibit_params']['C_m'] = 250. # membrane capacitance (pF)\n",
+ " p['inhibit_params']['E_L'] = 0. # resting membrane potential (mV)\n",
+ " p['inhibit_params']['I_e'] = 0. # external DC currents (pA)\n",
+ " p['inhibit_params']['V_m'] = 0. # initial potential (mV)\n",
+ " p['inhibit_params']['V_reset'] = 0. # reset potential (mV)\n",
+ " p['inhibit_params']['V_th'] = 15. # spike threshold (mV)\n",
+ " p['inhibit_params']['t_ref'] = 2.0 # refractory period\n",
+ " p['inhibit_params']['tau_m'] = 5. # membrane time constant (ms)\n",
+ " p['inhibit_params']['tau_syn_ex'] = .5 # synaptic time constant of an excitatory input (ms) \n",
+ " p['inhibit_params']['tau_syn_in'] = 1.65 # synaptic time constant of an inhibitory input (ms)\n",
+ " \n",
+ " # synaptic parameters\n",
+ " p['J_EX_psp'] = 1.1 * p['soma_params']['V_th'] # somatic PSP as a response to an external input\n",
+ " p['J_IE_psp'] = 1.2 * p['inhibit_params']['V_th'] # inhibitory PSP as a response to an input from E neuron\n",
+ " p['J_EI_psp'] = -2 * p['soma_params']['V_th'] # somatic PSP as a response to an inhibitory input\n",
+ " p['convergence'] = 5\n",
+ " p['pattern_size'] = 20\n",
+ " \n",
+ " # parameters for ee synapses (stdsp)\n",
+ " p['syn_dict_ee'] = {}\n",
+ " p['syn_dict_ee']['weight'] = 0.01 # synaptic weight\n",
+ " p['syn_dict_ee']['synapse_model'] = synapse_model_name # synapse model\n",
+ " p['syn_dict_ee']['permanence_threshold'] = 10. # synapse maturity threshold\n",
+ " p['syn_dict_ee']['tau_pre_trace'] = 20. # plasticity time constant (potentiation)\n",
+ " p['syn_dict_ee']['delay'] = 2. # dendritic delay \n",
+ " p['syn_dict_ee']['receptor_type'] = 2 # receptor corresponding to the dendritic input\n",
+ " p['syn_dict_ee']['lambda_plus'] = 0.05 #0.1 # potentiation rate\n",
+ " p['syn_dict_ee']['zt'] = 1. # target dAP trace [pA]\n",
+ " p['syn_dict_ee']['lambda_h'] = 0.01 # homeostasis rate\n",
+ " p['syn_dict_ee']['Wmax'] = 1.1 * p['soma_params']['theta_dAP'] / p['convergence'] # Maximum allowed weight\n",
+ " p['syn_dict_ee']['permanence_max'] = 20. # Maximum allowed permanence\n",
+ " p['syn_dict_ee']['permanence_min'] = 1. # Minimum allowed permanence\n",
+ " p['syn_dict_ee']['lambda_minus'] = 0.004\n",
+ " \n",
+ " # parameters of EX synapses (external to soma of E neurons)\n",
+ " p['conn_dict_ex'] = {}\n",
+ " p['syn_dict_ex'] = {}\n",
+ " p['syn_dict_ex']['receptor_type'] = 1 # receptor corresponding to external input\n",
+ " p['syn_dict_ex']['delay'] = DELAY # dendritic delay\n",
+ " p['conn_dict_ex']['rule'] = 'all_to_all' # connection rule\n",
+ " \n",
+ " # parameters of EdX synapses (external to dendrite of E neurons) \n",
+ " p['conn_dict_edx'] = {}\n",
+ " p['syn_dict_edx'] = {}\n",
+ " p['syn_dict_edx']['receptor_type'] = 2 # receptor corresponding to the dendritic input\n",
+ " p['syn_dict_edx']['delay'] = DELAY # dendritic delay\n",
+ " p['syn_dict_edx']['weight'] = 1.4 * p['soma_params']['theta_dAP']\n",
+ " p['conn_dict_edx']['rule'] = 'fixed_outdegree' # connection rule\n",
+ " p['conn_dict_edx']['outdegree'] = p['pattern_size'] + 1 # outdegree\n",
+ " \n",
+ " # parameters for IE synapses \n",
+ " p['syn_dict_ie'] = {}\n",
+ " p['syn_dict_ie']['synapse_model'] = 'static_synapse' # synapse model\n",
+ " p['syn_dict_ie']['delay'] = DELAY # dendritic delay\n",
+ " \n",
+ " # parameters for EI synapses\n",
+ " p['syn_dict_ei'] = {}\n",
+ " p['syn_dict_ei']['synapse_model'] = 'static_synapse' # synapse model\n",
+ " p['syn_dict_ei']['delay'] = DELAY # dendritic delay\n",
+ " p['syn_dict_ei']['receptor_type'] = 3 # receptor corresponding to the inhibitory input \n",
+ " \n",
+ " p['R_m_soma'] = p['soma_params']['tau_m'] / p['soma_params']['C_m']\n",
+ " p['R_m_inhibit'] = p['inhibit_params']['tau_m'] / p['inhibit_params']['C_m']\n",
+ " p['syn_dict_ex']['weight'] = psp_max_2_psc_max(p['J_EX_psp'], \n",
+ " p['soma_params']['tau_m'], \n",
+ " p['soma_params']['tau_syn1'], \n",
+ " p['R_m_soma'])\n",
+ " p['syn_dict_ie']['weight'] = psp_max_2_psc_max(p['J_IE_psp'], \n",
+ " p['inhibit_params']['tau_m'], \n",
+ " p['inhibit_params']['tau_syn_ex'], \n",
+ " p['R_m_inhibit'])\n",
+ " p['syn_dict_ei']['weight'] = psp_max_2_psc_max(p['J_EI_psp'], \n",
+ " p['soma_params']['tau_m'], \n",
+ " p['soma_params']['tau_syn3'], \n",
+ " p['R_m_soma'])\n",
+ "\n",
+ " \n",
+ " p['soma_excitation_time'] = 25.\n",
+ " p['dendrite_excitation_time'] = 3.\n",
+ "\n",
+ " return p\n",
+ "\n",
+ "p = create_active_dendrite_parameters()"
+ ]
+ },
+ {
+ "attachments": {
+ "image.png": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAHFCAIAAACW7KJOAAAACXBIWXMAABScAAAUnAHVi7b7AAAgAElEQVR4nOzdfVQTV9oA8AtGjRoxaqpRo0SNEGvQaKOixDVYWgHRouKKqLtY7Ypb2WrVU7vVIut2tasUutqKxRZcP7CKlb5Swa8lLaBYqMSCghIhCkqUKFGiRBPJ+8ddZ6cTCCEEMgnP73g84WYy88xk5smdO3fmuplMJgQAALTh7ugAAADgNyArAQDoBbISAIBeICsBAOgFshIAgF4gKwEA6AWyEgCAXiArAQDoBbISAIBeICsBAOgFshIAgF4gKwEA6AWyEgCAXiArAQDoBbISAIBeICsBAOgFshIAgF4gKwEA6AWyEgCAXiArAQDoheHoAAC9VDXof3qotTDB4iHcDgsGdE6QlQDVkqJrzb21c7SgIyMBnROcwQEA6AWyEgCAXiArAQDoBbISAIBeICsBAOgFshIAgF4gKwEA6AWyEgCAXiArAQDoBbISAIBeICsBAOgFshIAgF4gKwEA6AWyEgCAXiArAQDoBbISAIBeICsBAOgFshIAgF4gK4F28aT+oeF5g6OjAE4JshKwv/s1ykN7Vj598sjRgQCnBKMJAHtqbHxRmPttYe7RhidaD/ZAR4cDnBJkJWA39Y9qf8n79pe8tP/+bTIhNzeHRgScEmQlYB/37lwvyDlyvTibKDEhE+QkYAPISsAObpZdKMz9trryym9KTSYHhQOcG2Ql0FbFBRkFud/Waaqob0BNCdgEshKwneG5HrdtP3/2xPxdqCoB20BWAjbSPrxbmPvtlUvfNzsFpCVgE8hKwBZ3b5UU5B5RXsu1MI0JQVYCtoCsBFrtUZ369Il/Pqy9bXmyJ/UP+/TldkxIwJVA327Qau5ubvxRE1ucrBerbwcEA1wPZCXQar3ZA2XB704PWsXqzbE4IZzBAVtAVgK2cHNzl0gXyma9y+WNbm4aaOwGtoF2JWA7bx9/lscrl/OO3bj6o/m70NoNbANZCbTJEE9R7z6vsPq8cvlCGuUt6EQJbANncKCtPNgDpwf9eXrQql69+5PLTXAKB2wCdSVgB+7u7hLpQnw2V1Nd+rIYshKwBdSVgN0Ix86YHvznUWN+h/+EqhKwDWQlYE9DPH2Cf79pzIRAhJC+od7R4QCnBGdwwM4YjG6B8zcOHOzt7t7F0bEApwRZCbSL8VPmOjoE4KzgDA4AQC+QlQAA9AJZCQBAL5CVAAD0AlkJAEAvkJUAAPQCWQkAQC+QlQAA9AJZCQBAL5CVAAD0AlkJAEAvkJUAAPQCWQkAQC+QlQAA9AJZCQBAL5CVAAD0AlkJAEAvkJUAAPQCT8gFVCN79cAvGhsbGxsbEUIMBuwnoOO4wVCCACGk1+vlcvmPP/6oVqtVKlV1dbVardbpdMQEPB6Py+Xi/8eMGRMYGCgQCBwYMHBhkJU6r8bGxry8vNzc3Ly8vLy8PK1W26qPT5w40c/PTyqV+vn5cbncdgoSdEKQlTqpgwcP7t27Nzc3t+2z4nA4YWFhH330EY/Ha/vcAICs1Lk8fvz48OHDhw8fzsnJse+chwwZEhERERERIRaL7Ttn0NlAVupEUlNTDx8+nJGR0X6LePXVV3FuGj58ePstBbg2yEqdgtFojI6O3rdvn9Fo7IDFCQSC5ORkqVTaAcsCrgf6K7m+06dPBwcHJyYmdkxKQggplcqFCxd+9tlnHbM44GKgruTikpOTP/vss5KSko5ftJub27p169atWwdX6ECrQFZyWc+ePYuLi4uLi3v48KEDw1i8ePG6devGjx/vwBiAc4Gs5LISEhLWrl3r6CgQQkgoFGZnZ0ONCVgJ2pVcU1xcHE1SEkKorKxszZo1d+7ccXQgwDlAVnJBhw8fjouLc3QUv/Htt9/GxcXhu+oAsAyykqvJzs6Oi4urqalxdCBU8fHxdMuVgJ4gK7mUsrKyuLi4y5cvOzqQpsXFxR08eNDRUQC6g6zkUo4cOfLDDz84Oopm3bt3Lzo6urW3AYPOBrKS6zhz5szu3bsdHUULtFrtzp07HR0FoDXISq7j8OHDDx48cHQULTt8+PDFixcdHQWgL8hKLuLYsWOHDx92dBRWqaysdJZQgUNAVnIFT58+PXz4sMFgcHQg1jp8+HBWVpajowA0BX27XUFubu60adMcHUXrBAQEnD171tFRADqCuhJNvWhsxa9FYmJi+0XSTi5fvlxaWuroKAAdQVaiKXnJrSO516yZ8s6dO3l5ee0dj909fPjQGcMGHQCyEk29aGz85tyVT7+7+Nz4wvKUubm5KpWqQ4KyM7s8NRy4HshKNKXTGxBC539VbT9+8VqVxsKUzlvjyMvLu3fvnqOjALQDWYmmiKsQuaVVX51R5JZWNTlZQ0OD82YlpVIJ1SVgDrISTZEvjV6rqv3qTNH//XzDfLIHDx7Q9q43a0D/AGAOshJNmdBvrsGp654knVWk/OdXnf45ufz06dMdG5ed3bp1y9EhANqBrERTbsiNUvLM8OLwT1eTziiqNI+JQho+saRV1Gq1o0MAtANZiaaa692aefnmV2eKrlT+t5HY2Y9qtVrdYSOvAGcBWYmmLPShvHTj7ldnFdnFt5DzZ6Xa2lpnXwVgdwxHBwCaZvlGoPK7D786U/RQ1+ACh7RarebxeI6OAtAI1JVoqi+ru+UJHtQ3VN575BpZydEhAHqBrERTdTq9hXeHcjzWzJ60PnTyixct9PymP43GUh9R0AnBGRxNWTiDmzCSO9/Xe+KowQihrl27dlxM7WPgwIGODgHQC9SVaKq5pDRz/IiVb47HKQkhNGjQoA4LqZ3A6JWAAupKNGXeM6BHN8a8KcJ5vt69e3QjCl3gkHaBxArsC7KScxjK8Zg/xTv4NQGl3NmzEpfLdfZVAHYHWYmmyHWlCSO486Z4T3p51kbm7BUNSEnAHGQlmiJy0pvi4fOmCEcMZDc5mbMf1c4eP2gPkJVoakCfngihN8Uj/hIi6cbo0txkI0eO7MCg7E8sFjs6BEA7cA2Oprq4u78b/Nr60MkWUhJCyM/Pb+rUqR0Wld1JpVJHhwBoB7ISTclEnm9N8mpxMnd3dz8/vw6Ipz2MGTPGeYMH7QeyEk11cac+yaQ5zntg+/n5sdlNt5eBzgyyktOTSqVCodDRUdgCTt9AkyArOb3+/fs7Y3Vp0KBBzhg26ACQlVxBZGSko0NotTFjxowYMcLRUQA6gqzkCqRS6eLFix0dRSsMHTr0448/dnQUgKYgK7mIiIgIJ2o5joiImDZtmqOjADQFWclFBAcHR0REODoKq4hEImcJFTgEZCXXERER4enp6egoWhYRETF27FhHRwHoC7KS6/Dz86N/szebzV61apWjowC0BlnJpaxcuZLOJ0ejRo3av3+/E7V/AYeArORSBg0atG7dOn9/f0cH0gQWi7Vu3bo5c+Y4OhBAd5CVXM2ECRPef/99b29vRwdCtW7dupUrVzo6CuAEICu5oJCQkHXr1nl4eDg6kP/505/+tG7dOkdHAZyDW3MjRwNnl5CQsHbtWkdHgRBCQqEwOzsbHvAGrAR1JZe1Zs2aPXv2CATUR313sNWrV2dmZkJKAtaDupKL+/777+Pi4nJycjp+0f369Vu3bt26deu6d29hHGAAyCArub6ff/45Li7u6NGjHblQkUj0/vvvL1u2rCMXClwDZKVOwWg0RkdH79u3z2g0dsDiBAJBcnIyPD4J2AayUidy7ty5w4cPHz58+NmzZ+20iOnTp0dERERERLBYrHZaBHB5kJU6nbS0tNTU1O+++86+sxWLxTgfDRkyxL5zBp0NZKVO6uDBg3v37s3NzW37rDgcTlhY2EcffcTj8do+NwAgK3Vq5eXleXl5eXl5ubm5ZWVl1n+wX79+fn5+UqnUz88PP+j23r17AwcObLdIQScCWalTiIuL27t379q1a5u7X1+v18vl8h9//FGtVqtUqurqarVardPpiAmGDBkyaNAgHo/H5XLHjBkTGBhI6QkVGhpaVVWVl5fHZDLbd2WAq4Os1CnweLw7d+4ghMLDw1NTU638lFar1Wq1CCE+n69Wqy33hNy7d29sbOwrr7xy8uTJYcOGtT1m0GlB327XFx8fj1MSQuitt96y/oNsNpvP5/P5fIRQi52zg4KCGhoaysrKpkyZUlhYaGuwAEBdqRMYNmxYVVUVQkgikRQUFLTfgiZNmlRcXIy7Hfz73/9esmRJ+y0LuDCoK7m4f/3rXzglIYTa+2ZdiUSi1+tNJpPJZPrjH/+4b9++dl0ccFVQV3Jxw4cPV6lUCKHx48dfvny5XZeVm5tLHrnEw8Pjvffe+9vf/tauCwWuB+pKruzgwYM4JaH2ryghhKRSKblL9+PHjxMTE5cvX97eywUuBrKSKztw4AB+4eXltXTp0g5YYnh4OPkJAbW1tampqTNmzOiARQOXAVnJZZWVlZ05cwa/7piUhBAKCgoi96UcPXq0SCTKz89PSkrqmACAC4B2JZf117/+ddu2bfh1ZWUlvsDf3hoaGnr16kXeqX744Yfg4OAOWDRwGVBXclnE6dtbb73VMSkJIdSjR4+goCB3d3c3Nzdc8tlnn3XMooHLgKzkmr777rvq6mr8usNO37Dx48d37dqVaEs6f/58aWlpRwYAnB1kJdeUmZmJXwwZMmT+/Pkduei///3vX3311TfffEOUHDp0qCMDAM4OspJrOn/+PH4RFBTU8Uv/wx/+MGzYMGJASshKoFUgK7mgkpKSyspK/DogIMBRYRBji6tUqoyMDEeFAZwOZCUXRFSUEEKvv/66o8JYuHDhgAED8GuoLgHrQVZyQURW8vX15XA4DoyEqC5BXQlYD7KSCyKykgNP37A333wTv9DpdK161iXozCAruZry8vKnT5/i13379nVsMOPGjSNeX7lyxYGRACcCWcn5DB8+3M3NjbjtluLmzZvE63nz5nVQTM0YPHjw4MGD8WvISsBKkJVcDZGVunbt2mFdui0gqkuQlYCVICu5GiIrjRw50rGRYJCVQGtBVnI1dMtKT548wS/u3Lnz/PlzxwYDnAJkJVdDt6xEfjql0Wh0YCTAWUBWcjXEkd+rVy/HRoIxGAziNWQlYA1Gy5MAx1EoFAqFglKIB49MS0uj9JDkcrmBgYFEFqBJCujSpQvxmhzS0aNHrfn473//e/vHBOgNshKtpaenx8bGNvnWhg0bKCWhoaE0zErN1ZXefvttosmpOcuXL4es1AlBVqI1sVgcGRlJKUxLS9PpdGFhYeRH9yOEvL29EaluQvOslJiY6IhwgBOArERroaGhoaGhlEK5XK7T6Xbs2NFkdyQiC7x48aK9w7MGHhMcYzKZxGsYwxI0B1q7XQ2RlchPDnAg4ppg//79+/Xr59hggFOArORqvLy88AvK+Z2j0K2nAqA/yEquhm59qSErgdaCrORqiKxkNBrpkJggK4HWgqzkamj18BCNRlNVVYVfQ1YCVoJrcM4nNTVVr9dzudwm3+3Xr9+IESMqKioQDbLShQsXiNcikciBkQAnAnUl5+Pr6yuTychX2SmI6hIx/pKjENcBuVyuRCJxbDDAWUBWckHEkEelpaX/+c9/HBjJuXPn8AsHDmoAnA5kJRe0ePFi4tZcBw4uUlFRce3aNfwashKwHmQlF9S1a1ei5/ShQ4eIx3h3MJoMAAWcDmQl17R48WL84tmzZ4cOHSosLNy8eXMHx/D999/jF+PGjRs2bFgHLx04L8hKrmnatGlEm/eGDRsOHToUFxfXkQHcvHnzhx9+wK+Jdi4ArAFZyWUR1aVHjx6dOXOGyWR+9913Hbb0AwcOEK+XLl3aYcsFLsDNZDI5OgbQLoxGo5eXV2VlJULIzc1t0KBBYrGYqL+0t5EjR+I+U8HBwR22UOAaoK7kmhgMBofDIR5WaTKZ7t+/n5ub2zFLP3nyJE5JCCpKoPUgK7mmkpISDw+PqqoqNpuNS4xGY319PXGpvl0Rp28DBgwIDw/vgCUCVwJZyTUJhUKFQvHKK6+Qz9BNJtPnn3/e3ou+fPnysWPH8GuoKAEbQFZyWf369fv1118nTJjQo0cPovD//u//2nu58fHxxOuVK1e29+KA64Gs5OL+85//kC/Mq9XqhoaG9lucQqE4ePAgfv2nP/1p1KhR7bcs4KogK7m+I0eOeHt7E0/OTUhIaL9lkWe+du3a9lsQcGGQlTqFsrKyL7/8smvXrgih48ePt9NSiouL9+/fj18vX75cKBS204KAa4P+Sp3IyZMn582bhxAyGAyWp9TpdDqd7vHjx/geOjab7eHhwWKxunXrZuFT58+fDwgIwK9LSkrGjBljp8BB5wJZqXO5dOmSn5/fzZs3PT09yeVPnz69ceNGWVmZWq1+/PhxY2Njkx9nMpkeHh4jRozw8vLi8/nu7tS6dlFRUUJCQpcuXb755pv2Wgfg6iArdWparfbatWtlZWXV1dXNZaLmMJlMLy8vLy8voVBIHooSgDaCrNRJlZeXFxcXFxcXt30H4HK5Pj4+Y8eO7d27t11iA50cZKVO59atW8XFxSUlJXq93o6z9fT09PHx8fHx6d69ux1nCzohyEqdS25ubm5urn3zEdmwYcNCQkIGDBjQTvMHnQFkpc7i7t27Fy9eLC4ubu8F9e/ff+rUqa+99lp7Lwi4KshKncKNGzcuXLigUqk6ZnHdunWbMmXKlClTLAzEAkBzICu5vsuXL1+4cEGj0XTwcsePHz916tRXXnmlg5cLnB307XZxd+/ezcrK6viUhBAqKio6efJkazscAABZyZUplcoTJ048f/7cUQHcvn37zJkzUB8HrQJZyWXdu3fvwoULtbW1jg0jPz+fPK43AC2CrOSanj59euHCBeIxtY7VMdf+gMuArOSaysrKrly54ugo/kun02VmZup0OkcHApwDZCUXVFVV9dNPPzk6it/AdTdHRwGcA2QlF1RcXKzVah0dBVVxcTEeBgoAyyAruRqlUvnrr786Ooom1NfXQ+sSsAZkJVdTXFzcfre5tVFxcXFZWZmjowB0B1nJpWi1WjrXRwwGw88//+zoKADdQVZyKYWFhTTvS33v3r2HDx86OgpAa5CVXMeLFy9u3brl6Cha8OTJk9u3bzs6CkBrkJVcx+3bt6uqqhwdRcsgKwHLICu5DvpXlLDbt2/joVMAaBJkJdfhLHUQjUZTXV3t6CgAfUFWchEGg8GJDvUHDx44OgRAX5CVXIROp3PgE0taq76+3tEhAPqCrOQinjx54ugQWgHu1AUWQFZyEc7Vfgx1JWABZCUX4Vy1D+eq2YEOBlkJOMD9+/cdHQKgL8hKLsKJmroRQn369HF0CIC+ICu5iF69ejk6hFbo3bu3o0MA9AVZyUWwWCxHh9AKzhUt6GCQlVyEc9WVICsBCyAruYhevXq5ubk5OgprwRkcsACykovo1atX3759HR2Ftbp27eroEAB9QVZyHZ6eno4OwSoMBoPP5zs6CkBfkJVcx7BhwxwdglU8PT0HDx7s6CgAfUFWch18Pt8p2mucJXsCR4Gs5Dr69u3rFCdxkJWAZZCVXAr9s9KQIUMgKwHLICu5lPHjx9O8K9DQoUO7dOni6CgArUFWcikMBmPKlCmOjqJZPB5v0qRJjo4C0B1kJVfj4+ND2+vuPj4+/fr1c3QUgO4gK7kaDw8PkUjk6CiaMHLkSB8fH0dHAZwAZCUX5OPj4+3t7egoqMaOHduzZ09HRwGcAGQlF9S9e/fXX3+9W7dujg7kf0aMGAEVJWAlyEquacCAAW+++SZNbjcbPXr0nDlz3N1hZwNWgR3FZUkkkqlTpzo6CsTj8aZOncpmsx0dCHAakJVc2dSpUydMmODAAPr06TN16tShQ4c6MAbgdCArubLu3bsHBgY6sC/1lClTXn31VUctHTgpN5PJ5OgYQPt69OjRhQsXLl261JELxSdukJKADSArdQqNjY15eXkXL17smMEsR48eDSduwGaQlToRhUKRl5dXW1vbrkuZNGkSNG+DtoCs1LlUV1cXFxeXlJS0x+i1I0eOHDt2rEgkgvtvQVtAVuqMKioqcG4yGAx2mSGPx/Px8fHx8YHe26DtICt1XiqV6qeffqqoqGjLTLp16zZhwgSpVErzJ6gAJwJZqbN7+PDh7Zc0Go01H2EwGJ6ensNegvM1YF+QlcB/GY1GpVJZU1NTX1//+PFjnU73+PFjfM2OzWZ7eHiwWCwPDw8PD48RI0ZwuVxHxwtcFmQlAAC9QN9uAAC9QFYCANALZCUAAL1AVgIA0AtkJQAAvUBWAgDQC2QlAAC9QFYCANALZCUAAL1AVgIA0AtkJQAAvUBWAgDQC2QlAAC9QFYCANALZCUAAL1AVgIA0AtkJQAAvUBWAgDQC2QlAAC9QFYCANALZCUAAL1AVgIA0AtkJQAAvUBWAgDQC2QlAAC9QFYCANALZCUAAL0w2vLh6upqpVJZXV1tNBqZTCaXyxWLxWw2217BAQA6IVuykl6v37dv37fffpubm0udHYMhk8n++Mc/hoeHMxhtSnkAgM7JzWQyteoDKSkpH374oVqttjyZQCCIj48PCQlpQ2wAgM6oFe1Kly9fjoiIWLZsWYspCSGkVCrnzJmzfv36u3fvtiG89uXm5ta3b19HRwHanVar7du379y5cx0diO1SU1Pd3Ny2bdvm6EA6hMk69fX1vr6+NsxfJpMZDAYrl9LBEEJsNptcIpPJwsPDbZ5hUVGRTCbbtm1bm0MD9rR+/XqEUFFRkaMDsd3jx49lMtmYMWMUCoWjY2l3VtWVKisrIyMj8/PzbchKcrn8gw8+sOGDHSAmJua9994j/tRqtXK53LbVxFQqlVwuv379uj2iA/ahVqt3794dEhIiFosdHYvtevfuvXDhwqtXr6akpDg6lnZnVYP0t99+e/z4cZuX8dlnn02cODE8PNzmObSTLVu2ODoE0O62bdum1+vfeecdRwfSVjNmzPDy8jpz5oxKpeLz+Y4Opx21nJXOnj372WeftXExu3btmjhx4siRI62ZOCsrS6FQXL9+ncPhTJ48OTQ0lLicp9FoSkpKEEJSqZRyjU+hUGi1Wh6PJxAIiEK1Wp2VlXXlyhWtVsvhcPz8/AIDA5lMJn4X/+xERkbijysUCoSQTqcj/xzhdxFCKpUqIyPj+vXrOp2OxWKNHDlyyZIlHA6HHPalS5cQQkqlkpgDl8sNDAwkpiFmghAaN25cYGAgj8cjr4VcLpfL5TKZTCaTnTt3Lj8//+bNm2+99RaHwzEajb6+vkTw5Hni3dTCnorz75YtW6qrq8+dO/fLL7/gACIjI5u8VKpQKHClj8FgjBkzJjw8nNLhQy6XI4RkMhnlg+bl5ovW6XTJyclt2SCenp5hYWEikai59SUYjcajR49yOJw333zT/N309PRLly7hdlJPT0+xWCyTyShrmp+fn5ube/36dTabPXny5MDAQBaLRZ4gJSVFpVJFRkZyOJysrKy8vDyE0MyZM2UyGf6y1Gq1XC7Py8tjMBhvvfWW+UZrcdfCvLy85syZs3PnzoyMjNWrV7e47k6sxXO8NWvW2GVBW7dubXFZlZWV5t+Zr69veXk5nqC6unr+/PkIoY8//pj8waSkpB49ekyaNCk/Px+XGAyG+Ph4yg6EEIqMjCQ+hUjtSjExMeYxE++mpqaav8vhcE6ePEnMzTxyhFBoaCgxwa5duyjxsFisAwcOkFcEhxETE0Pe7DExMUuXLkUIJSYmmm+0oKAghNCpU6csbFg8n9LSUi6XS9m2DQ0N5Cnr6+vN93gej5eZmUmZIaVJrrnyJhfdxg2CEGIymampqRZWGcM/D6tWraKU19fXSyQS8+8rJibG8qYQCAQFBQXkWeHv/eTJk1KplDxlSEiIyWS6ePEiZR137dpF/rg1uxbh0KFDCKEFCxa0uOJOrYWsdPPmzaFDh5pvNRu88cYblpfV0NCAf+3XrFlTWVlpMpmqqqpwVcXX15eYTC6Xjxs3js1m79+/H5f8+OOPY8eOZbPZ//73v4nJ8NUKFou1a9eumpoaPLfk5GTyPoFIh1BdXV1lZSVCiMfjVZLgd48dOxYZGZmZmVlTU2MwGHJycjZu3MhisdhsNp65yWSqqanBe1hYWBjxceLdEydO4HiSkpLq6+vr6+uTkpJwPSU7O5sICR+EXC6Xw+EkJyfX1NTU1taWl5cfOXIEIfTWW29RNlpmZqabm1tgYGBjY6OFbYu/Ai6XGxUVVVxcXF9fn52dLRQKEULx8fHkKfGJdkBAQFFRkcFgqKuri4+PZzAY5DU1tT4rcbncsLCwgoKChoYGfFS3doPweLwTJ07U1tZWVVVt2rQJF1JSqrl3330XIbR7925KeVRUFF5NHJLJZKqsrNy1axc5J+I8yOfzs7OzDQZDTU0NTlJsNruuro6YDGclLpeL54a3Ld6TN27cyOPxNm3aVF5eXldXt2fPHiaTyWQyyVvSml2LcPHiRRzS/fv3La+4U2shKxE17bbr2bPn5cuXLSwL72qBgYGUctzpifzDmJmZiRDicDg4a4SGhqLfVoKqqqrwDxTlZ4268r89hOrq6vBXbnmbEHbt2oV+++uKjzRyJJjBYMBNrcnJyeTyHTt2IITEYjFRQlTZKJE/fvx42rRp3bp1O3fuHLkct9YnJCRYDhXPc8mSJeTC7OxshJBEIiFKzp49i7cJ5WjHcUZFRZFn2KqshCsOhNZuEAaDUVpaSp6SqKFYXvGAgACEEKWiZzKZ8NIp8ySrqqpiMpkMBoOop2N4b1yzZg0lEoFAQL7WjPcEypSml9mwxau05rsWAe/YOTk5lufg1Fq4Bnf16lVbsxDV06dPb9261dy7z58//+abbxgMRnR0NOWt3//+9wgh8oWtwMDAjRs3ajSaBQsW7Ny5Mz09XSgU4i8Sy8jI0Ol0gYGBTdbS2666ulqlUuEGLGuuuCmVSoVCwWazKU3+q1evZrPZCoWirKyMXC6VSimR9+7de9asWc+fP8/7934AACAASURBVD916hRRWFFRkZWVNWLECHLTlQW44kDAh1N1dTVRsmfPHoTQhx9+SGm9mj17NkJIpVJZs5Qmka91otZvkICAAFyzI0yfPp0SfJPKy8sRQkOGDKGU41Yb3ArWpIyMDL1eHxAQQG6mRAh99NFHCCFcdSVbvnw5uYWOOJujbPPJkycjhCwcCC3uWrhxVqvVNjcHF9BCa/f9+/ftuDALc2tsbLx79y6DwTh27NixY8fIb+EvADdFE957772KioqjR48WFhaOHz/+X//6F/nsvaioCCE0c+ZMOwavUChiY2MVCgXl4LSmTymueL/xxhuUo53JZI4ePfrixYtVVVXko+53v/ud+UyCg4O/+OKLzMzM6OhofIKQlZV1/fr1P//5z97e3tasQpPNw+T4cZfXnJyc0tJSymRMJtPmPhM9e/YcO3YsuaS1G6S5hu0WN/6LFy8QQr1796aUL1++/Ny5c6tWrfriiy9CQkJmzpxJuX6CdyHzNvIhQ4a4ubkZDIb6+nrybCkR4qzHZDIpSQ3T6/XkP1u1a40ePfrKlSsajaa5VXYBLWSlxsZGOy7MQj9v/AUwGIwmf774fD5l9+VyuatWrTp69ChCaNasWZSGxufPnyOE7HifsFwuf+ONN4xGo1QqDQgIwL+9jx49SkhIsObjbm5uCKFevXqZv+Xt7X3x4sU7d+6QC7t27Wo+pY+Pz6xZsxITEzMzM1etWoUQysrKQghZWVFis9nmbf/ot1sJfwv4KicFpZm8VZ4+fTpgwABySWs3iHllB2vxK8ZZ6dmzZ5Ty8PBwFov16aef5ubmlpSUbN++ncVirV69OiYmBu9peBcy7/o/dOhQT09PlUr14MEDclaiXDrEP6XWbLTW7lo4c3l4eLQ4Z+fVQlbCX6q9mF/sJOCdwNvbm1Inao5Codi8eTN+/dNPP/3666/kX+OePXsihB48eNCmcEkWLVpkNBpzcnLI6a+wsNDKrOTu7o6aOjYQQteuXUMIDRs2jFzY3MEWHBycmJh46tSpVatWnTt3LisrKyAgAF+Ds4sBAwaoVKrvvvtu/PjxLU7c3EmEebn56rR2g9isX79+NTU1Dx8+NH8rJCQkJCRErVbn5uaePn364MGD27dvV6lU+JIF3oV0Oh3lU7du3VKpVAMGDKDkWZu1atfS6XQVFRV4veyydHpqoV3JXpu+xbl5eXnx+fwrV64olUprZrV3797c3FypVLp69eqffvoJn+0TfHx8EELmjzSwDB885juiWq1Wq9UikYhSIzOvUzQ3h0mTJqGXJwVkRqMR72SDBw+2JsLZs2f7+vpmZGTk5+cXFhYaDAaJRGLHZzO8+uqrCCHcm8kyHo/Xq1cvSt4vKChA1lVR7bVBWoT3BAttf/jiYFJSEr6EcuTIEXx6hT9o3q6KL4m4u7vjtNVG1u9amNFoxM0gbam60l8LWcmajmrWs5zjwsLCEEJEDciCtLS0xMREDoeTmpoaHx8vkUgyMjLIvy24q2RGRoaVOY7A5XI1Go3RaCQXVlVVIYRMJhO5kVKpVO7du9f846ip5gCBQCAQCMrKytLS0sjlBw8e1Gg0QqGwydaHJuHW07179+Klr1y50soPWgP3Bfvkk0/MEysFn89/8uQJJa3gdGZNQ6wdN4hlr732GkKI0nbeJLFYjM/dcFYKCAhgMBgpKSmUBvXPP/8cIWSvh2FYv2thuH1j+vTplLZ/V2P5Et3ly5fNWwptM2nSpOfPn1tYVn19PT45j4yMJDoK1dbWZmZmhoWFEZdCT5w4wePxhg0bduLECVxy/vz5MWPGDB06ND09nZjb1q1bEUK4k0t9fT2e/7Fjx/bs2UNMg8wuY+OfrI0bN1L6K+F0s2bNmqqqKpPJVFNTQ/TxlclkxMfr6upYLBZus6f0V8JN+CwWKzMz02AwGAyGkydP4jmQr1vjC+GUPkRkDQ0NxImweS+K5pivaXPluJuFRCIhNnh9fX1BQcHq1avJUeFuHL6+vkTPnezsbCIwaxbdxg3S4obC8DU4clcDTCQS7dmzh/h2KisrcV8kkUhETINLhEIh7kBQX1+PO8FRehLhS5mUW3+b62WCu9qQ+45YuWthSUlJyKyHh+tpuW+3lY2pLbJmUxYXFxNVWdyRDL9mMBgXL140mUxXr16dMWMGQmjnzp3kDyYmJnbt2vX111+/evUqLjEYDJs2bSLObogab3N9u7GcnBzKCQguz8zMJGaFJxAKhbjOT9l1cJ9D4uPkd7dt24bfwl3p8AvKcWXNwfb+++/jmRN5uUXma9pceW1t7YoVK4jNTj5T2LFjBzFZXV0dfovNZkulUlynjo+PJ280y4s2tW2DWJmVTCZTaGho7969L126RIkKYzKZRDLl8XjkHkz19fVExwVir+DxeGfPniXPqo1Zyfpd6/Hjx9OnT+/du7dcLm9xrZ1ay099O3To0JIlSyxP06KRI0f++9//njp1qjUTZ2RkFBYWXr161Wg08ni8cePGhYaG4l3n3Llzhw4dYrPZO3bsoLSnJCQkXLlyZebMmeQuMCUlJfg+OI1Gw+Px8F11xF5I3KJFno9Wq01PT9doNPgshni3rKxs7969SqWSz+fjkJhMZlpaGuVONzxlfn4+fnAwn88n7qRDCCkUinPnzuHb5SZPnhwSEkKpiuPb8cRisYUb3HNzc6dNm8blcquqqqxsVCLf8WdNeWFhoVwuv3r1qlqt5vF43t7eoaGhlLOq6urqDRs25Ofna7VamUy2ePHisLCwZcuWIYTInW+bWwSxvrZtEGs2FJaenj537txNmzbh6jOGn+5w6dIl/EXz+fzJkyeHh4eb32aIb21TKBRcLnfcuHFLliyh/G5lZWWp1erAwEBKW09KSgqLxcLtEgSlUpmbmysQCMgNSVbuWoWFhRMnThSLxebtca6mxbz14sWLtt/u32QvVWAb/LSgjRs3OjoQpyEWi625PYXmIiIievTo8d133zk6kHZn1VPf5HI5bjW0zfz582/fvt3ea9JJ1NbWstlsBoOBmyGANfCdNNac7tHWTz/91KdPnxUrVjg6kI5gVf1/+vTp77///vr162tqalqbkiQSyZo1a+x1i29nlpCQcOfOnYyMDK1Wu2LFCkq3PWBBQEBAampqk51IncXQoUMTEhJsex6s02nFaAKHDh367LPPLl++bP3cZ82atWbNGnyHJGij4cOHq1QqNpsdGhpq/gwQAFxG68Y4UalUixYtsvJ+qNDQ0D179rh2d6+OhJvPeTweDGkFXFurR15CCB08eDA2NtZCB0WJRLJt2zaoIgEAbGBLVsJKSkrS09Nv3rxJHjv3tddeCwkJce2HCgMA2pXtWQkAANpDK0apBACADgBZCQBAL5CVAAD0AlkJAEAvkJUAAPQCWQkAQC+QlQAA9AJZCQBALzbeURVzo/J584MyfSjw9HCGe7WafOobcEkJCQlMJhMPXWuBQqFIT08Xi8X4ScEdKT09XaFQhIaGtvgcO4RQSkqKSqWKjIy0130UWq02ISHBISveBNsegPLx9Qp08nxz/x6RhjamM2T28Nbs7Gz8KF7b1NXVZWdnWxgnGjiE9c9Xwk/RpAzD3THw4zqtfOqx+WN5i4qKsrOzbX6y3bNnz958881x48aVlJTYNgc7gjO4/9Fqtf7+/osWLbJ5DnK53N/f/9NPP7VjVKDtNmzYwOVyW6woObVly5b5+/tbM5Jzk7p16xYSEnLlypXDhw/bNzAbdOqsZHr51Hfgwnbv3q1QKD744APzZ3I7r+zsbJPJZM25nvVmz57t4+Nz5MgRawaqalf0zUoqlarFUcmspNVq7TU3jUajUqnaOMq7RqOxcg5Go1GlUlkzwlp7BKBWq+0+nj3egLbFg15uEMqAfRY0Njb+8MMPgwYNeuONN6wP0sIGt35Hqq6utmGXs7BonU6nUqnwcHU2s/Cd8vn8kJCQioqKU6dOtWURdmDbiV/7tStlZ2f7+voSP2sikejkyZPEu/n5+ZMnT+7Ro0dSUhL5U1lZWaNGjRo8ePDx48eJwvr6+vXr15ObA8VicWpqKjEBn88nxsaJj4/HUzIYDD4Jfre0tDQyMpI8IjmbzY6JiTGQ1jQ8PBw/4o7FYhEfDw8PJ8ezevVq8jg/a9asoTQE4AGFYmJiSktLpVIp3g4xMTHBwcEIoaNHj5pvscWLFyOEDh48aGGrEt/1pk2biA3C4/HI25ZQWVkZGhpKjOTB5XJ37Nhh+O13iqweyqnJRbdxgzAYjCVLlhBD0VmAh4GUSCRNvpuZmSmTyVgsFofDCQ0NzcnJMR8ZCbO8W+IJEEIymQyP10RsPV9f3ybbGePj48ViMYPBEAgES5Ysqampwe1KycnJxDS48Sg7O/vYsWNEtQjXksLDw/l8Pm4DvXjxIp/Px7HxeDxi3yO3kFrzneLJEEICgaDFDduu6HWlbMuWLbGxsSwWKzw83NPT886dO0eOHJk9e/aOHTvwwB6TJ0/+y1/+8t577+3atUsgEOCvrbKycvfu3eXl5du2bZs3bx6eVUlJSVBQUHV1NZ/Pj4qKGjhw4J07d86dO3f69GliyBb8wFn8ms/ny2SylJQUJpOJZ0uWn5+fkpLi6+sbFhbG4XDy8/PlcnlsbOylS5fw0F0IoXHjxmm12qysLC6XS4yr4+3tjV+o1eopU6aoVCqhUIj3Pzze77lz58wHobt+/bq/vz+LxYqMjGQwGDweb8CAAadOncrMzFywYAF5yoKCgqysrEmTJlkzbN/atWv37dsXGBgYFhaGx1aaPXt2UVER+UQgIyNj0aJFOp0uNDRUJBLpdLr09PQNGzb8+OOPJ0+ebHERFha9e/fuwMDA8PBwPFy1DRuEy+WuWLFCr9enp6cfPHhQp9OdOHHC8nIPHDiAEMI5nWLfvn2rVq1CCOEnghUWFgYFBTU5nE+LuyVBp9MFBQWpVCqcArKysvLz8/39/SsrK8nnj8uWLUtJSeFwODh/ZWVl+fv7N3c17fjx44mJiRKJZP369Wq1Gj8ZWa1Wq1QqPE82my2TyfAAUL6+vsSjk4ltaP136uHhwWazq6uri4uL8ZjmjmFbMmuPutLFixcRQniYM6KwuLiYzWYzmUxyIR7CVCKR4GRP+RPDeSEyMhIPnEsgzwf99oe9uZEFTSZTeXk5MY4uVl9fjx+2Sb5ogg8S819ak8m0Zs0ahFBISAgRT319PX44PHkMJVw1QAhFRUWRV6eysnLMmDFcLvfy5cvk2cbGxiKEPv74Y/MlkuF58ni88vJyonDjxo0IIXJtjhh7kjwQY11dnUQiQQgdO3aMPMNW1ZU4HA5lHMfWbhByYU1NDT7kWrzcibMMuQKC4aFimEwmeU2JAePI36CVuyWuKyGEAgICiDUyGAx4PySP2IwvCAoEAmKPqq+vJ67Hm9eVEEIHDhygxG9+DQ7/tFD2UlNrvlMMl5MD7ng0ykr4+9u0aROlHI/IunXrVnIhrhqsWbMmJyeHwWCw2Wzy94F/AVocAsz6rNSktLQ0ytHSXFaqra3FP2uUowgPN8hkMomTEXwQNhn5hg0bEEJ///vfiRKtVjtlyhQ2m33hwgXLoeKdm3Lai9eXXF3H43RLpVLKx3GcAQEB5Bm2KitRrsq3doPw+XzK6QZOauaHKwUe85IycK7pZUY2H8gIH9vkb9DK3ZLISuS8b3q5S5AXhDMvJfKamhq8QcyzUmhoqPl6WZ+VrP9OMVwZj42NNV9oh6HRGZxCoWAwGLNmzaK0huKa7a1bt8iFBw4cGD9+fEJCQkpKitFo3LNnD7kCjM8RwsLC7HvZBY/XqlKp7ty5YzQacVumQqFo8YNKpVKv14tEIsrAsGKxWCQSlZSUKJVK/BuFzZs3zzzy4ODgL7/8MjMzMzo62sPDAyGUlZV18eLF8PDwKVOmWBM/5UnquLpRXV1NXkGE0MKFCylfAa4XmLdSW49yDtXaDSKTyShjKPTp04cSfJMePHiAEOrXrx+lvLCwECG0cOFCSvn8+fMpX2irdks+n08ZYdh8I+NFU04V8Vn/uXPnzFdh7ty5za2dNVr7nY4cORK93G6OQpespFar8UHe3AFGGbyAw+EkJSUFBQXhwdEo3/GVK1cQQna8bqrX65cuXYorR+ZvtfhxYsRq87cGDx5cUlKiUqnIByFOOhQymSw4OPjYsWOZmZn4cMJNWta0KGFNtlyQ48cbOTo6Ojo62nxKC+NHtGjYsGHkP1u7QTw9PZucbYsbv3v37ggh81Fhbty4gRDy8vKilPfu3RuRWmRau1s21zZExHnp0iWj0Th58mTzkHDqpDSoIYQGDBjQ5Dyt1NrvdMiQIQihx48ft2WhbUSXrISv9XK5XNxIZI4yglNtbe3+/fvx6ydPnjx48KB///7tF94777yTlpYWGBi4bt06oVCIR4hUKpWjRo2yfibu7tb2wxg4cGCT5eSsVFRUlJWVNWHCBCuzkvnubl6Ov4X4+PjmJiZr7hq2eTn+WTaf0voNYk3wTerWrVuTIeFFN5rdNYWrYMT0rd0tW4wTf7P37t0zn6Znz55NhtrGscta9Z0ihAoKCtDL3OQodMlKTCazb9++7u7uc+bMMa9vmzt+/PiRI0d4PJ5AIEhNTfX09CTvN8OHD0cI4avCbafX648cOcJms0+ePEn+ibO+7oArBeXl5eZv3b9/HyFk5UC4kZGRsbGx+/fv37Jly5UrV+7duxcUFNRcCrOBQCBQKpWjR4+eOXOm5Sm5XC6uR5AHy7S+e469NkiLRowYUVFRYd7jecCAASqVSq1WU2o3N2/eRKQk0trdskVubm6oqWyIELp9+zayIs+2lvXfKYa3v2N7nNKlFyWHwxkzZszdu3fPnDnT4sQKhWLt2rUMBiM1NTU1NZXL5e7cuZN8Tj5p0iSE0KFDh6zvbode/qSbN1Wo1Wqj0cjlcim17tOnT1OmxD9r5nMQCAQMBiM/P59yeCiVypKSEtxpxcogV65ciRDau3fv3r17iT/tBZ80paentzglUVskF+bm5lq5IDtuEMvw5e1r165RyseOHYsQysrKopTjFkmiwtKq3dIanp6eAoHg9u3bcrmcXK7X63GQNveYbW7fs/47xWH8+uuvCKGpU6faFoZd0CUrIYTwddm1a9ead3gvKSkhNndBQQG+ap6QkCCVSrlc7j//+U8Wi7V582Zc+UQIhYaG+vr6KpXK2NhYSmKyfKMQl8s1Go2Ugw1/32VlZbidEpPL5bt37zb/OEJIqVRSFsrhcCIjI/V6/apVq4i3jEbj2rVrjUZjVFQUuX+mZStWrGAymYmJifn5+SKRyL4Dz7/33nscDicxMfHIkSOUt9RqNbkZWCQSIYTi4uKIEo1Gg68SWsOOG8QyfEziXEP27rvvIoT27t1L3h/kcrn50Wvlbmk9vOhPPvmEvJNs377d5lvYMGIvpZQT36n5qlG+U4RQRUXF3bt3vby8yI16DmDbpbt26tuNL/cymczIyMgdO3bEx8evXr0aH3i4S6tWq126dCkyu6sbX/78wx/+oNVqcUlRURGuDOPuZ3v27Fm/fr1IJCJf9EVml7HxfLhcbuRLuHzJkiW4fMWKFfHx8VFRUQwGIywsDCEkk8nIc8AXksViMf74tm3bcHlNTQ2uX0il0q1bt27duhWvF5/PJ/dRxhfCLd/djvscIoT27dtn5YY1X9PmylNTU3HtPSAgYOvWrXi7hYSEMBiMmJgYYrLy8nJcc5TJZJs2bcJdtPEGoexUzS26jRvEmg1lMplu3rz56quvjhs37v79+5S38M26XC43Pj7+xIkTmzZtYjAYRDc38pQt7pamlz0DzK/im5cbDAac0319fZOSko4dOxYeHs5isfDFGfOeAZR+Xs29hbtBMZnM8PBwvO8RvS6I7zQwMNDCd2oymf71r38hhKKjoy1v1fZGr6xkMpnOnj0rkUjI50r4RoSamhqTyZSZmcnn88VicW1tLflTBoMhNDSUz+eTu+TU1tbi75s8K/IE5gdMfX19TEwMua2BKMeJiZjPrl27qqqqKPeUmEymysrKJUuWEC2U5JxVW1sbFhZGxIO7blNum8A3vlg+2PCOTu7U0yLy3TMtlpeXl4eEhJC3G4vFWrJkSUFBAXmyzMxMYjXZbPbq1asNBoP5DJtbtKltG8SaDYXhGhz5TiPMYDDgdEMsPT4+vrk7TizvlqaXt31Qdobmyuvq6oje/zgz5uTkmN9xQr6thKLJhJWcnCwSiYgmISJjmqz7TvHDTLp163b69GlLG7T92Th2bsyNyr/dqGzu3UeBv2vjU9+MRmNZWZnRaOTxeG2vzCuVSo1Gw+Px2tiGqtVqlUoln89vY0j4hAL/YNpg586dGzZsiIyMxIdQ+8HtwZa3G755uI2dMNq4QSxTq9XDhw8PCAho8o4ZrVabm5vL4XAoSadJ9t0tVSqVQqEQCoWUTlvtysJ3WlZWNnr0aLFYjDtYOhBNsxJojtFoHD16tFKpLCgocPDJv/PYsGHDzp07KXf8AYq33347LS3t0KFDs2fPdmwkNGrtBpbl5+dnZGQsXbpUqVTKZDJISdb76KOPhELh119/7ehA6Euv1xcUFLz++usOT0mIPv2VQIsWLVqE7w/AzWeODseZsNns0tJSR0dBa0wms7i42NFR/JeNZ3Cn7lu6TUbarw+cwdldWlqaTqcTiURQSwKuzcasBAAA7QTalQAA9AJZCQBAL5CVAAD0AlkJAEAvkJUAAPQCWQkAQC+QlQAA9AJZCQBAL5CVAAD0AlkJAEAvcLea4127dk2j0SCEfve731mYTKvVKhQKNpsNj+MArs2WutK/s4tfNMLdc/Y0ffr0Fh96rVAo/P398RDeALgwW7LS2SuV739z7qGu5dEZHWjt2rVubm4pKSmODsQ1abVaNzc3PMIVAPZlyxmcTm+4p32y9ducsKlCv9FD7R4TaJJYLM7Ozrb7eGEA0I0tWQk//ORqlaburOKhTj97YivGjwU2Y7PZ+BnyALg2W87giCaluw91X50p+nd28dNnBnsFpNFoPvzww6CgoOHDh0+cODE6Opo85JZarQ4KCvL396eM8GU0GhcsWODv75+RkYEQWrZsGR4F8Ouvv172Enk8LKPRmJCQMHfu3NGjR/v4+CxatCg/P58Sydq1a/39/RUKRVlZ2dq1aydOnDh8+PD8/HzcvrN27VqEUGJi4ty5c0eNGjVx4sQPP/yQMuy9Vqs9cuTIsmXLpkyZMnz4cB8fn7lz51KGJ7ReWVnZsmXLtm/fTpRYH0lKSoq/v39KSopard6wYYO/v/+oUaPmzp2LNxeZv7+/v7+/+dLJ5enp6XihGo1mGYlt6wUAlQ3josz55OgbMYfJ/+L/79Lt2kdtH3Hl5MmTeOgIPp8vk8nwAKpsNjszM5OY5p///CdCKCgoqLy8HJc8f/4cDyG7evXqxsZGk8nE5/PxmQ6Hw+G/RIzSU1paii9jcTgcqVQqFosZDAaDwdi6dSs5GFwx2bNnDx41VyKR8Hi87OxsPPCRTCbD4/bgkaDw8Bi+vr7kOeAxSBgMhlAolEqlxLg3lEG4rl69ihCaNGmS5Y1jPrKY9ZHg0dOioqKEQiGTyfT19SUGFKGsNbJi5Dg86hFeNT6J5fgBsJJ9stIbMYc3H/7xSuW9toRSVVXFYrGYTOaJEyeIQnxg83i8hoYGXNLQ0PCnP/0JkcbSwyO4vvnmm2VlZcQH8YFKHl0LMxgM+AmzmzZtMrwct66goIDD4TAYDPIAWzgrMRiMFStW1NfXEx/HuQAfkMT0lZWV+EAlB5+Tk5OcnEx8tqGhAY9nR1lQG7OSNZHgrIQQkkqlxFB6OTk5OFGSg7EmK5lMprq6OpwHLccMgA3adAZHln/9zldniuQlt2yYIbZhwwadTrdkyZLQ0FCiMDIyUiqVVldXJyYm4hImkxkXFycQCHbt2pWSklJdXb1t2zYGg7FhwwZvb+8Wl7Jv377CwkKBQLB161Zi/C+JRBIVFWU0Gs2vu8+fPz8pKYmo5hAfMRqNycnJRNchPp//0UcfIYTOnz9PfFYqlUZGRhKfZTKZgYGB8fHxRqNx//79rdw8zbImEiL41NRUYiAzPGgtQgh6GwBasSkrNfOo7xt3HyadUXyXf92GeT5+/PjMmTNcLvedd96hvDVv3jyE0L1794gSFot17NgxJpMZHR09e/ZsjUazfv36gIAAaxaEhyrcuHEjpVwmk3Xp0kWr1VLKm3t0/6RJkyhtz/ho1+l0lCn1er1KpZLL5QcPHkxJScEjwePRSuzC+khkMhllbMIVK1YghHJzc+0VDABtZ9s1uGbfqn389KvTRXU6fdhUYZ+e3a2fZ2Nj48OHDxkMxsKFCylvGY1GhJBCoSAXisXi+Pj4VatWKRQK4jffGnfv3kUIbdmy5e9//zvlLTc3N/M2b9y2Za5bt26UEtySRUk3u3fv/uSTT9RqNWVi8/RnMysjQU1l2K5du77yyit6vV6j0bR9MFgA7MKWrNSXxbynfdLcu40mU9qF0jHDOL5eQ6yfJz5KWSxWcxe/zc/OiANbKBS2OBYz5VNSqZQYjt0y3EZjrrljmNyfCA+9zePxNm3a5O3tjesparV60aJFVkZrDWsiaU737t179epVW1ur0+kgKwGasCUr1Vns1S0a9sr8Kd6tSkkIoS5duvTo0eOVV15JTEzs3r3lSlZubu7mzZuZTCaHw9m3b9/rr78eHh5uzYI8PT1VKtW7774rlUpbFaENYmNjmUxmQUEBl8slCh14umReQaupqblz546np+fQof/tDctms7VardFoJCd6XF21Y/0OAAvs1tqNyUSeK2dOsKHD99ChQ0eOHFleXl5QUNDixBqNZtGiRUajMT4+/sSJEwwGY9WqVZQTlj59+uApKZ/18fFBCNncach6KpVKp9MJBAJySkIOzUpZWVmUkjt3lvQNeQAAHP1JREFU7hgMhh49enTp0gWX4AodZWNSeochhNhsNoPBMN+8ALSd3Vq73RAKmypcOXO895B+toXy7rvvIoTWrl1L6QGIEDIajUTb7d27d6Oioqqrqz/88MOoqCiJRPK3v/1Nq9WuX7++pqaG+Ag+87pz5w5lVitXrmQwGJ9++mmT7c12rA7gE6iysjJKL1Dcj8EhVCpVWloauQRffcO9vTC83Y4cOUKebPPmzeZzEwgEOp0OKlDA7uzzJJNX+vScP0U4z7flC/MWREVF7d+/Pz8/f/z48R988IFIJGIwGEql8pdffklJSUlNTcVNTrt37z5+/PiCBQuio6PxB6Ojo8vLy5OTk728vP7xj3/gQolEwmAw9u3bN3DgQFxbEYvFYrFYJBKtX79++/bteClSqZTD4SiVyrKysv3798+fP3/Lli1tWQsCm82WSCSFhYVLly5dvny5SCQqKyvbsGEDh8NxVBVDKBQuWrRIqVQGBARotdq9e/dmZGTweLyoqChimnXr1mVkZMTGxhqNRqlUqtVqv/jiC/PWeoSQVCotKytbsGDB4sWLcUlkZGTHrAhwcTb0cQqMTSX3n/xL0ukfS27ZpfdUQ0PDpk2bzNuhxWJxaWmpyWRKTk5msVgTJkzIyckhf/Dy5ct+fn69e/cmd5uMj48nt/iSe1QfOHCAcmKFEOLxeMeOHSOmwUmQ3MMQM+/N2Fx5eXk55RJeWFhYcXExQkgmkxGTtbEXpTWR4F6UMTEx8fHx5HiEQiHRRZ6wadMmcqOSSCQiKqHkySorKymXJizHD4CV3EwWrvM3IzD2SOPLT017dWjYVOFonj0v32g0mpKSkpKSEqPRyOPxxGIxcWxrNBqdTsdkMs1zilar1Wq1lLe0Wq1KpcJnGfiuCOItnU5XVlZWUlKiVqt5PJ5QKKRcOFer1Xq9nsvlUrKkXq9Xq9XmMTRZrtfrs7KylEolvh1EIBAYjcbq6mryZNeuXXvw4AFCaNq0aRY2i/lT36yPZMuWLbGxsTExMVu2bFGr1fn5+SqVSiwW+/r6NnktsqSkpLCwUKvVymQyvDh8wmt+RVKlUhHnwnDzMLALW7LSzNhU/KG5vt7zpwgH9Olp/7iAXeGsFB8fj2/EAYDObGpXMqF+vXvM9/WeP0Xo7u5m75AAAJ2aLVnJc0CfhdJXXx/Lt3cwAABgU1baGjF9ILuX3UMB7Qc/GQaeYwmcgi3tSgAA0H5gPDgAAL1AVgIA0AtkJQAAvUBWAgDQC2QlAAC9QFYCANALZCUAAL1AVgIA0AtkJQAAvUBWAgDQC2QlAAC9tFdW0j6gPjDbsp9//nnkyJEzZsxop3icSEpKir+/f0pKiqMDaXcKhcLf33/t2rWODgTQi/2zUmPjC/mp3fnyA639YEVFhd2DcUZ4oF3yU/rlcvmWLVso43S2SkpKypYtW+j25H+tViuXy+04jHAbbdmyJSEhwdFRAHtnpTuqX08ejvklL82DPdC+c+48zJ868v3338fGxrYlK33++eexsbF0y0psNlsmkzU3DmgH02q1sbGxn3/+uaMDAXYa4wS7XpxdmHtUXV2KmhmdCVgjMjKykwwWIhaL8cAHAJDZLStdvnj8l9yjj7X3XhbYLSvhp+irVCqBQCAWi1ksVnNTqlQqhUKh1Wo5HI6vry9liGqdTpefn49HZ+PxeBKJpLVPQVMqlSUlJTqdTiQSCYVC8nP4CwsLdTodj8ejDGqCg0cISaVS8sAhxFgGDAaDMpABHhaBzWbj8IgTHI1GQ7wm3m1xvYiRBRBC5JHpKKMktLiR8bieeLwAlUqF1zcgIECpVHK5XKFQaL65yB9pkvmoB3hsAjzug16vLywsxAMxmI96gL9osVjMZrM1Gk1ubq7RaJRIJOY1r+bCIJfjbY4QMhqN5DNKmtTjOp22D5PS8ORRzumvPtv0+s6/Tif+5ZzZ16qZXLp0CSHk7+9PLrx27Vp0dDT5YOZyubGxsffv36d8vKCggDJCCYPBIA+1FB4eTtmtWSzWrl27rAzvwIEDlAFIZsyYcfToUWKCpKSknj17Tp48OT8/nyi8e/fu/Pnz0W8HfWpoaIiJiaEEw+Pxampq8AR4lKT4+Hj8Z5PfGvFui+vVXGWEGFHKyo2M36qvryePhJ6ZmdmlS5dp06bV19dTttjBgwcRQosXL7awVS2MEHXs2DFySAKBgDIEFs4mZ8+eDQsLI69XZGSkwWCgRM5ms82XTi7Hy6Vo8lOgA7S1rqS5V1mY++3Vy9Shou0yxsDHH3+clpbG5XJjYmKEQmFZWRkePqimpmbPnj3EZOnp6QsWLDAajWFhYfPnz+dyudXV1efPn8fDGWGFhYWBgYGvv/66QCDQarU//PBDVlZWdHQ0k8lcsWKF5TDkcvmyZcsYDMbGjRv9/PwYDMb58+cTEhJ++uknHx8fXE1YsWLFzZs3t2/fvmvXrlGjRvXr1w+9HFBz0aJFq1evxrMyGo3+/v75+flcLnfdunUikchoNJaVlR06dMh8xGAsOTn5+++/T09PX7FihZ+fHy4kBl9qcb2EQmFycvKnn35aVla2Y8cOov5IVE+s3MhYUFBQdXX1jh07RCJRSUlJYGBgcHDwyZMnMzMzFyxYQJ4Sjx4eGBhoeds26fTp059++unq1av9/Pz0ev3XX3+Nv4KioiLKlNHR0RqNZseOHRKJRKlUxsXFpaSk6HS6Y8eOtWqJoaGhfD5/2bJlHA5nx44dNsQM7KktKU2lLDyesoFcRSLVlZJaNSvzuhLeBdlsNlGJMJlMpaWlTCaTwWAQv5wNDQ24mr1nzx4L8zf/Ma+srGSz2Vwu13JgBoMB553U1FRyeVJSEkIoMDCQPCWuR+CaUVFREZPJZLFYxcXFxDT4OBeJRLW1tc0tkVJXMplMeLgk8gCcrV0vnMUqKyspE1u5kU0v60oikYiyRLxGy5YtIxf+/PPPHA5n4sSJFlbT1HxdCSF04sQJotBgMODzYvLQpLiuxGQy8fClWE1NDc62lMhbrCuZTKa6ujqEEJ/PtxAw6Bi2X4O7VnTmx1NfVt74ublkZ/OcsS+++AIhtGLFCvIQjEKhMCoqymg07t27F5ekpaXhARfJw1KbM28o4fP5kydPVqvVt2/ftvDBtLS0srIyHo9HOVNYsWKFUCjMysoyGo24hMFgpKamcjicTz75BFff9Hp9fHy8SCQiPhUXF4cQ2rp1K6XNy2Y2rxdm5UYmfPTRR5Qlzpo1y8fH59SpU5cvXyYKs7KyNBpNYGCgbaspkUhCQ0OJPxkMRnh4OEJIqVRSpgwLCyM3aeEaKELIPHLgRGw5gzOZGgtzj/6S++0TXZ2FiWwPCiGEEB75Ojg4mFI+YcIEhFBtbS3+s7CwECG0cOHCFmeoUCj27t2rVqurq6s1Gg1CCP9fUVExbNiw5j6FjwSxWIwbSshwg45SqSQODB6Pt2PHjr/85S9z585FCP31r38lnx5WVlYqlcqBAwcGBQW1GK31bFsvDG/kWbNmUcopGxlzd3efOnUqZcqhQ4cGBwd/+umnmZmZ+FOPHj3Kysrq06ePbadvCCFfX19KSZcuXRCp4Z9gvghvb2/0cgsAJ2VLVir46UjOma8sT/NE99CmeP7n3r17CKFBgwZRyidOnIgQ+uWXX/Cfjx49Qgi1eDUNDx6LEOJyuTweD5/06fV6nU5n+YM3b95ECGVkZGRkZDQ5gVqtJv9cR0ZG7t+/Xy6XM5nMDz/8kDylm5sb/r979+6WF2o9m9cLwxvZfHh0ykbGGhsbm0xzs2bN+vLLLzMzM6Ojoz08PLKysi5cuLBw4ULzFGalkSNHNllu/i3379+fUuLj44Ne/lYBJ2XLGVyfftxBQ0dbnqYXq59N8fxPz549EULE+RGhtLQUIeTl5YX/dHd3b3IysoyMjNjYWKFQWFRUVFNTU1BQkJ2dnZ2dTb6c1Bx8wrJt27bKZlB+2Ldt24YvOev1enx+RHj8+DGxXnbRlvXCrNzIWHOpf9q0abNmzcrLyzt16hRqWzt3azU0NFBK8K8IrjERmus+SrdupQCzJSt5+8yYHvTnUWN+Z2EaU5v7K+FDgtzFBnvy5AkiHdv4t/HKlSsWZnX+/HmE0Lp164hLV5h5O4U5Ho+HEHr06BG/GeQL80ql8h//+AdCaM+ePWw2e9OmTfn5+cS7Y8eOZbPZFRUV5itlWZ8+fVBTucP69cIJxXwOVm7kFv3xj39ECO3fv1+v16enpzOZTHLDUPu5evUqpQTnqR49ehAlPB6vV69e5AuyCKGCggL02zzb3CYCHc/G1u4hnj6y4HcnTA1rdoo2tyu99tprqKlmy6+//pp4F71sg0hLS7Pwu0d0kCMXFhYWWnMPB25z2bdvX4tNFUajccGCBTqdbuPGjVFRUUlJSUajcdGiReTAcLT79u1rcblk+IwPn6uSWb9evXv3RmbtRMjqjdyiwMBAgUCQlZW1fft2rVYbHh7eMeP0fvvtt5QSHPn06dOJEj6f/+TJE0qvAnxySv5qnj592rt37xcvXrRjuMA6tl+D82APlAW/Oz1wFcujiessbb8Gt3r1ai6Xm56eTr5hMiEhQS6X83i89evX4xJfX98lS5ZotdpFixaRf/PVajU+k0Iv2ym+/vprorVFqVQuXbrUmjBEIlFUVJRGo5k7dy6ltTU/P5+I7dmzZ3/+858VCsXKlSu3bNmCEAoLC3vvvfdUKtUHH3zw/PlzPFl8fDyDwcDdasizysrKspBVcStPeno6pU+T9es1btw4hNB3331HKbdyI1tj5cqVCCHcyIVfd4CSkpLNmzcTf6akpKSnp3O5XPIFWdyHYPPmzcQWlsvl5E9hPXv2HDJkSE1NTXMNiKDjtL1zQemV8we/jKL0V5JnftmqmTTZt/vkyZO4WUckEoWGhuJGZTabffbsWfJktbW1uCWFxWJJJJLw8HCJRMJgMCIjI/EEdXV1+ESMyWQGBgbKZDIWixUQEIAv9mdnZ1uOra6uDreSMJlMnASlUiluIZbJZHianTt3IoQCAgKuXr1KfPDGjRszZ85ECO3cuZMoTEpKwivF5/NDQ0MDAwPxrIjOROb9lYgOO2w2G5824netX6/y8nLcVZrL5eI5XLx4sVUbGbXU17mwsBCvSFhYmOXtSWiuvxJ53Zsrx7lm69atLBZLIBCEhobi01gmk0nu64S3Eg6MzWZLpVLcUSM+Pt58/09OTsaFxOm5lSsC7KsL/mFvC87A4ZwB/Gd63cPaW0Th4GEi/qiJ1s/kzp07JpOpb9++c+bMIQq9vLwiIiIePXp0//593B86NDQ0NTWV0ozSs2fPt99+m8vlGgwGpVL566+/stnsOXPmLF++nDho582b9+DBg/v371dUVPB4vIULF3711Vc6na5///4tdqthMplLliwRi8XPnj27e/curoIJBILly5f/9a9/7devn9FoPH78uFAoXLVq1eTJk4kP9u/fXywWNzQ0PHz4cMaMGd26dUMITZgwISIi4smTJ48fP75w4YJOp5swYcI777wzY8YMnDhUKtWjR498fX2J1XR3d//DH/7AZDJ79OjBZDLZbDZ+1/r16tevX0REhMlk6tatG4vFYrPZISEh+Fi1ciPfunVLKBRaaC0aPHjw6dOnKyoqVq1aNWnSJCu+c6TVaq9fvy4UCommca1W26NHD19fX8qNdebl+/fvV6lUH3/88dtvv11VVaVQKO7fv//mm28mJSUFBARQvr7w8PCamhqNRnP79u0JEyZs3br17bffvnXrllgsJq+RWCyWyWT4Uim+07CT3CZNN24mO93c/1h7rzD3aNHF4/jP1/x+Lwv+s13mDJyCRqMZOnQoQqimpqYDGpX8/f3lcnlRURElewIXYLfnK3mwB/oHv/u7wKhevXEXEniSSefy+eef6/X6yMjIjmnnBi7Mns9XcnN3nzgtnDtE+MPRv+kb6u04Z0BbCoUiPT39+vXraWlpTCYT3/ABQFvYMythQ0eIF6/aq7yWa/c5AxpSKBT4uptEIvnoo48oj5cCwAZ2a1cCnZNOp9NoNCwWy173G1tJrVbr9XrKs+uAa4CsBACgFxgPDgBAL5CVAAD0AlkJAEAvkJUAAPQCWQkAQC+QlQAA9AJZCQBAL5CVAAD0AlkJAEAvkJUAAPRih6e+2QV+timfz2/tczBUKlVCQgIeqLK1U8rlcvykWjxgkQXWTwkAaCPbnxmg1+uvXbumVCo1Gg1+LnW/fv2GDh06ZsyYAQMGtHZueAw1GwbGUKlUsbGxoaGhLT420HxKuVweGxvLZrPx41YtMJ9SpVKpVCqhUGg+mBoAoC1syUovXrz45ZdffvnlFzzGIUGr1VZUVOTn57/22muvvfaa+QiCruTzzz9PSEhITk6Gh6gCYF+tzkp6vT4rK8vCmEXPnj27cOHCjRv/3975hjT1vQH8LGes0pox8Tan7mbQ8l8ujRKSthzmdKsVBhuMMDBwmGSo1EiZEFIQmaBkb8IXSQ1aUU7YkCKhQl9sKLZ0lsq1qS0wsZy1cuH3xfl12ffeqXfTvuyn5/POh+fe+5xn2+M5z3nued6rVCp4bDYT4MHyfxV48n9o19bX14fJUheBWPcEl+3+8eNHR0cHkzZq09PTT548GRsbC9WwADdcpiPbapqg/tUGqhMTEwyba3s8HoIgKL2V/jMDCIJgaCdDfD4fQRB03wblkGDbeSLWB8FFJZvNNjg4yFB5ZmbGbrcz/JlpNBocx/07zbJYLNhtoq6uDsfx2NjY2NjYhISEpdp1+Xw+vV4vFosjIyNjY2M1Gg0livX29uI4rtFo6Nc6nc4zZ87gOB4ZGSkWi1taWigKTU1NOI6TTdNwHIfJ75qaGvwP/i3VCIKQy+XR0dEJCQnR0dHp6el3796l3FMqlbJYrO7ubpPJJBaLo6OjcRx/8OBBYmJicnLy8PAwRX9ycnL//v0CgWBgYGApN3Z3d7NYLKlU6vF4NBpNTEwMNCAnJ8fpdAbUz8nJ2bJlC47j0E6Ke+ENT506FfBB/vL6+noWi1VfX+90OnNzc+FwSJ+E5hCofOPGDdTSdkMRRFQaHR2FHUeZ8+7dO4aXuN1ugiDo5wpeunSpqakpOzu7urpaIpFMTEwolUr6ZA12qW1paeFyuSqVisPhGI3GnJwc/2+z1+sNOBkZHh6WSqVOp1OhUKjV6omJiYqKivPnz/vrzM7O+reolEgkcDNOJBJJ/kBuzz1//jw9Pd1qtWZnZ9fW1paVlbndbp1OF7B/5OPHjzUaDYfDqa6u1mq1GRkZRUVFY2NjFouFomm1WgcGBgoKCjIyMpZ3psfjkcvlr1+/VqlUlZWVIpGot7dXKpVSxl5fXy+VSh0Oh1qtNhgMpaWlBEEolUrY2y40oDPdbndJScmFCxfgEj4Eh2AYVl1dXVxc7PV69Xo9/f8EYj3DvHWcxWIxBE9DQ8PCwsKKN4d7W319faQEmicQCD58+EAKr1y5AgBQq9WkhExIZWZmulwuKJybm4PNCO/fv0/RpPdEBAAUFxeTRg4NDcFtNf8uj/QuiZWVlQCAtrY2+lhg5YHBYCAlQ0ND8ABZi8VCGTLFyMXFxY6ODgBAfn4+xW+w9+SjR48C+Y/qDZlMNjc3B4ULCwuwi2drayup2dPTAwDAMIx02uLi4tu3b7lcLofDIYV0py0lJ51ZVlZGsTwoh7DZbLPZTAphdMYwbJlRI9YZQcyV3r9/H0y4+x+/fv1aTXbJYDD4H1B/+fJlAIDNZqNrtrW1kcn1qKioq1evAgDevHmz4iM4HE5rayvsEAkAEIlE169fBwA0NDSEYHBnZ2d/f79AIKitrSWFIpEI2gMP3vdHpVJptVp/SWFhYUFBQVdXl/906dWrVxaLJTc3Vy6XMzGjtbUVdsQFALDZbNh6xH/eWlNTAwAoLS3135FIS0szGAxer5fScJw5GIbBruWkJFiHqNVqhUJB/llQUJCZmel2u1GOaePANCp9+fJlZmYmtGeEfCEAgNIHFdZY0r+gGIZRqijhfIfJV1kmk1FOwler1WCJ2LciDocDAKBSqfx/mQAAGHroa096yiYiIqKwsBAA4B+VrFbr/Py8XC7ftm3bijYIhUJKrxG63/r7+9lsdlFREfFv4Dp0fHwchMTp06cpy/BgHZKXl0eRLPWhI9YrTCsDYOI5NJbZO1uRgLXU9NwQpQE0CZPtngMHDlAkkZGRfD5/Zmbm06dPu3btYmToH/r6+gAAYrGYIt+8eTOXy52bm/v48WNiYiIpD1hxWlhYeOfOHYvFMjg4mJKS8vnzZ4vFEhcXR3a+Xp6lCtBJv7ndbuiZnJycgJojIyNMHkRn+/btFMmKDnG5XLDpLmRF4xHrHqZR6fv37yE/g1xKBMtSb5/Q5cw16dCHFhERsXnzZq/X+/PnTwZmUq8FgYL479+/fT5fREQEZcoQsDQ8OTm5sLCwsbHRYrGkpKRYrda+vr6SkhL6bzsgK3oDbgJgGAbXqnQoVi1VPEGXx8XFUSQrOgQqMDcese5hGpVW817Fpk1h/Q4w/aflcrkIgkhOTg7hrbeMjIyHDx/SV0AsFsvj8XA4HD6fz+Q+FRUVjY2NLS0tVVVV3d3dAICjR48Ga8xScDicmJiYTZs2nThxYufOnctows+dPuVkXty0Vg5BbByYxgsWixUfHx/aM/zn52FIZ2cnZXUAa4Wio6OXuQpOCujJDriWfPbsGUX+9OlTsPRKk45QKCwoKCAIwmg0Go1GLpcLs11rAo/HS01NnZqa6urqWl4T5sIJgqBUDDHZRoCslUMQGwemUSkiIgLH8RAewOFwkpKSQrjwP8PtdvsXQHo8Hr1eDwC4ePHiMlfBSQS91lGhUIhEov7+fv+qH7fbDTeb4MYTQ8rLywEAOp3O6/Vqtdq1bRJ77do1AEBFRQXMRvvjcDjIaBsVFSUUCqenp/135fr7+/09tjxr6BDEBiGI9+BSUlLGxsampqaYX8JisfLz88N8BXf48OG6urrx8fG8vLzZ2dl79+7ZbLa0tDTKhj0FhULB5XLb29unp6dhhDp58iTcaWpublYqlTU1NXa7/dChQ5OTkyaTiSAIlUoFa44Ykp2dnZWVZbfbeTze2bNnVzvOfyORSCorK5uamsRisVarTU1NZbPZo6OjNputt7f35cuXZMWAwWA4d+6cTqd78eLF3r17R0dHjUajSqUymUxMHrSGDkFsEIKISnw+PysrK6iolJ2dTd/hYshSOZ01P+Ho+PHjVVVVOp2OfAdCIpGYzWZKWpoCj8czm811dXUOh8NqtQIAkpKS4EksMpmsp6dHp9OZTCaj0QiVb968CQsvSTAMEwqFy2wtYRimUCjsdvuePXsOHjzIZCwcDkcoFNJnVQHlt2/fLioq0uv17e3t5AJNIBDAcnBSraSkZHp6Wq/Xw7EIhcLm5ubMzEybzeafbeRyuUt9NKt0yIqOQqwzWItBvkZvNpsZvkQSHx+vVCr/j44fcjqdTqczMzNzrQKf1+t1OBwYhjE/O4GCUqns7Oz82+el+Hw+p9Pp8/kEAgGldIuiAxd0IT9o9Q5BbASCjkpfv36FhyvNz88vo5aRkZGVlRXmGaUwZ2RkZN++fVwu1+VyrW1SCYEIZ4I+X2nHjh3Hjh3j8/k2my1grR2Px4MJkcjIyLWwcMPh9Xp7e3vdbvetW7d8Pl95eTkKSYgNRdBzJRKfzzcyMjI4OPjt27fZ2dmtW7dGRUXt3r1bJBKhgrfVQBAEud0pk8nMZjOKSogNRehRCfGX8Hg8JpOJzWYfOXIENS9AbEBQVEIgEOFFWFcSIRCIDQiKSggEIrxAUQmBQIQXKCohEIjwAkUlBAIRXqCohEAgwgsUlRAIRHiBohICgQgvUFRCIBDhBYpKCAQivEBRCYFAhBf/ADKMV9E/euAEAAAAAElFTkSuQmCC"
+ }
+ },
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The network looks as follows:\n",
+ "\n",
+ "![image.png](attachment:image.png)\n",
+ "\n",
+ "The postsynaptic potentials look as follows:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "code_folding": [
+ 0
+ ]
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Running active dendrite simulation!\n",
+ "Running experiment type: ff\n",
+ "\n",
+ "Oct 16 18:53:40 Install [Info]: \n",
+ " loaded module nestml_53df85df034a42159911f33aede126f7_module\n",
+ "### simulating network\n",
+ "Running experiment type: dendrite\n",
+ "### simulating network\n",
+ "Running experiment type: ff_dendrite\n",
+ "### simulating network\n"
+ ]
+ }
+ ],
+ "source": [
+ "def run_active_dendrite_simulation(params):\n",
+ " print(\"Running active dendrite simulation!\")\n",
+ " data = {}\n",
+ " for i, name in enumerate(['ff', 'dendrite', 'ff_dendrite']): \n",
+ " print(\"Running experiment type: \" + name)\n",
+ " # init kernel\n",
+ " seed = 1\n",
+ " nest.ResetKernel()\n",
+ " nest.Install(module_name)\n",
+ " nest.set_verbosity(nest_verbosity)\n",
+ " nest.SetKernelStatus({\n",
+ " 'resolution': params['dt'],\n",
+ " 'print_time': params['print_simulation_progress'],\n",
+ " 'local_num_threads': n_threads,\n",
+ " 'rng_seed': seed\n",
+ " })\n",
+ " \n",
+ " data[name] = {}\n",
+ " \n",
+ " #############################\n",
+ " # create and connect neurons\n",
+ " # ---------------------------\n",
+ " \n",
+ " # create excitatory population\n",
+ " exc_neuron = nest.Create(params['soma_model'], params=params['soma_params'])\n",
+ " \n",
+ " # create inhibitory population\n",
+ " inh_neuron = nest.Create(params['inhibit_model'], params=params['inhibit_params'])\n",
+ " \n",
+ " # connect inhibition\n",
+ " nest.Connect(exc_neuron, inh_neuron, syn_spec=params['syn_dict_ie'])\n",
+ " nest.Connect(inh_neuron, exc_neuron, syn_spec=params['syn_dict_ei'])\n",
+ " \n",
+ " ######################\n",
+ " # Input stream/stimuli\n",
+ " #---------------------\n",
+ " input_excitation = nest.Create('spike_generator', params={'spike_times': [params['soma_excitation_time']]})\n",
+ " dendrite_excitation_1 = nest.Create('spike_generator', params={'spike_times': [params['dendrite_excitation_time']]})\n",
+ " inhibition_excitation = nest.Create('spike_generator', params={'spike_times': [10.]})\n",
+ " \n",
+ " # excitation soma feedforward\n",
+ " if name == 'ff' or name == 'ff_dendrite':\n",
+ " nest.Connect(input_excitation, exc_neuron, syn_spec={'receptor_type': 1, \n",
+ " 'weight': params['syn_dict_ex']['weight'], \n",
+ " 'delay': params['syn_dict_ex']['delay']})\n",
+ "\n",
+ " # excitation dendrite \n",
+ " if name == 'dendrite' or name == 'ff_dendrite':\n",
+ " nest.Connect(dendrite_excitation_1, exc_neuron, syn_spec={'receptor_type': 2, \n",
+ " 'weight': params['syn_dict_edx']['weight'], \n",
+ " 'delay': params['syn_dict_edx']['delay']})\n",
+ " \n",
+ " # record voltage inhibitory neuron \n",
+ " vm_inh = nest.Create('voltmeter', params={'record_from': ['V_m'], 'interval': 0.1})\n",
+ " nest.Connect(vm_inh, inh_neuron)\n",
+ " \n",
+ " # record voltage soma\n",
+ " vm_exc = nest.Create('voltmeter', params={'record_from': ['V_m'], 'interval': 0.1})\n",
+ " nest.Connect(vm_exc, exc_neuron)\n",
+ " \n",
+ " active_dendrite_exc_mm = nest.Create('multimeter', params={'record_from': ['active_dendrite_readout', 'I_dend'], 'interval': 0.1})\n",
+ " nest.Connect(active_dendrite_exc_mm, exc_neuron)\n",
+ " \n",
+ " # record spikes\n",
+ " sd = nest.Create('spike_recorder')\n",
+ " nest.Connect(exc_neuron, sd)\n",
+ " \n",
+ " # record inh spikes\n",
+ " sd_inh = nest.Create('spike_recorder')\n",
+ " nest.Connect(inh_neuron, sd_inh)\n",
+ " \n",
+ " print('### simulating network')\n",
+ " nest.Prepare()\n",
+ " nest.Run(100.)\n",
+ " \n",
+ " voltage_soma = nest.GetStatus(vm_exc)[0]['events'] \n",
+ " active_dendrite = nest.GetStatus(active_dendrite_exc_mm)[0]['events']\n",
+ " voltage_inhibit = nest.GetStatus(vm_inh)[0]['events'] \n",
+ " spikes_soma = nest.GetStatus(sd)[0]['events'] \n",
+ " spikes_inh = nest.GetStatus(sd_inh)[0]['events'] \n",
+ " \n",
+ " data[name]['exc'] = voltage_soma \n",
+ " data[name]['exc_active_dendrite'] = active_dendrite \n",
+ " data[name]['inh'] = voltage_inhibit\n",
+ " data[name]['spikes_exc'] = spikes_soma\n",
+ " data[name]['spikes_inh'] = spikes_inh\n",
+ "\n",
+ " return data\n",
+ "\n",
+ "data = run_active_dendrite_simulation(p)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/AAAAGCCAYAAABHKijtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOydd3gUVRfG382mkt4LhARCTwihBZASqtQIUkIRTBAQFEUiRUDFRBSQIorAJygQiiBFCEUBpTchtAASSkIIJaSSQnrZvd8fYYfdFEjZzOzsnt/zzLMz9965c+47m82cueVIGGMMBEEQBEEQBEEQBEFoNHpCG0AQBEEQBEEQBEEQxOshB54gCIIgCIIgCIIgRAA58ARBEARBEARBEAQhAsiBJwiCIAiCIAiCIAgRQA48QRAEQRAEQRAEQYgAcuAJgiAIgiAIgiAIQgSQA08QBEEQBEEQBEEQIoAceIIgCIIgCIIgCIIQAeTAEwRBEARBEARBEIQIIAeeIAiCIAiCIAiCIEQAOfAEQRAEQRAEQRAEIQLIgScIgiAIgiAIgiAIEaAWB37KlCmQSCTctnjxYnVUSxAEQRAEQRAEQRDECySMMVaTCoqKiuDs7Ixnz55xaa1atUJkZGRNbSMIgiAIgiAIgiAI4gU17oH/559/VJx3ALh+/Tru3LlT06oJgiAIgiAIgiAIgnhBjR3433//ndsfNWpUuekEQRAEQRAEQRAEQdSMGg2hz8/Ph4ODA7KysmBvb4+bN2+iXr16KC4uRtOmTakXniAIgiAIgiAIgiDURI164A8ePIisrCwAwJAhQ+Do6Iju3bsDAO7evYtr167V2ECCIAiCIAiCIAiCIGrowCsPkx8+fLjKZ+l8giAIgiAIgiAIgiCqT7WH0GdlZcHBwQH5+fmwsbFBUlIS9PX1kZKSAmdnZ8hkMri5ueHBgweQSCTqtpvQEuLi4rBu3Tp4enrCzMxMaHMIgiAIgiAIghAx2dnZuHXrFt5//324u7sLbY7a0a/uieHh4cjPzwcApKWlwcDAoEyZhw8f4t9//8Ubb7xRfQsJrWbdunVYtGiR0GYQBEEQBEEQBKFlLFy4UGgT1E61Hfjt27dXqtzvv/9ODjxRIZ6engCAuXPnokOHDgJbo1ts2bIF48aNE9oMnULMmh87dgwpKSmwt7dHr1691Fr3559/jlu3bsHT0xPffvutWusWs+ZihTTnH9Kcf0hzYSDd+UeMml+8eBGLFi3i/Aytg1WD1NRUpq+vzwAwc3Nz9tNPP6lsy5cvZwAYAObk5MRkMll1LkPoAOHh4QwAi/D0ZMzPr2yBkSNL0hctUk2/dq0k3c+vZF+ZRYtK0keOLFuf4pyNG1XTDx16mZeQoJr3yScl6Z98opqekPDynEOHVPM2bnyZR22iNmlBm2J9fVlISAjbqGy/mtrk5+fHHAF2zdKS7hO1idpEbaI2UZuoTdSmGrXp7/nzGQAWHh5e9ppaQLV64Hfv3o3i4mIAwJtvvomPPvqoTJktW7YgMjISiYmJOHHihNp7bAjtos6tW+VnXLgAPHwIlJ6/kpEBnDr1cl+ZO3dK8tzcytanOOdFtASOxMSXeS+mhnBERr7MUyY//2V6UJBqXlxc+ecA1CYF1KYSRNIme1vbsvWpsU3GAHwyM0vy6D5RmwBqk4JKtOnmzZto+cMPWtWmMmhYm7Y9fYoxynZoQZvEcJ/8/f1x4MABrWqTChrYJhXNRdImqbd32XwtoloOvPLw+bfeeqvcMv7+/oiMjARQMoyeHHjiVeR6egJ2dmUzOnYs+ZFo1kw13coK8PN7ua9Ms2YleU5OZetTnFP6h8fJ6WWesbFqno+P6qcCY+OX55S+lrv7y7zSUJtKoDa9tEkEbUrJyytbnxrblA8g0tISPj4+dJ+oTSVQm17a9Jo2tdTCNmn6fRpT2unRgjaJ4T5xjiSgNW1SQQPbpKK5SNoks7Yuey0totqr0BOEOti3bx+GDBmC8PBwDB48WGhzdIqAgADs3LlTaDN0CjFrHhYWhocPH8LNzQ1BpR9ca0j37t1x6tQp+Pn54eTJk2qtW8yaixXSnH9Ic/4hzYWBdOcfMWqu7f5FjeLAEwQhXsLCwoQ2QecgzfmHNOcf0px/SHP+Ic2FgXTnH9Jc86j2KvQEQYib5cuX48svvxTaDJ2CNOcf0px/SHP+Ic35R12ay+VyJCUloaCgAHK5XA2WaTdRUVFo0aKF0GboFJqkuZ6eHoyMjODo6Ag9Pd3th9bdlhOEjtO3b1+hTdA5SHP+Ic35hzTnH9Kcf9ShuVwux6NHj5CRkYHCwkLQrNbX06RJE6FN0Dk0RXPGGAoLC5GRkYFHjx7VyguvkydPQiKRlLtduHBBpez58+fRpUsX1KlTB05OTpg2bRqys7PVblN5UA88wRvJyclISUlRSXv06JFA1hDx8fFCm6BzkOaqREdHY8WKFUhPTy+T9++//yI+Ph4DBgxAnTp1qn0N0px/SHP+Ic35Rx2aJyUlIS8vDzY2NnBwcIBEIlGDZdpNeno6rLV8gTJNQ5M0Z4whOTkZaWlpSEpKgrOzc61cZ9q0aWjfvr1KWqNGjbj9yMhI9OrVC82bN8f333+PJ0+eYNmyZYiOjsahQ4dqxSZlaBE7gjdCQkIQGhpabp6trS3MzMzQtGlTrFmzBm3btoWLiwseP36MrKwstGnTBs+fP0dubi5GjhwJb29vfPbZZ7C1tUVmZiaePn0KR0dH2NraIjk5GStXrsS5c+cQHh4OY2Nj2NraIiIiAubm5nB1dcWTJ08QFRWFwMBAxMbGori4GH5+fhg/fjwCAgLg6OiIxMREpKWlwcPDA/r6+sjIyMCMGTNQWFiI1atXw9zcHBKJBHfv3oWNjQ2cnJyQkJCAAwcOYOXKlbhw4QL09PQ0tk05OTlgjGlVmzT9PpmbmyM7O1uUbTpw4ACOHj0KfX19uLq61vg+paSklHHcTUxMkJubC2tra+jr6yM7Oxvz58/HtWvXqt0mqVQKiUSi8989PtuUm5uLtm3balWbNP0+JSQk4IsvvtCqNmn6fXrw4AGio6Nr1KaZM2eiW7duaNeuHSIjI2FgYICioiI0atQIycnJyMnJAQAYGxujfv36uH37NgwMDFBYWIg2bdogKioKMpkMcrkcNjY2MDExwZMnT6Cvrw+ZTIZWrVohMjIS+vr6KC4uhqurK7Kzs5GRkQE9PT3o6+ujefPmuHr1KgwNDVFYWAgvLy88ePAABQUFAAAzMzPY2dkhNjYW+vr6KCoqQuvWrXHz5k1IJBIUFxfDyckJcrkcKSkp0NPTg0QigZeXF65du6b2NtWtW5c71pY2afp9Mjc3R2Jiosa06caNGygoKMDRo0chlUrL/Y0wMzNDTk5OlRexO3nyJHr06IFdu3Zh+PDhFZYbMGAAIiMjcefOHVhYWAAAfv31V0yaNAlHjhzBm2++WelrVgdy4EVGdnY27ty5g9TUVEgkEtjZ2aFJkyYwNzcX2rTXUl4P/PHjxzFt2jStXSVSk4mJiVF5m0jUPmLWPDIyEhkZGbCysioJ9VYDzp8/j759+6oMNfvqq6/g7u6OoKAgPHv2DKtWrQIA2NjY4OOPP672tcSsuVghzfmHNOcfdWgeGxsLxhg8PDzUZJX2k5+fD+PSYcWIWkUTNb9//z4kEgkaNmxYbn51V6FXduD79u0LExMT6OurDlh//vw5bG1tERwcjCVLlnDphYWFsLW1xciRI/Hrr79Wr2GVhObAi4AHDx4gJCQErVu3hrW1NTp06ICBAwdiwIAB8PX1hY2NDXx8fBASEoLY2Fihza0QBwcHeHp6qmz169cX2iydZfXq1UKboHOIWXMfHx907969xs77rVu3MGjQIBXnvU6dOggJCeHC0xUXF3N5Uqm0RtcTs+ZihTTnH9Kcf9SlOQ2brxqlO4KI2kcTNa/tv5vx48fDwsICxsbG6NGjBy5fvszl3bx5E8XFxWjXrp3KOYaGhvDx8cG1a9dq1TaA5sBrNFFRUZg/fz727t0LKysrdO/eHSNGjEDDhg1hbW0NxhjS09Px4MEDXLlyBatWrcKCBQvw9ttvY8GCBWjevLnQTSA0mBUrVghtgs6h65o/ffoUffv25YbO29vbIyUlRcVhB1Qd+NJvvquKrmsuBKQ5/5Dm/EOaC4Orq6vQJugcYtb80aNHuHXrlkqavb09HBwcyi1vaGiIYcOGYcCAAbCzs0NUVBSWLVuGrl274vz582jdujUSEhIAoNz5987Ozjhz5oz6G1IaRmgs+vr6bPDgwezQoUOsqKjoteWLiorYoUOH2ODBg5mBgQEPFtac8PBwBoDNnz+fnTx5ki1ZsoQ9e/aMvfvuu4wxxgYNGsQYY2z69OksOjqarV+/nu3Zs4ddvHiRff311ywnJ4eNGDFCpezcuXPZjRs32G+//cZ+++03duPGDTZ37lyVMiNGjGA5OTns66+/ZhcvXmR79uxh69evZ9HR0Wz69OkqZd9991327NkztmTJEnby5El26NAhtmrVKvbkyRM2efJklbKTJ09mT548YatWrWKHDh3S6Da9+eabWtcmTb9PgwYN0ro2VfY+DRgwgHXu3JkBYABY//792bhx47hj5Tb16tWLhYSEsLZt27Jly5bVqE39+/en7x7PberUqZPWtUnT71Pz5s21rk2afp+cnZ1r3KZz586x0aNHa0ybxHCf7t27p3Vt0vT7FBERoXFtunLlCvvss88qbFO7du2454vS21dffcWqQnR0NDMxMWF9+/ZljDG2efNmBoBdvHixTNlx48YxS0vLKtVfHWgOvAZz+/btavei37lzB82aNVOzReqnunNUCIIQF59++inXY/Xee+/h119/xddff42QkBAAgEwm42K6RkdHY9u2bQAAd3d3BAYGCmIzQRBEbaKY9ljRPF6iagQFBeHkyZOIi4sT2hSilnnd347Cv1i5ciV69uypkveqHviKGD16NPbs2YPc3Fzs3bsXI0aMwOnTp9G1a1eVcgEBAThz5gzXS19b0Bx4DaZ58+bVjnEoBuedEBZyivhHVzX/+++/Oee9devWWLVqFSQSCQwMDLgyRUVF3H5hYSG3X9Mh9LqquZCQ5vxDmvMPaS4MDx48qHTZ3NxchISE4OTJk9W+3vnz5xESEoKMjIxq1yF2qqK5plG/fv0y629V1XkHSqYRFBYWIicnhxs6X56TnpCQABcXlxrb/TrIgddw6tati+DgYFy6dEloUwgtg+bv8Y8uav78+XNMnDgRQElImN27d8PExASAqnOuPO9d2YGv6SJ2uqi50JDm/EOa8w9pLgyvmo/9yy+/4O7du9xxbm4uQkNDa+zAh4aG6rQDL+Y58OoiNjYWxsbGMDMzg5eXF/T19VUWtgNKnl0iIyNrvNhvZSAHXsNp2LAhVq5ciY4dO6JJkyb4+uuvERMTI7RZhBawfv16oU3QOXRR89mzZ+Px48cAgKVLl6oMd+OjB14XNRca0px/SHP+Ic2FITU1tcI8AwMDGBkZ8WhN9WCMIS8vT2gzKs2rNFdGETtezJS34v7169exf/9+vPnmm9DT04OlpSV69+6NrVu3Iisriyu3ZcsWZGdnY8SIEbVuJznwGs65c+cQGxuLb775BsbGxggJCUHTpk3RoUMH/PTTT0hOThbaREKk+Pr6Cm2CzqFrml++fBlr164FAPTs2RPvv/++Sj4fPfC6prkmQJrzD2nOP6T564mPj8d7770HR0dHGBkZwdPTExs2bODy8/Ly0KxZMzRr1kzFoU1LS4OzszPeeOMNyGQyLv3QoUMYPnw4zM3NYWFhgfbt23PrpQAlc+Dd3d0BAHFxcbC3twcAhIaGQiKRQCKRcOuu3LhxA0FBQWjYsCGMjY3h5OSE9957D8+ePePqCwkJwaxZswAADRo04OpQzLEvLi7GggUL4OHhASMjI7i7u2PevHkoKChQ0cHd3R2DBg3CkSNH0K5dO5iYmGDt2rXw8/NDq1atytWuadOm6Nu37yv1VdR79uxZ+Pr6wtjYGA0bNsTmzZvLlM3IyMD06dPh6uoKIyMjNGrUCN99953KVN2TJ09CIpGUGbGQmpoKiUSCsLAwFa3NzMxw//59DBgwAObm5njnnXcAlDjyM2bM4K7VtGlTLFu2DKWXXZNIJPjoo48QHh4OLy8v7jty+PDhV7a7Nhk5ciQGDhyIb7/9Fr/88guCg4PxxhtvoE6dOli8eDFX7ttvv0VaWhr8/Pzw888/44svvsBHH32EN998E/369at1O8mBFwFubm6YO3cubty4gRs3bmD27NlISUnBJ598gnr16qF///7YunWrVrz5IvhDTG9/tQVd0pwxhunTpwMo6RVZu3Ytt0idgop64JX3S59TVXRJc02BNOcf0px/SPNXk5SUhI4dO+Lo0aP46KOP8OOPP6JRo0aYMGECfvjhBwCAiYkJNm3ahJiYGHz++efcuVOnTkVmZibCwsK4l7hhYWEYOHAg0tPTMXfuXCxevBg+Pj4VOnv29vb43//+BwB4++23sWXLFmzZsgVDhw4FAPzzzz+IjY3F+PHj8dNPP2HUqFH4/fffMWDAAM7RHDp0KEaPHg2gZMqEog7Fi4GJEydi/vz5aNOmDVasWAE/Pz8sWrQIo0aNKmPP3bt3MXr0aPTp0wc//vgjfHx8MG7cONy4cQP//fefStlLly7h3r17GDt27Gt1jomJwfDhw9GnTx8sX74c1tbWCAoKUgmdlpubCz8/P2zduhXvvvsuVq5cic6dO2Pu3Ln49NNPX3uNitbjKi4uRt++feHg4IBly5Zh2LBhYIzhrbfewooVK9CvXz98//33aNq0KWbNmlXutc6ePYsPP/wQo0aNwpIlS5Cfn49hw4apvEjhkyFDhiA1NRXff/89PvzwQ+zYsQNDhw7F5cuXVRYWb9OmDY4ePQoTExMEBwdj3bp1mDBhAnbv3s2PobW+zj1Ra5w9e5Z9+OGHzMHBgenp6TFTU1MuHIlYUISRCw8PF9oUnWPVqlVCm6Bz6JLmO3bs4EK2zJo1q9wyv/zyC1fm0aNHXPqhQ4dYSEgICwkJYXv27KmRHbqkuaZAmvMPac4/6tD8/v377P79+2qwRvOYMGECc3Z2ZqmpqSrpo0aNYpaWliw3N5dLmzt3LtPT02OnT59mu3btYgDYDz/8wOVnZGQwc3Nz1qFDB/bw4UOV+uRyObcfGBjI3NzcuOOUlJQKw4YpX1/B9u3bGQB2+vRpLm3p0qUMAHvw4IFK2cjISAaATZw4USV95syZDAA7fvw4l+bm5sYAsMOHD6uUzcjIYMbGxuyzzz5TSZ82bRozNTVl2dnZZWxURlGvsr3JycnMyMiIzZgxg0tbsGABMzU1Zffu3VM5f86cOUwqlXL/f0+cOMEAsBMnTqiUu3TpEgPANm7cyKUFBgYyAGzOnDkqZRXP9d98841K+vDhw5lEImExMTFcGgBmaGioknb9+nUGgP3000+vbPvr/na03b+o2eRCQlA6d+6Mzp0746uvvsLkyZOxb98+7NixQ2U4EUFUxJAhQ4Q2QefQFc2LioowZ84cACW9IMo9K8pUZg58dSNxKNAVzTUJ0px/SHP+qW3Np0+fjsjIyFq9RmXx8fHhes0rA2MMf/zxBwICAsAYU5lD3bdvX/z++++4evUqOnfuDKBkqPrBgwcRGBiI7Oxs+Pn5Ydq0adw5//zzD7KysjBnzhw4OTmpXEsikVSrTYrFVAEgPz8f2dnZ6NixIwDg6tWrZcKDleavv/4CgDK9yjNmzMCyZcvw559/okePHlx6gwYNygyJt7S0xODBg7F9+3YsWrQIEokEMpkMO3bswJAhQ2BqavradrRo0ULFVnt7ezRt2pQLswYAu3btQteuXWFtba1yL3r37o3Fixfj9OnT3PD38rCwsKgw74MPPlA5/uuvvyCVSlXuH1Ciy+7du3Ho0CF89NFHKjZ4eHhwx97e3rCwsFCxnygLOfAiJS8vD/v27cO2bdvw999/o7CwEPXq1eOG+hDE61iwYAF+/vlnoc3QKXRF861bt3JhZ0JCQmBpaVluuYrmwCs788rzH6uDrmiuSZDm/EOa809tax4ZGYlTp07VWv21SUpKCjIyMrBu3TqsW7eu3DLKazgZGhpiw4YNaN++PYyNjbFx40YVx/z+/fsAAC8vLyQkJMDNza3GNqalpSE0NBS///57mfWkMjMzX3v+w4cPoaenh0aNGqmkOzk5wcrKCg8fPlRJb9CgQbn1vPvuu9ixYwfOnDmDbt264ejRo0hKSsK4ceMq1Y769euXSbO2tkZ6ejp3HB0djRs3bnBD/0vzuvW0KsrX19dHvXr1VNIePnwIFxcXmJubq6Qrhp+X1qUy9hNlIQdeRMhkMhw5cgTbtm3D/v37kZ2dDUtLS4wbNw7vvPMO/Pz8qv0mktA96GGPf3RB8+LiYnz77bcASsJgTpgwocKyfPTA64LmmgZpzj+kOf/UtuZ8hKKqLFW1RfG7PXbsWAQGBpZbxtvbW+X4yJEjAEp6w6Ojoyt0eNXhvANAQEAAzp8/j1mzZsHHxwdmZmaQy+Xo169flf7vVPa5W7nHX5m+ffvC0dERW7duRbdu3bB161Y4OTmhd+/elaq3ooVemdKCcXK5HH369MHs2bPLLdukSRMAFbdFEfe8NEZGRjVep6Yy9hNlIQdeBJw9exbbtm3D7t278ezZMxgaGmLAgAF45513MGjQIBgaGgptIiFC/P39ceDAAaHN0Cl0QfPffvuN6y2ZM2fOK0P6VGYV+po68LqguaZBmvMPac4/ta15VYasaxr29vYwNzeHTCarlCN648YNfP311xg/fjwiIyMxceJE3Lx5kxu9pRhi/d9//4ExhsaNG1fKjooc0vT0dBw7dgyhoaGYP38+lx4dHV3pOtzc3CCXyxEdHa2yuFlSUhIyMjIq/aJBKpVizJgxCAsLw3fffYfw8HBMmjSpxhFYlPHw8EB2dvZr74W1tTUAlIl5f+7cuUpfy83NDUePHkVWVpZKL/ydO3e4fKLm0Cr0Go67uzv8/Pywdu1aeHp6Yu3atUhISMAff/yBoUOHkvNOVBt62OMfbdecMYYlS5YAKHljP3HixFeW56MHXts110RIc/4hzfmHNK8YqVSKYcOG4Y8//iizwjqgGmu7qKgIQUFBcHFxwY8//oiwsDAkJSUhODiYK/Pmm2/C3NwcixYtgqurq0pdr+qprVOnDoCyDqnCOS59bnkvTRTz0EvXMWDAgHLP+f777wEAAwcOrNCu0owbNw7p6emYPHkysrOzK7X6fFUICAjAv//+y41yUCYjI4N7ge7m5gapVIrTp0+rlNm/f3+lrzVgwADIZDKsWrVKJX3FihWQSCTo379/NVpAlIZ64DUcCwsLLFq0CGPGjCkzz4QgasKUKVNo2CXPaLvmx44dQ1RUFICSBZiMjY1fWb4yPfA1nQOv7ZprIqQ5/5Dm/EOav5rFixfjxIkT6NChAyZNmoQWLVogLS0NV69exdGjR5GWlgYA+OabbxAZGYljx47B3Nwc3t7emD9/Pr744gsMHz4cAwYMgIWFBVasWIGJEyfCx8cHgYGBsLa2xvXr15Gbm4tNmzaVa4OJiQlatGiBHTt2oEmTJrCxsYGXlxe8vLzQrVs3LFmyBEVFRahbty7+/vtvbu0WZdq2bQsA+PzzzzFq1CgYGBjA398frVq1QmBgINatW4eMjAz4+fkhIiICmzZtwpAhQ1QWsHsdrVu3hpeXF3bt2oXmzZujTZs21VC8YmbNmoX9+/dj0KBBCAoKQtu2bZGTk4ObN29i9+7diIuLg52dHSwtLTFixAj89NNPkEgk8PDwwMGDB/HkyZNKX8vf3x89evTA559/jri4OLRq1Qp///039u3bh+nTp6ssWEfUAOEWwCcI7Q/zoMk8efJEaBN0Dm3X3N/fnwFgJiYm7NmzZ68t/88//3Bh5JTD4KxYsYILI7dhw4Ya2aTtmmsipDn/kOb8ow7NtTmMHGOMJSUlsalTpzJXV1dmYGDAnJycWK9evdi6desYY4xduXKF6evrs48//ljlvOLiYta+fXvm4uLC0tPTufT9+/ezTp06MRMTE2ZhYcF8fX3Z9u3bufzSYeQYY+z8+fOsbdu2zNDQUCWk3JMnT9jbb7/NrKysmKWlJRsxYgR7+vRpuWHnFixYwOrWrcv09PRUQsoVFRWx0NBQ1qBBA2ZgYMBcXV3Z3LlzWX5+vsr5bm5ubODAga/UasmSJQwAW7hw4WtUfX29fn5+zM/PTyUtKyuLzZ07lzVq1IgZGhoyOzs79sYbb7Bly5axwsJCrlxKSgobNmwYq1OnDrO2tmaTJ09m165dKzeMnKmpabl2ZWVlseDgYObi4sIMDAxY48aN2dKlS1VC/jFWEkZu6tSp5bYrMDDwlW3X9TByEsZolQCxcfr0acTGxiI9Pb3M8B+JRKIy7EjT2bdvH4YMGYLw8HAMHjxYaHN0itWrV2Pq1KlCm6FTaLPm9+/fR+PGjcEYw/vvv4+1a9e+9pyTJ09yvRTHjx/n9pcsWYK8vDwAQL169V65EN7r0GbNNRXSnH9Ic/5Rh+aKUFkNGzZUh0k6QXJyMhwcHIQ2Q+38+OOPCA4ORlxcXLkrswuJJmr+ur8dbfcvaAi9iIiMjMTIkSMRExNT4ZwfsTnwhHDQMCb+0WbN16xZw/0ulY7/WhHlzYFnjKl1Drw2a66pkOb8Q5rzD2kuDK9aGFWsMMawfv16+Pn5aZzzDmin5mKHHHgRMXHiRCQnJ+Pnn39Ghw4dKoytTBCVoaKQJkTtoa2aFxUVYcuWLQCA7t27w9PTs1LnKTvwijnwOTk5KvPeazoHXls112RIc/4hzfmHNBeGmoYt0yRycnKwf/9+nDhxAjdv3sS+ffuENqlctElzbYHuiIi4desW5s2bh0mTJsHb2xtubm7lbgRRGSIiIoQ2QefQVs3/+usvblXh9957r9LnKS9ip+iBT05OVilT0x54bdVckyHN+Yc05x/SXBhycnKENkFtpKSkYMyYMdi1axfmzZuHt956S2iTykWbNNcWqAdeRDRu3LjCeJQEUVVqMq+YqB7aqnlYWBgAwMzMDEOHDq30eeX1wKvbgddWzTUZ0px/SHP+Ic2Fwc7OTmgT1Ia7u/srw+BpCtqkubZAPfAiIiQkBKtXr0Z8fLzQphBaAK2VwD/aqHlKSgoOHjwIoCTWrCJmbmUorwdeOT4wUHMHXhs113RIc/4hzfmHNBeGx48fC22CzkGaax7UAy8ihg4divz8fDRt2hS9evVCvXr1IJVKVcpIJBL8+OOPAllIiImK4qYStYc2ar59+3au9zwoKKhK55bXA1/aga/pHHht1FzTIc35hzTnH9JcGBo0aCC0CToHaa55UA+8iDh16hQ++OAD5Obm4sCBA/jf//6HVatWldkIojL4+/sLbYLOoY2a79y5E0DJUMAuXbpU6Vw+euC1UXNNhzTnH9Kcf0hzYYiOjhbaBJ2DNNc8yIEXER9//DEsLCxw5MgRZGRkQC6Xl9lq2ltF6A4HDhwQ2gSdQ9s0j4+Px7lz5wAAI0aMqPIaHaXDyOXl5SE/P1+lTE0deG3TXAyQ5vxDmvMPaS4MjRs3FtoEnYM01zzIgRcRMTExmDVrFvr06QMLCwuhzSFEDs3f4x9t03zPnj3c/vDhw6t8vnIPfHFxMTIyMrhjc3NzADQHXoyQ5vxDmvMPaS4MNB+bf0hzzYMceBHh6emJzMxMoc0gtISpU6cKbYLOoW2a79q1CwBQv359tG/fvsrnl+6BT09P545tbW0B1HwOvLZpLgZIc/4hzfmHNBcGe3t7oU3QOUhzzYMceBGxbNkyrF27lmKPEmrh9OnTQpugc2iT5gkJCTh79iyAkt736oS4LN0DX54DX9MeeG3SXCyQ5vxDmvMPaS4M2dnZQpugc5Dmmgc58CJi+fLlMDc3R6dOndCyZUsMHDgQb731lso2ePBgoc0kRIK1tbXQJugc2qT5/v37ufi11Rk+D5TtgU9LSwMAmJiYoE6dOgBq7sBrk+ZigTTnH9Kcf0jzVxMWFgaJRIK4uLhqn3v58uUyeaWjL3Xv3h3du3fnjk+ePAmJRILdu3e/9jpBQUFwd3evsn26RmnNCeGhMHIi4saNG5BIJKhfvz6ys7MRFRVVpkx1esEI3aRu3bpCm6BzaJPmf/75JwDAwcEBHTp0qFYdFc2Bt7a2hp5eyftlxhgYY9X+bdMmzcUCac4/pDn/kObCYGhoWGt15+bmYsmSJWVeCug6tak5UT3IgRcR1XmLSRAVceTIEfj6+gpthk6hLZrn5+fj2LFjAID+/ftzznZVKR1GTjGE3srKSqVOuVxe7R4AbdFcTJDm/EOa8w9p/mrGjRuHUaNGwcjISK31ZmZmwtTUlDv++++/q13XL7/8ojLKKzc3F6GhoQBADrwSpTUnhIeG0BOEjjJjxgyhTdA5tEXz06dPIzc3FwAwcODAatcjkUg4x7yoqAhZWVkAAAsLCxWHvSbD6LVFczFBmvMPac4/pPmrkUqlMDY2VvvIUEdHR5VjQ0PDavcQGxgYqP0FQ3nk5OTU+jVqk9KaAyUv8ms6xY2oPuTAazA1CdtAIR+I1xEUFCS0CTqHtmiuGD4vlUrRp0+fGtWlmAefn5+P4uJiACUOvHIPfE1WotcWzcUEac4/pDn/kOavprw58O7u7hg0aBDOnj0LX19fGBsbo2HDhti8eXO5dRQUFODTTz+Fvb09TE1N8fbbb+PKlSsqZSoa7i6TyTBv3jw4OTnB1NQUb731VplnY+U58HFxcdxq66GhoZBIJJBIJAgJCeHKHz9+HF27doWpqSmsrKwwePBg3L59W6XOkJAQSCQSREVFYcyYMbC2tkaXLl2wceNGSCQSXLt2rYytCxcuhFQqRXx8fEVycvXGxMQgKCgIVlZWsLS0xPjx47kX6sps3boVbdu2hYmJCWxsbDBq1Kgy7Xd3dy/3e1xa099//x0SiQS///47vvjiC9StWxd16tTB8+fPAZREpFFcy87ODmPHji3TlqCgIJiZmSE+Ph5DhgyBmZkZ7O3tMXPmzBpHm9FFyIHXYBo1aoT33nuvSqvOnz9/Hu+++y4aN25ci5YR2sDOnTuFNkHn0BbN//rrLwBAly5dYGVlVaO6FMPolR9AzM3Nywyhry7aormYIM35hzTnH9K8esTExGD48OHo06cPli9fDmtrawQFBeHWrVtlyn788ce4fv06vvrqK3zwwQc4cOAAli9fXqnrfPvtt/jzzz/x2WefYdq0afjnn3/Qu3dv5OXllVve3t4e//vf/wAAb7/9NrZs2YItW7Zg6NChAICjR4+ib9++SE5ORkhICD799FOcP38enTt3LneK64gRI5Cbm4uFCxdi0qRJGD58OExMTPDbb7+VKfvbb7+he/fulVpXISAgAFlZWVi0aBECAgIQFhbGDftXbrvCF/j+++8xffp0HDt2DN26dePWmqkKCrsWLFiAP//8EzNnzsTChQthaGiIsLAwBAQEQCqVYtGiRZg0aRL27NmDLl26lLmWTCZD3759YWtri2XLlsHPzw/Lly/HunXrqmyTrkNz4DWYM2fO4IsvvkDHjh3h5uaGnj17ok2bNmjQoAGsra3BGEN6ejoePHiAy5cv4/jx44iPj0ePHj0ovAnxWvz9/XHgwAGhzdAptEHz6OhoxMTEAAAGDBhQ4/oUPfDKDryFhYXKQ1ZNHHht0FxskOb8Q5rzD2lePe7evYvTp0+ja9euAEocUldXV2zcuBHLli1TKWtra4u///6bG4Yvl8uxcuVKZGZmwtLS8pXXSUtLw+3bt2Fubg4AaNOmDQICAvDLL79g2rRpZcqbmppi+PDh+OCDD+Dt7Y2xY8eq5M+aNQs2Njb4999/YWNjAwAYMmQIWrduja+++gqbNm1SKd+qVSts27ZNJW3IkCHYvn07lixZwr2kvnbtGqKiojBr1qxXtkdB69atsX79eu742bNnWL9+Pb777jsAwMOHD/HVV1/hm2++wbx587hyQ4cORevWrbFmzRqV9Mrw5MkTACUj5S5fvgwTExMAJVPfPvvsM3h5eeH06dMwNjYGUPJyf9CgQVixYoXKy4X8/HyMHDkSX375JQBgypQpaNOmDdavX48PPvigSjbpOuTAazC+vr74+++/ERkZiY0bN2Lfvn3YuHEjgJerzSvCOLm6umLIkCF477334OPjI5TJhIigBw/+0QbNFYvXAUC/fv1qXF9FPfCpqanccU0ceG3QXGyQ5vxDmvNPbWt++PBhJCYm1uo1KouTk5Nafu8BoEWLFpzzDpT0fDdt2hSxsbFlyr7//vsqc+i7du2KFStW4OHDh/D29n7ldd59913OeQdKwp06Ozvjr7/+KteBfxUJCQmIjIzE7NmzOecdALy9vdGnTx9uVJoyU6ZMKdem7du348SJE+jVqxeAkt53ExMTDBs2rFK2lK63a9eu2Lt3L54/fw4LCwvs2bMHcrkcAQEBKv9HnZyc0LhxY5w4caLKDny9evUAAIGBgZzzDgCXL1/mRiQonHegZG2cZs2a4c8//ywzOqA8+7ds2VIlewhy4EWBj48PfvzxR/z44494+vQp7ty5g2fPngEoeTvZrFkzuLi4CGwlITbmzZuHhQsXCm2GTqENmh8/fhwAYGdnBy8vrxrXp+iBV+5xLz2Evibz47RBc7FBmvMPac4/ta15YmIiHj58WGv1C0X9+vXLpFlbW3NRSF5V1traGgDKLVua0lNJJRIJGjVqVK2ITor70LRp0zJ5zZs3x5EjR5CTk6OyUnuDBg3KlO3Tpw+cnZ3x22+/oVevXpDL5di+fTsGDx6s8rLhVbxKEwsLC0RHR4MxVuFUWsX/3KqQkpICoGybXqVLs2bNcPbsWZU0Y2Njbp0BZfsrcz8JVciBFxkuLi7krBNqYfTo0UKboHOIXXO5XI6TJ08CAHr06FHt8HHKKHrg8/PzAQB16tSBvr6+2ubAi11zMUKa8w9pzj+1rbmTk1Ot1l8V1GlLRSFBFSNKq1tW01DuqVYglUoxZswY/PLLL1izZg3OnTuHp0+flhmu/ypep4lcLodEIsGhQ4fKLWtmZsbtVxQhQCaTqZyreLlQXpuqQnXDwRJlIQeeIHSUmzdvomXLlkKboVOIXfNbt25xb+J79uypljqVV6EHXj4oqMuBF7vmYoQ05x/SnH9qW3N1DVnXVaKjo1WOGWOIiYl55dD7ihxaNzc3ACXz90tz584d2NnZVTpO+rvvvovly5fjwIEDOHToEOzt7dG3b99KnVsZPDw8wBhDgwYN0KRJk1eWtba2LndRu4cPH6Jhw4bccUFBQbnnK+tS+png7t27XD6hfmgVeoIgCKJSKIbPAyU98OpA0QOveEBQOPDqigNPEARB6B6bN29GVlYWd7x7924kJCSgf//+FZ5Tp04dACjj1Do7O8PHxwebNm1Syfvvv//w999/V2lBV29vb3h7e+PXX3/FH3/8gVGjRnH/B9XB0KFDIZVKERoaWmakAmOMm4ILlDj7Fy5cQGFhIZd28ODBSoeibteuHRwcHPDzzz+rOPmHDh3C7du3MXDgwBq2hqgI6oEnCB2Femv4R+yanzhxAkDJVJ7XvdmvLIoeeMUDhGJ4n7rmwItdczFCmvMPac4/pLlmY2Njgy5dumD8+PFISkrCDz/8gEaNGmHSpEkVnmNiYoIWLVpgx44daNKkCWxsbODl5QUvLy8sXboU/fv3R6dOnTBhwgTk5eXhp59+gqWlpUqs+Mrw7rvvYubMmQBQpeHzlcHDwwPffPMN5s6di7i4OAwZMgTm5uZ48OAB9u7di/fff5+79sSJE7F7927069cPAQEBuH//PrZu3QoPDw+VOo2MjMq9loGBAb777juMHz8efn5+GD16NJKSkvDjjz/C3d0dwcHBam0b8RLqgScIHWX79u1Cm6BziFlzmUzGzX/v2bNnhUMNq4qi50HhwCt6QNQ1hF7MmosV0px/SHP+Ic01m3nz5mHgwIFYtGgRfvzxR/Tq1QvHjh3j/sdUxK+//oq6desiODgYo0ePxu7duwEAvXv3xuHDh2Fra4v58+dj2bJl6NixI86dO1fugnWv4p133oFUKkWTJk3g6+tb7TZWxJw5c/DHH39AT08PoaGhmDlzJvbv348333wTb731Fleub9++WL58Oe7du4fp06fj33//xcGDB7lV5xUoj2QoTVBQEHbs2IHCwkJ89tlnWLt2Ld5++22cPXsWVlZWam8bUYKEiWElCEJr2bdvH4YMGYLw8HAMHjxYaHMIgqiA69evcyEqf/31V0yYMEEt9fr6+uLSpUto1KgRxo4diz59+uCNN95AbGwsF1pm/Pjx5a5cTBAEIWYUodOU5xsT2k9qaiqcnZ0xf/58LiY6UTVe97ej7f4F9cAThI7i7+8vtAk6h5g1P3/+PLffpUsXtdWr6IFX9LKruwdezJqLFdKcf0hz/iHNhaH04nRiJCwsDDKZDOPGjRPalEqhDZprGzQHXoP5+uuvq3yORCKht3lEpThw4IDQJugcYtb83LlzAErmFapr/jvwcg68Yp67YiVfdc2BF7PmYoU05x/SnH9Ic2GoKL65GDh+/DiioqLw7bffYsiQIXB3dxfapEohZs21FXLgNZiqLooBkANPVJ6AgADs3LlTaDN0CjFrruiBf+ONN9Q2/x0o2wNfngNfkx54MWsuVkhz/iHN+Yc0F4b79++XWWRNLHz99dc4f/48OnfujJ9++klocyqNmDXXVsiB12AodBJRm4SFhQltgs4hVs0TEhLw4MEDACUOvDpR9MCXduDVFUZOrJqLGdKcf0hz/iHNhUEsvdbloVgIVmyIWXNthebAE4SOsnz5cqFN0DnEqvm///7L7avbga/tOfBi1VzMkOb8Q5rzD2kuDElJSUKboHOQ5poH9cAThI7St29foU3QOcSquWL+u76+Ptq3b6/WupXnwBsaGnLH6poDX57mjDHI5XLIZDJuq+5LAuXpBJq8zydi/Z6LGdKcf9SlOQWDqhqWlpZCm6BzaKLmjDHB/sdpAhRGTmTcuHEDP/30E65evYrMzMwyD50SiQT3798XyLpXk5ycjJSUFJW048ePY9q0adALnAQ9L2+BLNNNGJNDIqFBOHwiVs1lMhkYk8PIyBiurvVef0IVSEhMRE52NgAJ9PX1uR55BgZZcfGLUtX/Jy1ncujp8D/5mlN17Uo0F9/3XMyI9bdFzKhD8y+beaCfWz1I7R3VZJX2w8AgqcH/BKLqaKLmspQkHH74BAvulO/zyP+7AfmmX7Q2jBz1wIuIkydPol+/frC2tka7du1w7do19OzZE/n5+fj333/h6emJtm3bCm1mhaxZswahoaHl5snruULe3JNniwiCqAoFAGLUXWmDRtxu8YtN3dBqIvxDmhPE63lmboQixqBnYAAorftBvBrqeeQfjdJcJkMRY3hmboniinyHjHR+beIZcuBFxPz589GwYUNcuHABhYWFcHBwwLx589CzZ09cvHgR/fv3x3fffSe0mRXy4YcfYsSIESppih54k9RkGD6KE8YwHUUul0FPjx4Y+ERsmssZUCRnkDPAwEAfLo72MNRX77+NoqIipKamQiaXwcDAQGXofHFxMWTF5Qyfl7zyUCW1XM0lilyJ0n7FNZXP6x9nKvXAU6OnIs20QSaXQ6pXO73BGvUQKRTliCCXy1X+dojaRx2/5/9ZmOFNw/pwTnsGWFjq9JDgyqKJvcHajiZpzhgDnmciIzcP/z2Jh+Xz7HLLFaYmI49n2/iEHHgRcfXqVYSGhsLCwgLp6SVvlhRzQzt06IDJkyfjyy+/RP/+/YU0s0IcHBzg4OCgkhYTU9Kft71/b60c4qLJBAcHY8WKFUKboVOIRfNnWXkIO3EDf0c+UPEVjNOzMbqrJ4Z1bApDfXG8iBCL5toEac4/pDn/qENzxhgePXqE3NxcSDPTIZVKyYl/Dbm5udxipwQ/aIrmjDFu3RovZycc7eBb4d/Lvn02GLJ2VbWuU1BQgPnz52PLli1IT0+Ht7c3vvnmG/Tp06cm5qsVel0rIvT19WFubg4AsLKygoGBAZKTk7n8hg0bIioqSijzCJFBD3v8o+maFxQVY9uZWwhadRBHSjnvJfkybDx+A++t+hMnbz0SxeJLmq65NkKa8w9pzj/q0FwikaBu3bqws7ODgYEBOe+VQBMcSV1DUzSXSCQwMDCAnZ0d6tatW2t/L0FBQfj+++/xzjvv4Mcff4RUKsWAAQNw9uzZWrledaAeeBHRqFEjREdHAyj5Ejdr1gx79+7FO++8AwD4888/4eTkJKSJhIjw9/fHgQMHhDZDp9BUzRljOHnrEX49eh0pz3MrLvfiM+V5Lhb+cR77Iuww5c3WaFrXlh9Dq4Gmaq7NkOb8Q5rzj7o019fXh729Pezt7dVglfZD33X+0SXNIyIi8Pvvv2Pp0qWYOXMmAODdd9+Fl5cXZs+ejfPnzwtsYQnUAy8iBgwYgO3bt6P4xcrMn376Kfbs2YPGjRujcePG2L9/PyZPniywlYRY0JUfY01CEzV/8uw5pm88ikV7/n2l866MwpG/9TgVH6//B0vCLyCvsKj2jKwBmqi5tkOa8w9pzj+kuTCQ7vyjS5rv3r0bUqkU77//PpdmbGyMCRMm4N9//8Xjx48FtO4l5MCLiC+//BLXr1+H9MVKpYGBgdi8eTO8vLzQqlUrbNiwAZ999pnAVhJiITAwUGgTdA5N1Px5biFuP3lWozrORD2GvlQz/51ooubaDmnOP6Q5/5DmwkC6848uaX7t2jU0adIEFhYWKum+vr4AgMjISAGsKgvFgScEZd++fRgyZAgiPD3R3s5OaHN0iqLiYhioeUVx4tVoouYMwPPcghrVIdWTwMzYUD0GqRlN1FzbIc35hzTnH9JcGEh3/hGj5pdSU+F76xZWrlyJnj17quTZ29uXWVRbgZeXFxwdHXHs2DGV9KioKHh6euLnn3/WiNHO4robhNZS59YtoU3QOQyENkAH0UTNJQAshTaiFtFEzbUd0px/SHP+Ic2FgXTnHzFqrlh2b9q0aWXyvvrqK4SEhJR7Xl5eHoyMjMqkGxsbc/maQLUd+JCQEISGhqqkSaVS2NjYoGXLlhg/fjzGjh1bYwN1mR49ekBPTw9HjhyBvr5+mTdI5SGRSMq8NRIDuZ6eAPXA80pGRgasrKyENkOnIM35hzTnH9Kcf0hz/iHNhYF05x8xap6bmgq8oge+IkxMTFBQUHZUYn5+PpevCai1B14mkyElJQXHjx/H8ePHkZiYyK3gR1Qdxhjkcjl3LJfLXxsyQWwzIrKzswEAe996C087dBDYGt3i6tWraNOmjdBm6BSkOf+Q5vxDmvMPac4/pLkwkO78I0bNL168CNy6BRsbG3h6elb6PGdnZ8THx5dJT0hIAAC4uLiozcaaoBYHvn///pg3bx4KCgqwevVq7N27FwCwatUqcuBrwMmTJ195rA1EREQAABYtWiSwJQRBEARBEARBaAu3qjhF18fHBydOnMDz589VFrK7ePEil68JqMWBd3BwQJcuXQAATk5OnAOfmJiojuqJF5w+fRrNmzevcOhHamoqoqKi0K1bN54tqz4DBw7EypUrsXjxYjRr1kxoc3SGR48eYdq0aVi5ciXq168vtDk6AWnOP6Q5/5Dm/EOa8w9pLgykO/+IVfPs7GzcunVLJRxcZRg+fDiWLVuGdevWcZ3QBQUF2LhxIzp06ABXV9faMLfKqHUIfWFhIcLDw7ljLy8vdVav8/To0QNbtmzBmDFjys0/duwYxowZA5lMxrNl1adu3boAgEGDBlVpiAtRMxRvJHv27Em68wRpzj+kOf+Q5vxDmvMPaS4MpDv/6JrmHTp0wIgRIzB37lwkJyejUaNG2LRpE+Li4rB+/XqhzeNQS+DeTZs2QSKRwMjICF988QWAkgUCVq5cqY7qiRe8bn57QUEBFyOeIAiCIAiCIAiCqByXLl2CjY0NLC0tsWzZMkyePBm3b9/Gzz//XGaE8+3bt9GvXz+YmZnBxsYG48aNQ0pKSpk65XI5lixZggYNGsDY2Bje3t7Yvn17jeystTByJiYmyMrKqq3qdYZHjx4hLi6OO75z5w5Onz5dplxGRgbWrl0LNzc3Hq0jCIIgCIIgCIIQP9999x3OnTuHMWPGwNvbG4mJiVi1ahU++eQTdOjQgRtd/uTJE3Tr1g2WlpZYuHAhsrOzsWzZMty8eRMREREwNDTk6vz888+xePFiTJo0Ce3bt8e+ffswZswYSCQSjBo1qlp2qnURu6KiIpw9exZfffUVHj16hLfffhuxsbFwcnJSx2V0ko0bNyI0NBQSiQQSiQTffvstvv322zLlGGOQSqVYu3atAFZWH8VKjwcPHkRMTIzA1ugOjx49AgAcP36cdOcJ0px/SHP+Ic35hzTnH9JcGEh3/hGr5spz4N3d3St93qeffopt27apOOAjR45Ey5YtsXjxYmzduhUAsHDhQuTk5ODKlSvc2gC+vr7o06cPwsLCuLn38fHxWL58OaZOnYpVq1YBACZOnAg/Pz/MmjULI0aMqN7oaVZNvvrqKwaAAWCBgYEqef369ePy1q5dW91LEIyxqKgotnv3brZr1y4mkUjYJ598wnbv3q2y/fHHH+zw4cMsMTFRaHOrzLRp07jvCm200UYbbbTRRhtttNFGmzq2uXPnqsVfadOmDWvTpg137ODgwEaMGFGmXJMmTVivXr2449WrVzMA7NatWyrltm3bxgCwM2fOVMueWhlCz5TmaqelpdXGJXSG5s2bo3nz5gBKeuO7deuGBg0aCGyV+vD19QUAzJ07Fx1EGAfeMDYWRg8eCG1GtTh//jzeeOMNoc3QKUhz/iHN+Yc05x/SnH/ErnlBw4YoFOHz5JYtWzBu3DihzdApxKj5xYsXsWjRIrUsvMcYQ1JSEldXfHw8kpOT0a5duzJlfX198ddff3HH165dg6mpKefLKZdT5CsiuVUFtTjwycnJOHv2LIqLi3H+/Hn8888/XF6TJk3UcQkCQGBgoNAmqB0zMzMAJas+Dh48WGBrqsi9e8CQIUJbUW16AsCVK0KboVOQ5vxDmvMPac4/pDn/iF5zPT0gNhYQ2dpJontW1ALErHlaWlqZWPD29vZwcHCodB2//fYb4uPj8fXXXwMAEhISAADOzs5lyjo7OyMtLQ0FBQUwMjJCQkICHB0dIZFIypQDgKdPn1apPQrUsgr9oUOH0LVrV/To0QOff/455HI5AKBNmzbw9/dXxyWIF9y+fRuzZ8/G8OHD0atXL/Ts2VNl69Wrl9AmVourV6/i1KlTWLp0KdLS0riXFYrvT3BwMGJiYrBhwwbs3bsXERERWLBgAXJzcxEQEKBSdt68ebh58ya2bduGbdu24ebNm5g3b55KmYCAAOTm5mLBggWIiIjA3r17sWHDBsTExCA4OFilbGBgINLS0rB06VKcOnUKhw8fxurVq/Hs7Fn+BCIIgiAIglAXcjk2zJkDQL3PRvHx8ZgyZYpK2SlTpiA+Ph6rV6/G4cOHa/S85+/vz/vzXm23SbmsJrapb9++omvTN998AwCYNm0avLy8VLY1a9ZU+GdRmjt37mDq1Kno1KkTp0FeXh4AwMjIqEx5Y2NjlTJ5eXmVKldVJIy9JjZZBYSEhCA0NLRMuomJCTw8PDB48GDMnj0bFhYW1TKMKMuWLVswfvx4GBgYoGnTprC2ti633IkTJ6pc96VLl7Bp0yacOHECcXFxsLW1RceOHfHNN9+UGUVx+/ZtBAcH4+zZszA0NMTAgQPx/fffw97evsrX3bdvH4YMGYLw8HDxveHbtQt48SOFv/8GGjcW1p4qsvtpMnYnlg13QRAEQRCEduIRfQ/fzvkUADB7+U+I6NRZYIuqRlA9JwS5lu35JAhlFP7FypUr0bNnT5W8yvbAJyYmonPnzigqKsKFCxfg4uICALh8+TLat2+PzZs3l5laMHv2bCxduhT5+fkwMjLCoEGDcPv2bdy/f1+lXG5uLkxNTTFnzhwsWrSoyu2r9hD6kJAQhISEVPd0ohqEhISgdevWOHToEOzs7NRatyJswogRI1TCJrRp0wYXLlyoVtgEraew8OV+gwZAFVa51AS++m0nonzaC20GQRAEQRA80dq4DhSxjO5kZOBUWoaQ5lSZlOP/IOjz2UKboVMEBARg586dQptRLerXr1+tefCZmZno378/MjIycObMGc55B14Of1cMpVcmISEBNjY2XK+7s7MzTpw4AcaYyjB6xbnK9VaFWosDT6ifp0+fYubMmWp33gH1h03QCZQdeAMD4eyoJtNGjcT2ZFpkkk/kchn09KoRLoSoNqQ5/5Dm/EOa849YNW9oY8XttzIxxnOlYzEwetRIoU3QOcLCwoQ2gVfy8/Ph7++Pe/fu4ejRo2jRooVKft26dWFvb4/Lly+XOTciIgI+Pj7csY+PD3799Vfcvn1bpZ6LFy9y+dWBHHgR4e3tXe3FDl5HeSupNm7cGJ6enrh9+zaX9scff2DQoEGc8w4AvXv3RpMmTbBz507ddeBFOPIgedtmnPzyS6HN0CkWLFiAL0lzXiHN+Yc05x/SnH/UpblcLkdSUhIKCgq4NaRqE4Osl9MvPzIzwnhHy1q/pjqJirqJWIlMaDN0iqioqDJOrFDo6enByMgIjo6O0NNTy1JuKshkMowcORL//vsv9u3bh06dOpVbbtiwYdi0aRMeP34MV1dXAMCxY8dw7949bs4+ULIAYHBwMNasWcPFgWeM4eeff0bdunWrHcmCHHgR8f3332PEiBHo378/L6FLahI2QScQuQPft29foU3QOUhz/iHN+Yc05x/SnH/UoblcLsejR4+Ql5cHqVQKqVRaZrVqdcOkSqMGZOJzhCm6Ff9oiuaMMRQWFiIvLw8FBQWoX7++2p34GTNmYP/+/fD390daWho3AlnB2LFjAZQszLdr1y706NEDn3zyCbKzs7F06VK0bNkS48eP58rXq1cP06dPx9KlS1FUVIT27dsjPDwcZ86cwW+//QaptHqjeMiBFxHfffcdLC0t0bVrV7Ro0QL169cvc+MlEgn27dunluvVJGxCeSQnJyMlRXXRtEePHqnFVkEQuQMfHx8vtAk6B2nOP6Q5/5Dm/EOa8486NE9KSkJeXh5sbGzg4OBQ6847AEDpGo42NkDDhrV/TTWSnp5e4SLORO2gSZozxpCcnIy0tDQkJSWV65PUhMjISADAgQMHcODAgTL5Cgfe1dUVp06dwqeffoo5c+Zwi3ovX768jB+0ePFiWFtbY+3atQgLC0Pjxo2xdetWjBkzptp2VnsVeoJ/3N3dX/vjLpFIEBsbW+Nr3blzBx06dICnpyfOnDkDqVSKM2fOoFu3btixYwcXIkLB/PnzsWDBAqSnp8PKyqrcOiuKXAAAtra2MDMzQ9OmTbFmzRq0bdsWLi4uePz4MbKystCmTRs8f/4cubm5GDlyJLy9vfHZZ5/B1tYWmZmZePr0KRwdHWFra4vk5GSsXLkS586dQ3h4OIyNjWFra4uIiAiYm5vD1dUVT548QVRUFAIDAxEbG4vi4mL4+flh/PjxCAgIgKOjIxITE5GWlgYPDw/o6+sjIyMDM2bMQGFhIVavXo2ZRUWY8ewZAMDJygo2zs5ISEjAgQMHsHLlSly4cAF6enoa26acnBwwxlTaZG5uDolEgrt378LGxgZOTk6ialN590mT2mRubo7s7GytapOm3ydFj5Y2tUnT71Nubi7atm2rVW3S9PuUkJCAL774QqvapOn36cGDB4iOjq7Zc8TMmejWrRvatWuHyMhIGBgYoKioCI0aNUJycjJycnIAlIScql+/Pm7fvg0DAwMUFhaiTZs2iIqKgkwmg1wuh42NDUxMTPDkyRPo6+tDJpOhVatWiIyMhL6+PoqLi+Hq6oq8e/dQ78UozqcLFsDliy9w9epVGBoaorCwEF5eXnjw4AEKCgoAAGZmZrCzs0NsbCz09fVRVFSE1q1b4+bNm5BIJCguLoaTkxPkcjlSUlKgp6cHiUQCLy8vXLt2Te1tqlu3LnesaFN2djYyMjKgp6cHfX19NG/eXFRtKu8+aVKbzM3NkZiYqDFtunHjBgoKCnD06FFIpdJyfyPMzMyQk5MjzihXlYAceKIM6gibUB7l9cAfP34c06ZNE+cfWGgooIjEIJMBtTAXpzaJiYlBo0aNhDZDpyDN+Yc05x/SnH9Ic/5Rh+axsbFgjMHDw0NNVlWChARAsfL1zz8Dkyfzd201kJ+fz8XQJvhBEzW/f/8+JBIJGlYwgkTUYaorgbg8DqLWUQ6bcPjw4WqHTSgPBwcHeHp6qmzKi+GJDsUQen190TnvALB69WqhTdA5SHP+Ic35hzTnH9Kcf9SlOS/D5pXRV5o9W1zM77XVQOmOIKL20UTNef+70TDE53XoODKZDL///jsmT56Mt99+Gzdv3gRQ4njv2bMHSUlJ1a5bOWzCwYMHaxQ2QSdQOPAinP8OACtWrBDaBJ2DNOcf0px/SHP+Ic35R7SaK4e9FaEDr1jxm+AP0lzzIAdeRGRkZKBz584YM2YMtm/fjv3793NvxczMzDBt2jT8+OOP1apbOWzCrl27Xhk24eDBg3j8+DGXpgibMGLEiGpdW7SI3IH39/cX2gSdgzTnH9Kcf0hz/iHN+Ue0mou8Bz46OlpoE3QO0lzzIAdeRMyZMwe3bt3CkSNHuHlTCqRSKYYPH17tUG6KsAn9+/fnwiYobwrmzZuHOnXqoEePHvjpp5+waNEijBgxokzYBJ2gqKjkU6QOfHmraxK1C2nOP6Q5/5Dm/EOa849oNVd24BXPMSKicePGFeYFBQXB3d2dP2N0hFdpTggDOfAiIjw8HB9//DH69OlT7tyPJk2aIC4urlp1K4dNGDduXJlNgSJsgoeHB+bMmYMlS5ZgwIAB+Oeff145/10rUfTAKw9HExGBgYFCm6BzkOb8Q5rzD2nOP6Q5/4hWc5H3wD948KDSZXNzcxESEoKTJ09W+3rnz59HSEgIMjIyql2H2KmK5gQ/UBx4EZGZmYkGDRpUmF9UVITiav4YV+XHzdPTE0eOHKnWdbQKkQ+hF+38PRFDmvMPac4/pDn/kOb8I1rNpdKX+yJ04F81H/uXX36BXC7njnNzc7nwxd27d6/W9c6fP4/Q0FAEBQVVGCZZ26E58JoH9cCLCA8PD1y9erXC/L///rvMwnNELSJyB379+vVCm6BzkOb8Q5rzD2nOP6Q5/4hWc4nkZS+8CB341NTUCvMMDAxEMRqUMYa8vDyhzag0r9JcGUXseKL2IQdeREycOBEbNmzAjh07uPnvEokEBQUF+Pzzz3H48GFMFlk8T1Ejcgfe19dXaBN0DtKcf0hz/iHN+Yc05x9Ra86TAx8fH4/33nsPjo6OMDIygqenJzZs2MDl5+XloVmzZmjWrJmKQ5uWlgZnZ2e88cYbkMlkXPqhQ4cwfPhwmJubw8LCAu3bt8e2bdu4fOU58HFxcbC3twcAhIaGQiKRQCKRICQkBABw48YNBAUFoWHDhjA2NoaTkxPee+89PHv2jKsvJCQEs2bNAgA0aNCAq0MxXbW4uBgLFiyAh4cHjIyM4O7ujnnz5qGgoEBFB3d3dwwaNAhHjhxBu3btYGJigrVr18LPzw+tWrUqV7umTZuib9++r9RXUe/Zs2fh6+sLY2NjNGzYEJs3by5TNiMjA9OnT4erqyuMjIzQqFEjfPfddyojFk6ePAmJRFJmVG5qaiokEgnCwsJUtDYzM8P9+/cxYMAAmJub45133gFQ4sjPmDGDu1bTpk2xbNkylbW7gBIf5qOPPkJ4eDi8vLy478jhw4df2W6ChtCLik8++QS3bt3C6NGjuWE8Y8aMwbNnz1BcXIzJkydjwoQJwhqpS4jcgRfT219tgTTnH9Kcf0hz/iHN+UfUmisc+FpcxC4pKQkdO3bknDR7e3scOnQIEyZMwPPnzzF9+nSYmJhg06ZN6Ny5Mz7//HN8//33AICpU6ciMzMTYWFhkL4Y8h8WFob33nsPzZs3x9y5c2FlZYVr167h8OHDGDNmTJnr29vb43//+x8++OADvP322xg6dCgAwNvbGwDwzz//IDY2FuPHj4eTkxNu3bqFdevW4datW7hw4QIkEgmGDh2Ke/fuYfv27VixYgXs7Oy4uoGSjrVNmzZh+PDhmDFjBi5evIhFixbh9u3b2Lt3r4o9d+/exejRozF58mRMmjQJTZs2hZmZGSZNmoT//vsPXl5eXNlLly7h3r17+OKLL16rc0xMDIYPH44JEyYgMDAQGzZsQFBQENq2bQtPT08AJVMJ/Pz8EB8fj8mTJ6N+/fo4f/485s6di4SEBPzwww+vvIayk69McXEx+vbtiy5dumDZsmWoU6cOGGN46623cOLECUyYMAE+Pj44cuQIZs2ahfj4+DJTT86ePYs9e/bgww8/hLm5OVauXIlhw4bh0aNHsLW1fW37dRZGiI4zZ86wTz75hA0YMID169ePTZ06lZ06dUpos6pFeHg4A8DCw8OFNqXq9OnDGMBYp05CW1ItVq1aJbQJOgdpzj+kOf+Q5vxDmvOPOjS/f/8+u3//vhqsqSJWViXPL9Om1dolJkyYwJydnVlqaqpK+qhRo5ilpSXLzc3l0ubOncv09PTY6dOn2a5duxgA9sMPP3D5GRkZzNzcnHXo0IE9fPhQpT65XM7tBwYGMjc3N+44JSWFAWBfffVVGfuUr69g+/btDAA7ffo0l7Z06VIGgD148EClbGRkJAPAJk6cqJI+c+ZMBoAdP36cS3Nzc2MA2OHDh1XKZmRkMGNjY/bZZ5+ppE+bNo2Zmpqy7OzsMjYqo6hX2d7k5GRmZGTEZsyYwaUtWLCAmZqasnv37qmcP2fOHCaVStmjR48YY4ydOHGCAWAnTpxQKXfp0iUGgG3cuJFLCwwMZADYnDlzVMoqnuu/+eYblfThw4cziUTCYmJiuDQAzNDQUCXt+vXrDAD76aefXtn21/3tiNq/qATUAy9CunTpgi5dughtBiHyHvghQ4YIbYLOQZrzD2nOP6Q5/5Dm/FPbmk+fPp2LEKRuwnNyYAVg7+7d+PH69deW9/HxeW0vrTKMMfzxxx8ICAgAY0xlDnXfvn3x+++/4+rVq+jcuTOAkqHqBw8eRGBgILKzs+Hn54dp06Zx5/zzzz/IysrCnDlz4OTkpHKt8qIyVQYTExNuPz8/H9nZ2ejYsSMA4OrVq+jatesrz1eEbf70009V0mfMmIFly5bhzz//RI8ePbj0Bg0alBkSb2lpicGDB2P79u1YtGgRJBIJZDIZduzYgSFDhsDU1PS17WjRooWKrfb29mjatCliY2O5tF27dqFr166wtrZWuRe9e/fG4sWLcfr0aW74e3lYWFhUmPfBBx+oHP/111+QSqUq9w8o0WX37t04dOgQPvroIxUbPDw8uGNvb29YWFio2E+UhRx4ESGVSrFly5ZyhwoBwI4dOzBmzBiV+UJELSJyB37BggX4+eefhTZDpyDN+Yc05x/SnH9Ic/6pbc0jIyNx6tSpWqk7D4AVgOSnT3Hq6VO115+SkoKMjAysW7cO69atK7dMcnIyt29oaIgNGzagffv2MDY2xsaNG1Uc8/v37wMAvLy8kJCQADc3txrbmJaWhtDQUPz+++8qtgAlUZ9ex8OHD6Gnp4dGjRqppDs5OcHKygoPHz5USa8oitS7776LHTt24MyZM+jWrRuOHj2KpKQklRDOr6J+/fpl0qytrZGens4dR0dH48aNG9zQ/9KUbn9l8/X19VGvXj2VtIcPH8LFxQXm5uYq6c2bN+fyq2o/URZy4EUEK7X4Q2lkMlm130QS1UDkDjw97PEPac4/pDn/kOb8Q5rzT21r7uPjU2t16124ABQUoJ6TE/yaNlW7LYo502PHjkVgYGC5ZRRz0RUowhPn5+cjOjq6QodXHc47AAQEBOD8+fOYNWsWfHx8YGZmBrlcjn79+lU457s8Kvvcrdzjr0zfvn3h6OiIrVu3olu3bti6dSucnJzQu3fvStUrVQ4LqISyzyCXy9GnTx/Mnj273LJNmjQBUHFbnJ2dy003MjKCnl7N1kOvjP1EWciBFxkV/XE9f/4cR44c4RbYIHhA5A68v78/Dhw4ILQZOgVpzj+kOf+Q5vxDmvNPbWtelSHrVaZhQ+DBAwzs0wcDy1mxvKbY29vD3NwcMpmsUo7ojRs38PXXX2P8+PGIjIzExIkTcfPmTVhaWgIAN8T6v//+A2MMjRs3rpQdFT0zp6en49ixYwgNDcX8+fO59Ojo6ErX4ebmBrlcjujoaK53GShZvC8jI6PSLxqkUinGjBmDsLAwfPfddwgPD8ekSZMqdGyrg4eHB7Kzs197L6ytrQGUrFivzLlz5yp9LTc3Nxw9ehRZWVkqvfB37tzh8omaQ2HkNJzQ0FBIpVJIpVJIJBKMHTuWO1berK2tsWXLFowaNUpok3UHhQNvYCCsHdWEHvb4hzTnH9Kcf0hz/iHN+UfUmtdyGDmpVIphw4bhjz/+wH///VcmPyUlhdsvKipCUFAQXFxc8OOPPyIsLAxJSUkIDg7myrz55pswNzfHokWL4OrqqlLXq3pq69SpA6CsQ6pwjkufW95LE8U89NJ1DBgwoNxzFCvpDxw4sEK7SjNu3Dikp6dj8uTJyM7OxtixYyt9bmUICAjAv//+y41yUCYjIwPFL74Hbm5ukEqlOH36tEqZ/fv3V/paAwYMgEwmw6pVq1TSV6xYAYlEgv79+1ejBURpqAdew/H19cWHH34IxhjWrFmDPn36cENdFEgkEpiamqJt27ZcmAyCBxThV0TaAz9lyhQadskzpDn/kOb8Q5rzD2nOP6LWnIc48IsXL8aJEyfQoUMHTJo0CS1atEBaWhquXr2Ko0ePIi0tDQDwzTffIDIyEseOHYO5uTm8vb0xf/58fPHFFxg+fDgGDBgACwsLrFixAhMnToSPjw8CAwNhbW2N69evIzc3F5s2bSrXBhMTE7Ro0QI7duxAkyZNYGNjAy8vL3h5eaFbt25YsmQJioqKULduXfz999948OBBmTratm0LAPj8888xatQoGBgYwN/fH61atUJgYCDWrVuHjIwM+Pn5ISIiAps2bcKQIUNUFrB7Ha1bt4aXlxd27dqF5s2bo02bNtVQvGJmzZqF/fv3Y9CgQVyIuZycHNy8eRO7d+9GXFwc7OzsYGlpiREjRuCnn36CRCKBh4cHDh48iCdPnlT6Wv7+/ujRowc+//xzxMXFoVWrVvj777+xb98+TJ8+XWXBOqIGCLb+PVFlgoKC2IULF4Q2Q62IOsxDvXolYVjee09oS6rFkydPhDZB5yDN+Yc05x/SnH9Ic/5Rh+aChZFr2bLk+eXtt2v1MklJSWzq1KnM1dWVGRgYMCcnJ9arVy+2bt06xhhjV65cYfr6+uzjjz9WOa+4uJi1b9+eubi4sPT0dC59//79rFOnTszExIRZWFgwX19ftn37di6/dBg5xhg7f/48a9u2LTM0NFQJKffkyRP29ttvMysrK2ZpaclGjBjBnj59Wm7YuQULFrC6desyPT09lZByRUVFLDQ0lDVo0IAZGBgwV1dXNnfuXJafn69yvpubGxs4cOArtVqyZAkDwBYuXPgaVV9fr5+fH/Pz81NJy8rKYnPnzmWNGjVihoaGzM7Ojr3xxhts2bJlrLCwkCuXkpLChg0bxurUqcOsra3Z5MmT2bVr18oNI2dqalquXVlZWSw4OJi5uLgwAwMD1rhxY7Z06VKVkH+MlYSRmzp1arntCgwMfGXbdT2MnIQxWiWAEI59+/ZhyJAhCA8Px+DBg4U2p2o4OgLJycCUKcD//ie0NVVm9erVmDp1qtBm6BSkOf+Q5vxDmvMPac4/6tBcESqrYcOG6jCp8rRtC1y9Cvj7A1UYHq0JJCcnw8HBQWgz1M6PP/6I4OBgxMXFlbsyu5Boouav+9sRtX9RCWgOvMh4/vw5QkND4evrC0dHRzg6OsLX1xdff/01nj9/LrR5uoXIF7GjYUz8Q5rzD2nOP6Q5/5Dm/CNqzRVD6BVTAUWEkZGR0CaoHcYY1q9fDz8/P41z3gHt1Fzs0Bx4EfH06VN07doVDx48QLNmzdC5c2cAwN27dxESEoLNmzfjzJkzFYZ7INSMyB34ikKaELUHac4/pDn/kOb8Q5rzj6g152EOfG1R07BlmkROTg7279+PEydO4ObNm9i3b5/QJpWLNmmuLdAdERGfffYZEhMTcfDgQURFRWHPnj3Ys2cPbt26hT///BOJiYmYM2eO0GbqDiJ34CMiIoQ2QecgzfmHNOcf0px/SHP+EbXmInbgc3JyhDZBbaSkpGDMmDHYtWsX5s2bh7feektok8pFmzTXFqgHXkQcPnwY06dP50JXKNO/f39MmzYNv/zyiwCW6SBy+ct/fCJ14CdMmCC0CToHac4/pDn/kOb8Q5rzj6g1F7EDb2dnJ7QJasPd3f2VYfA0BW3SXFugHngRkZOTA0dHxwrznZyc6C0ZXyjPGxOpA68cY5XgB9Kcf0hz/iHN+Yc05x9Ray5iB/7x48dCm6BzkOaaBznwIqJFixbYvn07ChVDt5UoKirC9u3b0aJFCwEs00GU74FIHfiK4qYStQdpzj+kOf+Q5vxDmvOPujQXpAfWwKDkU4SL2DVo0EBoE3QOTdRcDCMXahNy4EXEZ599hosXL8LX1xfr1q3DyZMncfLkSaxduxa+vr6IiIigOfB8oezAK/4Rigx/f3+hTdA5SHP+Ic35hzTnH9Kcf9ShuZ6eHmQyGf/OiIh74KOjo4U2QefQNM0ZY5DJZDq9uB7NgRcRI0aMQE5ODubMmYMpU6ZAIpEAKPkiOzg4YMOGDRg+fLjAVuoIWtADf+DAAaFN0DlIc/4hzfmHNOcf0px/1KG5kZER8vLyuDjbiue6WkfEDnzjxo2FNkHn0CTNGWNITk6GTCbT6fB25MCLjKCgIIwdOxaXLl3Co0ePAABubm5o164d9PXpdvKGFjjwwcHBWLFihdBm6BSkOf+Q5vxDmvMPac4/6tDc0dERBQUFSEtLQ2ZmJqRSKS9OvEN+PswAFObl4UlsbK1fT53k5uaiTp06QpuhU2iK5oqed5lMBhMTk1euC6btkMcnQvT19dGpUyd06tRJaFN0Fy1YxG7q1KlCm6BzkOb8Q5rzD2nOP6Q5/6hDcz09PdSvXx9JSUkoKCiAXC5Xg2Wvh73o8JGIsAeeL42Il2iK5hKJBIaGhjAyMoKjoyMNoSfEQ0FBAX755Rf89ddfiIuLA1AShmLAgAGYOHEijI2NhTVQV9CCHvjTp0+jUaNGQpuhU5Dm/EOa8w9pzj9Caq6Yv608j7t0WlU/+a6jvPa8Lm3fvn0YPXr0K8tVpX49PT0Vh6Qmtr0uTeHASxlDw4YNy5TVZDZs2ID33ntPaDN0CtJc8yAHXkQ8efIEffr0wd27d+Hs7Mz9s75+/ToOHz6MVatW4ejRo6hXr57AluoAWuDAW1tbC22CzkGa848maM4Yg1wu54b+yWQyFBcXV+tYLpeX2SpKV8dWnbrv3buHyMjI15ZjjKls5aWVt1WmnDrrqq1rKr4byp/lpVXms7i4GNOnTxfM6dVVZs6cKbQJ1WIdgEkAEh4/Rr+WLdGxY0dua968uUb3bGrCb7quQZprIIwQDW+99RYzMTFhu3btKpO3c+dOZmJiwt566y0BLKs+4eHhDACL8PRkzM+vbIGRI0vSFy1STb92rSTdz69kX5lFi0rSR44sW5/inI0bVdMPHXqZl5CgmvfJJyXpn3zyMi00lDGgZGvZsuR8ZTZufFmfhrYps00b1TYxVlJOcY4I21TmPmlYmzLbtNG6NtXkPsnlcpafn88yMzNZ6n//sfyOHVluhw7s8S+/sP/++49du3aNRUREsOjPP2fpPj4szdubHTp0iO3fv5/t2bOH7dixgz3o2JElNG3KLg4dytasWcN+/PFHtmzZMrb+449ZnLs7u+PkxFa+9x6bOXMm++STT9jUqVPZH76+7LaTE/vXzY2NGjWKDRs2jL311lusf//+LNLKil2ztGTfNmnC3njjDdahQwfWtm1b9mHDhizC1JRdrFOHdfbwYB4eHszd3Z25urqyX0xN2VkDA/Y/Y2NmZWXFzM3NmYmJCXM1MGAnAXYCYH0BBqUt8EX6iVLpANj2F+mflUpvpXROq1J5n71I315OfYpzAkul91XKcyyVt+JF+opS6Y5K51CbqE3UJnG2aQ1Knl8Sy2mThYUF6927N/viiy/YxdBQVvjGGxr1/+nixYsv83TwOUKINqloLpI2/T1/PgPAwsPDy15TC6AeeBFx7NgxBAcHl7vS/IgRI3D16lX89NNPAlhWc+rculV+xoULwMOHgLu7anpGBnDq1Mt9Ze7cKclzcytbn+Kc7t1V0xMTX+bl56vmRUa+zHv2DPjkE+C3317m37xZcr4ycXEvz9HQNllcvQqYm6um5+e/PCcoSDVPBG0q1z4NapOF4prKCNAmmasrnqenIy8vD3l5edC7dg0NXpxz6Z9/kPDoEZfXad8+NL1wAZnW1vjpm29QUFCAgoICFBYW4ocX5+xJS8P2P/9EYWEhCgoK0OPhQ3x25w4AoF/37njAGHfOzpQUdCkuxqnTp9H9xx8509wAKJT54uJFKEdY/gpAyIv9/v37qzTpAQAnAIfv3sWHe/Zw6X4AFAP+Jm/YAGVF2gFo9uJ6vz98qFLfXy8+wzMzcf7ePS7dC0D7F/tP7t+H8lmNAHQGUFRUhAyle6j3wg4ACIMq7gC6o3w6vsiPK5VupXSOVam8Zi/ySp8DpXNOlkp3UsorPfnKpwL7jJXSN0skMNDX54b+NikuRvcX64NYW1tz6Xp6euicmgpXmQwpdeqgvp0d9PT0IJFI0CI/H90TEgAALevVQ76pKSQSCSQSCTo+fYrumZmINzBAy2bNIJFIuPO6X7sGALjn7IyoevW4czqnpKD7i0W5urZrhyQTEy6ve2QkfDIzYWVlhV5t23J1OeXno/vp0wCAa97e0Hd15c7pe/cuur/4HgwdOpRLl0gk6Pnnn3DIzYXE3R2P33iDS2+elITu//wDABjVty/auLhweW+dPo03oqPxzMwMU8aOBQBu0bLu//sfACCnXTuYdejA5XW4fRvdjx0DAHwQFIQ0CwvunEG7d6NRfDwsLCwQPGECd451Zia6r18PAEjq1w8tvby4c/qcO4fu588DKAlPq0iXSCTou2YNrDMzYdGyJaT+/lxeg4cP0X3rVgDAtHHj8PBFXGiJRIIh4eHwuX4dGZaWCP30U+67IpFI0H3+fACAXo8eaNyrF5fe8upVdP/jDwDAV7NnI9PamrvW0HXrUD82Fg0bNkTRlCncORZpaei+aBEAIH/kSLzp68ud0+nIEXQ8cgQA8MMPP6gsBDcgNBQWaWlw9PVFvXHjuLy60dHcb1Do9Ol42qQJd07PzZvR9MIFZNnY4H/ffqt6n17YlNCkCd6YMYM7p8n58+j+Ijb8ioULkW1nx503cOlSON+7h6ZNmsBs1iyuLrPUVHR/Ef5Xb/x4BHTpwtXXet8+tN6/H0DJEGZlXQfNnAmzZ89Qr3NnNJs4kavP8fZtdP/uOwDAd3PmIKl5c+68zr/8Ao+zZ5FtZ4cnPj7A0aMwNzFB786d0f3oUQAlvxHPnz/H0aNHcfToUTzGy9+uTz/8EI1690bHjh3RsmVLGAj0P/fImTPw9fUtOdbB5wgAvLfpyJEjLzUXSZuk3t5l87UIcuBFhLm5ORwcHCrMd3Jygnlph0wk5Hp6Ai/+2anQsWPJj0SzZqrpVlaAn9/LfWWaNSvJc3IqW5/inNI/PE5OL/NKryPg41PyaWEBeHoCSUklx2ZmgLMz4OJS9lru7i/r09A2yeRySBVtU2Bs/PIcEbZJ5VOBBrVJJpdDWkGbGIBCiQQ5aWnIyclBTk4OrF1cYOTjg3QrK1zetYtLR2IiBri5QS6T4a9du3D11CnO4e5y/z56W1pCLpMh0MsLeXl5yM/PR15eHtZmZsIewOGtW/Hdi4dxAGgF4IcX+9Nnz8Z1JfM+A9APQGJ6Or788ksV04e8+Nx/8yZ237ypktfhxWfk3btIUkq/DKAYQGSpYbj5eOlglnodhjiUdT4VXHiRf6dUeobSOdlSKUwMDWFgYAB9fX08KSzEv4WFSDUwQGMXFxgYGHDb1Xv3IAFg7OyMXvXqQSqVQl9fH+7PnuG/mJgSJ+eNN5BtZgapVAqpVIriS5dwLy0Ncnt7fOznB319fUilUljm5SH2wAFIJBL06doVjZs14+preeUKnly+DAmAn2fO5OqSSqWQ/O9/SM7MRNvWrbFn+HCuPqu4OKStXQuJRIJlH32E3CZNOAe53tateH7xIixsbXH1u+9UnOec8eMhATBl2DCMGz6cS69z+jQK1qwBJBJcWrsWcHJ6mTdvHor/+w+dvb2Rt3z5y/qSk8HGjIEEwIY5c7ChX7+XooeFAWFhkMnlSHvhEHOMGgUkJmJEv34Y8cJhKfmCRALTpwMAtvzwg+rf7+LFwOHDqOvkhBu//65a34uHvfeDgvC+8sPn4cMl5wHY9fvvqn+L06cDkZHw8fHB0R9+eJmemFhiH4DgOXMQXE6bAOCPFw5n6Tb59esHvwraNGfx4nLbZOvkhP+9cNg5oqIAAAODgjCwdJteLDb21aJFZX9fIiPR0tMT33//vWqbYmIAACM/+QQjS7fJwOCFOYtV64qNBRIT0aZfP7Qp3abHjwEA7336qWqbjI0BKytYOTlh/guHnePFi4du776LbqXblJoKAPggOFi1TQkJQGQk6vv4YNasWaptevHioV9QEPopt8namnvI/+STT1RtOH8eSExE83790Pyjj1TbFBkJABgcGKjapsxMwMgI5k5OmPLCYefYvh0AMHT0aBi9//7L9Pr1uRe0o8ePV23Tf/8Bzs5w9vHBxIkTVdt06FCJRgEB6KbcJj29EjsAjB8/XtWGw4eBxEQ06tcPjZR1jYwscbAA9B05UrVNT58CUinMnJzQzNkZOHoUdQwM8M8//4D5+SE3Nxc9vLzwRCrFhQsXEBUVhUTGuN/RbXv3ImnvXgCAiYkJNllbo42rK5iZGeo8fQoXF5eSgrX8P3eG0ksTXXyO4K6pTC23SUVzkbRJpuXD/iWM0WQmsTBv3jwcOnQI586dKxPOITs7G126dMGgQYPwzTffCGRh1dm3bx+GDBmC8PBwDB48WGhzyqeoCJgzB1B+OBo4EFi7FqhbVzi7akhAQAB27twptBmihb3oVX7+/Pkrt6ysLG7/2LFj8PT05Bxx5S07OxsymUzoZlUKIyMjblOsCKu8X9m08vINXzjaypu+vv5r0yoqM2bMGOzatUtoyXQK+m3hH9Kcf0St+axZwLJlgIkJkJtbbpHMzExcunQJFy5c4LZnz55VWKWrqyvat2+Ptm3bol27dmjbti1sbW3VbrqodRcpYtRcFP5FDSAHXkTs3LkT3377LdLT0xEYGMgtYhcdHY3NmzfDxsYG8+bNKxMPfujQoUKYWyk0/g8sPh4ICODe+sPCAli1Chg7FuAhVitRe8hkMmRmZiI9Pb3CLTMz85XOeZFyOEEBMDU1RZ06dWBiYgITExMYGxuXu1/TPGVnW19fn5c4xQRBEEQtMW8esGhRyUgM5UV5XwFjDDExMSoO/fXr11/54tnNzY1z5hVbbTj1BFEajfcvaggNoRcRo14M8QOAb1/MyVLmyZMnGD16tMoKsRKJRDS9ehrHjRvAgAElTjwAtG4N7NoFeHgIa5ea8Pf3x4EDB4Q2o8YUFxfj2bNnSE1NRWpqKlJSUpCamvpKx1zhnPOBVCqFpaUlzM3NkZaWhhYtWsDU1LTczczMrNLpJiYmGr1SsKagLd9zMUGa8w9pzj+i1lzR0VOFOPASiQSNGzdG48aNMW7cOABAbm4urly5wjn0V65cwUOldUUePnyIhw8fqkw/cXd353rpfXx80KpVKzg5OVX6xbCodRcppLnmQQ68iDhx4oTQJugO//wDDBsGZGWVHE+cCPz0U9l5OCJGU3+Mc3NzkZiYyDniyk658r6yo14bGBgYwMrKCpaWlrCwsKj2ZmxsTD3WAqKp33NthjTnH9Kcf0StucKBZwyQy0vm21eDOnXqoGvXrujatSuXlpqaiitXruDKlSu4fPkyrly5gkePHnH5cXFxiIuLU3Hq7ezs0KpVK7Rq1Qre3t5o1aoVmjdvDiMjozLXFLXuIoU01zzIgRcRfhUtkkGol507gXfeeflmetky4NNPtW7I/Lx587Bw4UJerlVcXIyUlBQkJiYiMTERCQkJ3H7pLUvx0kQNGBkZwdraulqbyYvVq9UJn5oTJZDm/EOa8w9pzj+i1lx5qmVxMWBoqLaq7ezs0LdvX/Tt25dLS0lJKePUP36xKCJQ4vQfO3YMx14selhioj6aNWvGOfReXl5o0aIF1q5di0UvohEQ/CDq77qWQg48QSizY0eJ8y6TlfxD27KlZA68FjJ69Oga18EYQ2ZmJp48eVLupnDUU1JSUNPlNgwMDGBnZwc7OzvY29urfJZOs7W1hY2NDUxMTGrcRnWiDs2JqkGa8w9pzj+kOf+IWnNlB76oSK0OfHnY29ujX79+KpEDUlJScOPGDVy/fp37jIqKQuGLOfnFxcX477//8N9//2Hbtm3cecbGxjhy5AhatGiB5s2bc58eHh4weBFdgVAvov6uaynkwBOEAmXn3cQEOHgQ6NlTaKtqjZs3b6Jly5avLPP8+XPExcXh8ePH5Trojx8/LglrVk3Mzc3h5OQEJycnODs7c/uOjo5wcHBQccwtlGIfi5XKaE6oF9Kcf0hz/iHN+UfUmis7ulWYB69O7O3t0atXL/Tq1YtLKyoqwt27d8s49gkJCVyZ/Px8XLt2DdeuXVOpz8DAAI0bN0bz5s3RrFkzNG7cGI0aNULjxo1hb28v+ucHIRH1d11LIQeeIIASZ12HnHcFubm53Hy0Bw8ecJ+K/bS0tGrV6+joiLp166Ju3bqcU156c3R0hKmpqZpbRBAEQRDEKyk9hF5DMDAwgJeXF7y8vDBmzBguPSUlBbdv30ZUVBTCw8Mhk8lw+/ZtxCsWGUaJ8x8VFYWoqKgy9Zqbm6s49MqfDg4O5NwTooMceIK4dAkYOVIrnXfGGJKTkxEdHY179+4hJiYGsbGxiIuLQ3R0NN55550q1SeRSODs7Ix69eqpbK6urty+i4sLDGt5OJ5YoTfY/EOa8w9pzj+kOf+IWnMNdeArwt7eHvb29ujWrRs6d+7MaZ+ZmYk7d+4gKiqKc/CjoqLw8OFDyOVy7vysrCxcvXoVV69eLVO3mZkZ3Nzc4O7uzn0q71Pvvci/61oKOfCEbhMbCwwaBOTmlqzC+vvvonTe09LSEB0dzTnqyvtVWRTO0NAQbm5uaNCgAfdPTPGPrF69enB2dqY5ZjVg+/bt9I+QZ0hz/iHN+Yc05x9Ray4yB14ZZd0tLS3RoUMHdOjQQaVMQUEBHjx4gJiYGERHR6t8lnbus7OzcevWLdy6davc65mYmKg4+G5ubtwIw7p168LFxQUWFha112ANQNTf9WpQUFCA+fPnY8uWLUhPT4e3tze++eYb9OnTR2jTOCSspitLEYKRmZkJMzMzSKVSoU2pNvv27cOQIUMQHh6OwYMH83vxzEygQwfg7t2S49WrgQ8/5NeGKsAYw+PHjxEVFYVbt25xb5zv3buHZ8+eVaoOqVSK+vXrcw566U9nZ2eKLU4QBEEQ2szGjcB775XsP3gAuLsLag6fFBQUcKMQY2JicP/+fS5e/YMHD6oVCcfMzKyMU6+87+joCEdHR9SpU6cWWkSUR038i9GjR2P37t2YPn06GjdujLCwMFy6dAknTpxAly5dasniqkE98CLj8uXL+OKLL3D69GkUFhbi77//Rs+ePZGamooJEyYgODgY3bt3F9pMzYcxICjopfM+e7bGOO9yuRyPHj1ScdQVW3Z29mvPl0gkqF+/Pho3bozGjRujSZMm3H6DBg24HnR/f3+sX7++tptDKOHv70/xVHmGNOcf0px/SHP+EbXmIu6Br6nuRkZGaNq0KZo2bVomjzGGjIwMPHz4EHFxcWU+4+LikJ6eXua87Oxs3L17F3cVz5QVYGpqyi3Sq/hU3ldOs7a21pgOOlF/16tIREQEfv/9dyxduhQzZ84EALz77rvw8vLC7Nmzcf78eYEtLIEceBFx/vx59OzZE3Xr1sXYsWPx66+/cnl2dnbIzMzE2rVra92BF8PQkteydCkQHl6yP2gQIFBM0ezsbNy8eRORkZG4fv06IiMj8d9//1VqZXdbW1u0aNECTZs2VXHSPTw8YGxs/NrzdeXHWJMgzfmHNOcf0px/SHP+EbXmGrAKfXWpTd0lEgmsra1hbW0NHx+fcstkZ2fj6dOniI+P57bSxwkJCSguR9ecnBzExsYiNja2UvZYWVlxYXEVn8r75eVZWFhAX1+97p2ov+tVZPfu3ZBKpXj//fe5NGNjY0yYMAHz5s3D48eP4erqKqCFJZADLyLmzZuH5s2b48KFC8jKylJx4AGgR48e2LRpU63bERQUVGZoyYABA2o0tMTy4EHg0SM1W1oBmZnAV1+V7DdsCGzeXDL/vRZhjCE+Pl7FUb9+/TpiYmJeGx/d3t4enp6eaNGiBVq0aMHt13RhlYCAAOzcubPa5xNVhzTnH9Kcf0hz/iHN+UfUmou4B15o3c3MzNCkSRM0adKkwjJyuRwpKSmcc5+cnIykpCQkJyer7CclJSE1NVVlTr4yGRkZyMjIwP3796tkY506dWBpaQlLS0tYWFiofL4qzcLCAqampjAzM4OpqSkMDQ0hkUgE15xPrl27hiZNmpRZ18DX1xcAEBkZqREOPM2BFxGmpqZYtGgRpk2bhmfPnsHe3h5Hjx5FzxeLrv3666+YNm0acnNza82GiIgIdOjQQWVoSX5+Pry8vODg4FDloSWKOSr/AfCsBXtfibEx8O+/QAVvWV9HTrEMo67dwq2ssr3lMrkMBQUFKMgvKPksKIBcLntlfRKJHgyNDGFkaAQDQwMYGhjCwNAAUr3aGULFGNP5lVX5hjTnH9Kcf0hz/iHN+UfMmvc+dxrr5s8pOejVC/jhB8DLS1CbKktubq5WzSWXyWR49uxZGec+LS0Nz549Q1pamsr+s2fPkJmZyYttUqkUpqamKk596f3yjuvUqQMTExMYGxtz26uO9fX11f63pPAvVq5cyflJCuzt7eHg4FDueV5eXnB0dMSxY8dU0qOiouDp6Ymff/4ZkydPVqut1YF64EWEgYFBhW/pACA+Ph5mZma1aoNYhpa8jmKJBLLVq7HkwAH0LSxEfHw80tPT0a1bN6xevRorVqzg5vwEBgZixYoVWL9+PXx9fZGXl4f79+8js20HHAz9GvgoGAidB3y1EFi1Ahg1FrhwDnB2AQyNgHu3gTcHAL+sAT6d87LsL6uBgUOA/24AZmZgtnYouHoZBW+PAJYtAuZ8BcybVVJ206+AX08g7kFJA9wbAKeOA4ETX9a3OBSY/hmwdxfQph3wLBXIzga8vIE/w4FJU1+W/X4xMOlD4O+/gCbNgcICIOEp0LEz8PtWtbUJtnbA1cvA2yOAH74raZOiLLWJ2kRtojZRm6hN1Cbe23QwOwvJZuZwyM4Cjh2DrGVLSCdNwtT4eCzdtQvLly9H3759q/VsNGTIECxYsAA///wzV3bKlCn48ssvER4eDg8PD5iYmCAiIoJbu2nTpk1c2eDgYEydOhWnT5+GtbU16tatiyNHjmDGjBkICgpCy5YtERERgQMHDmDevHkYPXo0bt68CaAk3Nn27duxcOFCrr6AgACEhYVpdJt27tyJCRMmVLpNI0aMwLJly/D999/D29sbsbGxSEpKgqOjI44fP4433ngDu3btQocOHXDu3Dm4uLjg0aNHkMvlyM7ORkFBQaWelWUyGZ4/f47nz59Xqnx10dPTg0QigaWlJYqKimBhYQE9PT1IpVLY2toiOTkZnp6euHbtGrp06YIrV66gY8eOiI2NhaujI4xkMsiysuDp7o7bV66gX7du2PnHHwCAadOmlbneV199hZCQkHJtycvLg5GRUZl0xdTUvLw89TW8BlAPvIjo168fsrOzcfbs2TI98Dk5OfD09ET79u2xa9euWrOhT58+iI+PR1RUlEr6sWPH0Lt3b+zfvx/+/v6Vrk/xhiz488/h7dsRQMlbbcYAhhdfTcZUhpmX7L8o8yKdK88dl1+HonyRoSGKjIzKLV9YUIj8/Dzk5eUhLz8f+cqfeXnIzc1DTm4OYnr0RZ6rG5CZAVyJqLCN5uYWsLOz5eYoWVtba0Sc9NTUZ7CzsxXaDJ2CNOcf0px/SHP+Ic35R8yaH0x+Br3UZ1j3xza8Hf4HJC86h+T6+kgZPQbxwZ+iQENXpo+KikKLFi2ENkPUFMtkyM3NRU52NnJycpCdnYOcnJL9vLz8Ms/ACQmJMDIyKvfZOC83F3n5+Sh8xUsBCWMwlcthXmqzkMthLpfBXC6HqVwOU8ZQ58V+HZV9OerIGUyZHHVe5JnKS/YrCmx8C4AXQD3whPCEhobCz88PAwcOxOjRowEA169fR2xsLJYtW4aUlBR8+eWXtWpDQkICnJ2dy6Qr0p4+fVrhucnJyUhJSVFJe/Ri3vsKGAFSUzVaWgOMAFQlpOffh4BNvwAArK2t0aBBA5WNG+pVkAUkZAEJD9VucnW4cuUK2rZtK7QZOgVpzj+kOf+Q5vxDmvOPmDVPMLXGUUtLDHvvA3j27IdFm36B/6UL0CsuhuOWzbD9bSt2d/bD6oGDcdazJaBpUwXOXxXaAu1DYgKYmQDKA3kZg0lBAawaZcMqJxvW2dlwysmGVXY2rLOzYJmbA4vcXJjnKbY8WOTmwDwvr+Q4tyTNLD8PegL1F9evXx+enpWfpOvs7Iz4+Pgy6QkJCQAAFxcXtdlWE8iBFxEdOnTAX3/9hQ8++ADvvvsuAGDGjBkAAA8PD/z111/w9vauVRtqMrRkzZo1CA0NrTXbBKGwEO0yU/HUxQWjR4/GyZMn4efnhzt37iAhIQGpqamIj49H69atceTIEbz99tvYtm0bxowZg8OHD6N9+/Z4+PAhTExMYG5ujvv376NTp04IDw9HQEAAV/bo0aNo2bIlkpKSAACOjo64efMmevfuzZXZuXMnhgwZgn///RceHh7IyspCXl4e3NzccOnSJfTr148ru3fvXjg7O+Pu3buoW7cuioqKkJ6ejmbNmuHUqVPw9/fnyh44cIBrk7W1NQwMDDS2TX379sW1a9c0tk3NmjXD8ePHtapNmn6fTExMcPz4ca1qk6bfpwcPHuDu3bta1SZNv0/Hjx9Hdna2VrVJ0+/Tnj17YGFhIco2MWtb6A0eCbmeHm65N8BbXy1Em5h7mL99MwZfPA99uRyjzpzAqDMncMO9If43wB87uvZAunlVejcIjYAxmObnwzYrE3bPn8P2eSass0sccivOGX95bJ2d9WI/B1bZ2TAqLuLV3DxDQ+QaGSPXyAg5xiWfuUbGyDF6uf8yr/z9PEMjpMbcA7ZurPL1fXx8cOLECTx//lxlIbuLFy9y+ZoADaEXKZGRkYiOjoZcLoeHhwfatm3Ly2IqNRlaUl4P/PHjxzFt2jR0HDMOdT1bAHjZBuX2lG6bRCIplc/tlX+eXIai/KcozksquYJED4amrtA3cVAqX/Kpr68PAwMDGBgYQF9f/5VxOJ1lRbB7zeJ0mopivhTBH6Q5/5Dm/EOa8w9pzj9i1zxZTx9J0rL9eHXjHsDvrz/RKuIi9JVWqJdJpbjb0hvXOr2BW23aosDEhE9zOTIyMmBlZSXItYVGIpfDOC8XdbKyYZqdBdOsLNTJzoZpVhZMs7NR50Uat/8iT78WIw0U6+ujwNgY+SZ1UGBijAJjE+QbG6PA2BgFJnWQ/yKt5PhFOeMXaSbGyDc2QYGJCQqNjFBoZASmpqhQMVcuYf+K7xEeHo7BgwdX+ryLFy+iY8eOKot1FxQUwMvLC7a2trhw4YJa7Ksp1AMvUnx8fAR5C1SToSUODg5l5pzExMQAAOYEDKvSH1hlkctkuHnlL5w/tgH5hc8BzheXAHnxsDFzQ/cBH8KtUTu1X1vTCQ4OxmeffSa0GToFac4/pDn/kOb8Q5rzj1Zr/vlcIDkZWL8e+Pln4NEjSGUytIi8hhaR1wBDQ6BrV2DAAKB/f6BZM96G2QcHB2P5ihW8XKtWYQzIyQFSUl5uqamq+6mpwLNnqtsrFrOuFgYGgLU1YGX1cit1vPOffxDw/vtl8ywtoW9kBH0AGjIJlmOfmQn2r/i+yud16NABI0aMwNy5c5GcnIxGjRph06ZNiIuLw/r162vB0upBPfAiJCoqCrGxsUhPTy83hrhieH1tMGvWLKxYsQJpaWkqQ0sWLlyIzz//HI8eParSKvSKReyq+oasMjyMuYxTh/6HZ8lxKOldr/ir3qBJB3TrNwU29vXVagNBEARBEIRokcmA06eB7duB3buB9PSyZZycgM6dX24tWwIC9dALhlwOpKWpOuHlOeXKeZVcDb5S6OkBtrYvNzs71U/lfWvrl464iYnmrXGgBmriX+Tn5+PLL7/E1q1bkZ6eDm9vbyxYsAB9+/atJWurDjnwIuL+/fsYO3YsIiIiynXcgZIh4zJZ7Q3pVvfQktpw4NNSHuP0kZ/x4G7VbJHo6aGV72B07DEOJnUs1WKLJqMIR0LwB2nOP6Q5/5Dm/EOa849Oal5YCPzzD/Dnn8ChQ0BcXPnl9PSAxo0Bb++SrUULoGFDoEEDwLJmz1e86F5YWPKiIi3t5adi/9mz8h10dfaO6+uXONuKrbQDXp6DbmlZonstIMbvem12EGoC5MCLiN69e+PChQtYtGgRunbtCmtr63LLubm51aodAQEB2Lt3L4KDg7mhJRERETh27Bi6detWpbrU/Qf2+EEk/gibBVaDH1EjY1OMD96iE048QRAEQRBElWEMuHsX+Ptv4OzZku3FdMpXYm1d4si7uAD29i83B4cSR9TUtOxmaFjSS6ynp7oBQFFRicOt2AoKXu7n5ADZ2UBW1stP5f3sbCAzs6yjnpOjXq3MzEraaGf3sr2v2re01MpecT7Rdgee5sCLiHPnzmHevHn4+OOPBbVj8+bN+PLLL7FlyxZuaMnBgwer7LzXBpbWztCXGirNda86xiYWMDbR/pVWAwMDsWnTJqHN0ClIc/4hzfmHNOcf0px/dF5ziaRk7nuzZsC0aSUOfVwcEBEB3LjxcnsRLpgjPb1kuyrSUHASCWBjo/ry4XWO+YtITWJF57/rGgj1wIsIV1dXzJo1C9OmTRPaFLWh7W/INJm0tDTY2NgIbYZOQZrzD2nOP6Q5/5Dm/EOaV5KMDCA6Gnjw4OUWFwckJb0chl5YyK9NenqAufnLTTEv3Mbm5aZ8rLxvaQm8IjqRNiLG77q2+xdq6YHPycnBunXrsHfvXty6dQs5OTlwdnaGp6cnRo0ahYCAABgaGqrjUjrNlClTsHXrVkydOvWVoc0IojKsX78es2bNEtoMnYI05x/SnH9Ic/4hzfmHNK8kVlZA+/YlW3kwBjx/XuLIK4avl96KikrmlzOGUydOwK9rV+4YhoblbwYGJcPvzcxeOuqKfWNjGqJeBei7rnnU2IGPioqCv78/YmNjVdLj4uIQFxeHP//8E15eXhoT+F7MNGnSBDKZDK1atcJ7770HV1fXch35oUOHCmAdITZ8fX2FNkHnIM35hzTnH9Kcf0hz/iHN1YREUtKrXdnF7Xx9AT+/2rWJUIG+65pHjRz4tLQ09O/fH49ezG9xcXHBrFmz0LJlS2RlZeHUqVPYuHGjWgwlgJEjR3L7ihXgS1Pbq9Crm+zsbAAlq9sT/HL16lVkZGQIbYZOQZrzD2nOP6Q5/5Dm/EOaCwPpzj9i1FzhVyj8DG2jRg78smXLOOfd0tISERERqFu3Lpc/ZMgQzJ07F/r6tFaeOjhx4oTQJqidiIgIAMCiRYsEtoQgCIIgCIIgCG3h1q1bQptQK9TIs96xYwe3HxwcrOK8K3BwcKjJJQgl/LRwyNDAgQOxcuVKLF68GM2aNRPaHJ3h0aNHmDZtGlauXIn69esLbY5OQJrzD2nOP6Q5/5Dm/EOaCwPpzj9i1Tw7Oxu3bt3C+++/L7QptUK1Hfjs7GyVee9du3ZVi0GEbqF46TNo0CB4enoKbI3uoHgj2bNnT9KdJ0hz/iHN+Yc05x/SnH9Ic2Eg3fmHNNdM9Kp7YmZmpsqxi4tLjY0hXk9iYiK+/fZbDBs2DL1790bPnj1Vtl69egltIkEQBEEQBEEQhKi4dOkSPvroI3h6esLU1BT169dHQEAA7t27V6bs7du30a9fP5iZmcHGxgbjxo1DSkpKmXJyuRxLlixBgwYNYGxsDG9vb2zfvr1Gdla7B96y1GqRT58+pSHQtcyNGzfQvXt35OXloWnTprh58yZatGiBjIwMxMfHw8PDA66urkKbWSXi4+MBAAcPHkRMTIzA1ugOirUrjh8/TrrzBGnOP6Q5/5Dm/EOa8w9pLgykO/+IVXPlIfTu7u6VPu+7777DuXPnMGLECHh7eyMxMRGrVq1CmzZtcOHCBXh5eQEAnjx5gm7dusHS0hILFy5EdnY2li1bhps3byIiIkIlfPrnn3+OxYsXY9KkSWjfvj327duHMWPGQCKRYNSoUdVrIKsBDRs2ZAAYAPb111/XpCqiEvTv35+5urqyhw8fspSUFCaRSNixY8cYY4zt3LmT2drasosXLwpsZdWYOHEi9x2ijTbaaKONNtpoo4022mhTxzZ37twq+SXnzp1jBQUFKmn37t1jRkZG7J133uHSPvjgA2ZiYsIePnzIpf3zzz8MAFu7di2X9uTJE2ZgYMCmTp3Kpcnlcta1a1dWr149VlxcXFXXiTHGWI0WsRs5ciS3evj333+PCRMmlBlKn5ycDH19fdjY2NTkUgSAc+fOYfbs2ahfvz7S0tIAlAzLAIARI0bg7NmzmDVrFk6dOiWkmVWidevWAIC5c+eiQ4cOAlujW2zZsgXjxo0T2gydQlM0P3bsGFJSUmBvb6/2aTeff/45bt26BU9PT3z77bdqrbs6aIrmugRpzj+kOf+Q5sJAuvOPGDW/ePEiFi1aVOV5+2+88UaZtMaNG8PT0xO3b9/m0v744w8MGjRIZWG/3r17o0mTJti5cye3eN6+fftQVFSEDz/8kCsnkUjwwQcfYMyYMfj333/RpUuXqjavZqvQz5w5E7/99hsePXqEjIwMdOjQATNnzuTiwJ88eRIbN27EyZMnyYFXA3K5HI6OjgAAKysrSKVSzpEHgJYtW2L9+vVCmVctFIvYdejQAYMHDxbYmioikwFz5gDXrgltSbUYDAA//SS0GTqFpmjePiEB+Xl5MDYxgUtUlPoqNjLCGT093AJgZ2enEX/TmmCDrkGa8w9pzj+kuTCQ7vwjZs3NzMxqXAdjDElJSdzLgPj4eCQnJ6Ndu3Zlyvr6+uKvv/7ijq9duwZTU1M0b968TDlFPu8OvI2NDQ4dOgR/f3/ExsbiyZMnmD59ek2qJF5BgwYN8ODBAwCAnp4eGjRogKNHjyIgIAAAcP78eVhZWQlooY5x9iywbJnQVhBElVEZJ6VOBx7Ah6amWK7WGmuGv78/Dhw4ILQZOgVpzj+kOf+Q5sJAuvOPmDV/9OhRmVjw9vb2VQpz/ttvvyE+Ph5ff/01ACAhIQEA4OzsXKass7Mz0tLSUFBQACMjIyQkJMDR0RESiaRMOaBkDbnqUO1V6BW0aNECN27cwPfff48uXbrAxsYGhoaGcHV1Rd++fbFp0ya0aNGippchALz55pvYtWsXd/zBBx/g119/Re/evdGrVy9s2rQJY8aMEdDC6nP16lWcOnUKS5cuRVpaGgIDAwGU/GgAQHBwMGJiYrBhwwbs3bsXERERWLBgAXJzc7kXGIqy8+bNw82bN7Ft2zZs27YNN2/exLx581TKBAQEIDc3FwsWLEBERAT27t2LDRs2ICYmBsHBwSplAwMDkZaWhqVLl+LUqVM4fPgwVq9ejWfR0Zz99y0sgM6dEePkhIL27fG0YUOkt2iBTC8vPHF3R1GHDrhnbw907owoa2ugc2fEurggr21bJDVqhGfNmiHL2xuP6teHrFMn3LG1VSkbV68eclq3RnKTJkhu0gQ5rVsjrl49lTJ3bG0h69QJj+rXR5a3N541a4akRo2Q17YtYl1cVMres7fH09atcdnZGdcaNsLVBg1x2aUurjdvgQgbW9z09sEFcwvc9PZBhI0trjdvgcsudXG1QUNca9gIl52dcb2FFy5aW6uWtbPH9abNcaWeK666ueNao8a45OiEG17euGhppVL2kr0DIps0xRVXN1xxdUNkk6a4ZO+gUuaipRVueHnjkqMTrjVqjKtu7rhSzxXXmzZHhJ29allra1xv4UVtqkSbLljbIKJBQ0Q4u6itTWnW1gAAQz09oKUPEhISqvT3FB8fjylTpqiUnTJlCuLj47F69WocPny4Wr8RO3bsEOw3orbaJOTvXmXaNHPmTK1rk6bfp27dumldmzT9PpmYmGhdm8Rwnw4cOKB1bdL0+7Rp0ybRtembb74BAEybNg1eXl4q25o1a1BZ7ty5g6lTp6JTp06cBnl5eQAAIyOjMuWNjY1VyuTl5VWqXFWRMMZYtc4keCc9PR2xsbHw9vaGgYEBGGP49ttv8ccff0AqlWLQoEGYN2+eysqHms6+ffswZMgQhIeHi2+Izs6dwMiRJfu3bgEie1Hl+e0SRPm0F9oMQkv4edX3mHz4IBKsbeDS3x9+8XE4efKk0GYhICAAO3fuFNoMnYI05x/SnH9Ic2Eg3flHjJor/IuVK1eiZ8+eKnmV7YFPTExE586dUVRUhAsXLnDrvF2+fBnt27fH5s2by6wNMHv2bCxduhT5+fkwMjLCoEGDcPv2bdy/f1+lXG5uLkxNTTFnzhxuPbmqUKMh9AR/MMYglUrh6ekJAwMDACWLIHzxxRf44osvBLZORykqern/4p6IiWmjRmJ7ctrrCxJqQy6XQU9PKrQZSExMRH5BPoyNjOHk5KSWOh1NTAAA+kVFQFKiWupUB2FhYUKboHOQ5vxDmvMPaS4MpDv/iFnz+vXrV3khOwDIzMxE//79kZGRgTNnzqgs0q4Y/q4YSq9MQkICbGxsuF53Z2dnnDhxAowxlWH0inNLL/5eWciBFwmFhYWwsbHBwoULMXv2bKHNIQDRO/DJ2zbj5JdfCm2GTrFgwQJ8qQGah4WF4eHDh3Bzc0PQ2/3VU2m9khcBRvl5wLEjgJ+feuqtIcuXL9cIzXUJ0px/SHP+UZfmxcXFSE9PR3Z2NmhQ7OuJioqiqbk8o0maSyQSmJmZwdraGvr6tePG5ufnw9/fH/fu3cPRo0fLtL1u3bqwt7fH5cuXy5wbEREBHx8f7tjHxwe//vorbt++rVLPxYsXufzqUOM58AQ/GBkZwcnJqdx5FIRAiNyB79u3r9Am6Bxarbm0ZGSBnoY9gGq15hoKac4/pDn/qENzxhiePHmC1NRUFCk/UxAV0qRJE6FN0Dk0SfOioiKkpqYiPj6+Vl54yWQyjBw5Ev/++y927dqFTp06lVtu2LBhOHjwIB4/fsylHTt2DPfu3cOIESO4tMGDB8PAwEBl3j1jDD///DPq1q1bbti6ykA98CIiKCgImzdvxgcffCCqee5ai8gd+Pj4eKFN0Dm0WvMXb8Kl5fxDffToEdLT09GyZUvo6fH73lirNddQSHP+Ic35Rx2aZ2VlIS8vD5aWlnB2di6zUjVRlvT0dFi/WDSV4AdN0pwxhoSEBGRmZiIrKwsWFhZqrX/GjBnYv38//P39kZaWhq1bt6rkjx07FkDJwny7du1Cjx498MknnyA7OxtLly5Fy5YtMX78eK58vXr1MH36dCxduhRFRUVo3749wsPDcebMGfz222+QSqs3rZIceBHRsmVLhIeHw9PTE0FBQXB3d4fJi3mnygwdOlQA615PcnIyUlJSVNIePXokkDVqQOQOfHp6utAm6BxarXkFDnxubi42btwIAJDL5WjdujWvZmm15hoKac4/pDn/qEPz58+fAwAcHBzIea8kMplMaBN0Dk3SXCKRwMHBAZmZmXj+/LnaHfjIyEgAwIEDB8oNnadw4F1dXXHq1Cl8+umnmDNnDgwNDTFw4EAsX768zGjpxYsXw9raGmvXrkVYWBgaN26MrVu31ihyGK1CLyIq03MlkUg06g9NmZCQEISGhpabZ2trCzMzMzRt2hRr1qxB27Zt4eLigsePHyMrKwtt2rTB8+fPkZubi5EjR8Lb2xufffYZbG1tkZmZiadPn8LR0RG2trZITk7GypUrce7cOYSHh8PY2Bi2traIiIiAubk5XF1d8eTJE0RFRSEwMBCxsbEoLi6Gn58fxo8fj4CAADg6OiIxMRFpaWnw8PCAvr4+MjIyMGPGDBQWFmL16tX4pLgYc1JTAQCuVlYwd3ZGQkICDhw4gJUrV+LChQvQ09PT2DYxxpCTk6PSJnNzc0gkEty9exc2NjZwcnISVZvKu0+a1CZHR0ckJycL3qZ27dohKSkJRUVFGD16tFru0/3Ro2G/bh2KAdhaWKBFixb45ptvMHz4cOjr6yM7OxurVq3CwoULeb1P5ubmyMvL0/nvHp9tkslkXKgebWmTpt+nZ8+eYfbs2VrVJk2/T48ePcKdO3dq1KbZs2eja9euaNeuHa5duwYDAwMUFRWhUaNGSE5ORk5ODoCSkFP169fH7du3YWBggMLCQrRp0wZRUVGQyWSQy+WwsbGBiYkJnjx5An19fchkMrRq1QqRkZHQ19dHcXExXF1dkZ2djYyMDOjp6UFfXx/NmzfH1atXYWhoiMLCQnh5eeHBgwcoKCgAAJiZmcHOzg6xsbHQ19dHUVERWrdujZs3b0IikaC4uBhOTk6Qy+VISUmBnp4eJBIJvLy8aqVNTZs2xZ07d7SqTZp+n5ycnHD//n2NalNBQQGOHTsGiURS7m+EmZkZcnJyxBnlqhKQAy8iTp06ValyfhqyeFRpyuuBP378OKZNmybOP7BFi4AXcSyRnw+IbH2C4OBgrFixQmgzdApt1nyjmxvGK0bUyOXAi96kBw8eYPPmzQAAd3d3Lo4qX2iz5poKac4/pDn/qEPz2NhYMMbg4eGhJqu0n8ePH8PV1VVoM3QKTdT8/v37kEgkaNiwYbn5og5TXQloCL2I0FTHvLI4ODiUibsYExMjkDVqQORD6Olhj3+0VfOsrCzEKk+Hkcu5Re2Ki4u55OrO9aoJ2qq5JkOa8w9pzj/q0pyGzlcNTXMkdQFN1FzX/25oFXoRIpPJEBERgZ07d2Lnzp2IiIjQ2GHzWo3CgdfTK9lEhr+/v9Am6Bzaqvnu3btRrJyg5LQrO/C1FfLlVWir5poMac4/pDn/kObCEB0dLbQJOgdprnmIz+vQccLCwlCvXj106tQJo0aNwqhRo9CpUyfUrVsXGzZsENo83ULhwIuw9x1AuYtzELWLtmoeFhYGlVeISi8UlV8uCtEDr62aazKkOf+Q5vxDmgtD48aNK8xTLPBMqJdXaU4IAznwImLt2rV477334OzsjDVr1uDYsWM4duwYVq9eDWdnZ0yaNAk///yz0GbqDgoHXoBeRXXA91xkQjs1f/DgAU6fPq2xPfDaqLmmQ5rzD2nOP6S5MDx48KDSZXNzcxESEoKTJ09W+3rnz59HSEgIMjIyql2H2KmK5gQ/iNPz0FG+++47dO3aFUePHoWBUq9vjx49MGHCBPTs2RNLlizBlClTBLRShxB5DzzNmeQfbdT8t99+A4AKe+CLlNaKoDnwugFpzj+kOf+Q5sLwqvnYv/zyC+RyOXecm5vLRT/q3r17ta53/vx5hIaGIigoCFZWVtWqQ+xo4hx4XYd64EVEYmIiAgICVJx3BQYGBhg1ahSSkpIEsExHEbkDv379eqFN0Dm0UfPdu3cDQIU98IWFhdy+EA68Nmqu6ZDm/EOa8w9pLgypL8L3loeBgUGZGNyaCGMMeXl5QptRaV6luTKK0HNE7UMOvIho3bo17t27V2H+vXv34PP/9u47ron7/wP46wIhAcIegoiA4gQR9xZXq63ixNFqHdVqHbXa1l+rtlZra4dt1Wprta3it7VWrXvgxj3rBlREQJEte4ckn98fyElkiBrukvB+Ph5Rcne5e9/7kwu8c5+7j7+/cAHVdgZewLdv317sEGodY8v53bt3cf36dQCApsx0pkcFvLHl3BBQzoVHORce5fzZ4uPj8fbbb6NOnTqQyWTw8fHRul9TQUEBmjZtiqZNm2oVtOnp6XB1dUXnzp217qMSEhKCoKAgWFlZwdraGu3atcPff//Nzy97DXxsbCycnJwAAIsWLQLHceA4DgsXLgQA3LhxA+PHj0eDBg34sc7ffvttpKWl8etbuHAh5syZAwDw8vLi1xEbGwug5BKxxYsXo2HDhpDJZPD09MS8efP4ccxLeXp6YsCAATh48CDatm0Lc3NzrFmzBgEBAWjZsmWFuWvSpAn69u1bZX5L13v69Gm0b98ecrkcDRo04IduLSszMxOzZs2Cu7s7ZDIZvL298e2332r1WDh+/Dg4jit3ycGjR4/AcRyCg4O1cq1QKHDv3j28/vrrsLKywujRowGUFPIffvghv60mTZrg+++/x9Mjl3MchxkzZmDnzp3w9fXl3yMHDhyocr8JdaE3KCtXrkT//v3RoEEDTJ48Gebm5gBKPgB//fVXbNmyBfv37xc5ylrEwAt4Q/r211gYW863bdvG/9y6fXvg4kUAgLqoiP/lUrYL/dO/vIVgbDk3BJRz4VHOhUc5r1pycjI6duzIF2lOTk4ICQnBxIkTkZ2djVmzZsHc3BwbNmxAly5dMH/+fPz4448AgOnTpyMrKwvBwcH8F7/BwcF4++230axZM8ydOxe2tra4evUqDhw4gDfffLPc9p2cnLB69WpMnToVQ4YMwdChQwEAfn5+AIDDhw8jOjoaEyZMgIuLC8LDw7F27VqEh4fj/Pnz4DgOQ4cORWRkJDZt2oRly5bB0dGRXzcATJo0CRs2bEBQUBA+/PBDXLhwAV9//TVu3bqFHTt2aMVz584dvPHGG5gyZQreeecdNGnSBAqFAu+88w7CwsLg6+vLL3vp0iVERkbi008/fWaeo6KiEBQUhIkTJ2LcuHFYt24dxo8fjzZt2sDHxwdAyaUEAQEBiI+Px5QpU1C/fn2cPXsWc+fORWJiIpYvX17lNsoW+WWpVCr07dsXXbt2xffffw8LCwswxjBw4ECEhoZi4sSJ8Pf3x8GDBzFnzhzEx8eXu/Tk9OnT2L59O6ZNmwYrKyv89NNPGDZsGB48eAAHB4dn7n+txYjeatGiRbmHm5sbk0gkzMzMjHl6ejJPT09mZmbGJBIJc3NzY35+fmKH/Vx27tzJALCdO3eKHcrze+MNxgDGvL3FjuSFrFq1SuwQah1jy3mbNm0YANasWTO2d9iwkuMBYAW3b/PL7Nmzhy1cuJAtXLiQ7d27V/AYjS3nhoByLjzKufB0kfN79+6xe/fu6SAa/TNx4kTm6urKHj16pDV91KhRzMbGhuXn5/PT5s6dyyQSCTt58iTbunUrA8CWL1/Oz8/MzGRWVlasQ4cO7P79+1rr02g0/M/jxo1jHh4e/PPU1FQGgH3++efl4iu7/VKbNm1iANjJkyf5aUuXLmUAWExMjNay165dYwDYpEmTtKZ/9NFHDAA7duwYP83Dw4MBYAcOHNBaNjMzk8nlcvbxxx9rTZ85cyaztLRkubm55WIsq3S9ZeNNSUlhMpmMffjhh/y0xYsXM0tLSxYZGan1+k8++YSZmJiwBw8eMMYYCw0NZQBYaGio1nKXLl1iANj69ev5aePGjWMA2CeffKK1bOnf9V9++aXW9KCgIMZxHIuKiuKnAWBmZmZa065fv84AsJUrV1a57886dgy6vqgGOgOvx+zt7cFxnNY0BweHcsM50JAZIjHwM/CDBw8WO4Rax5hyHhMTg8uXLwMAgoKCwEVF8fOKCwogf/xz2S70ZbtCCsWYcm4oKOfCo5wLr6ZzPmvWLFy7dq1Gt1Fd/v7+zzxLWxZjDNu2bcOIESPAGNO6hrpv3774559/cOXKFXTp0gVASVf1vXv3Yty4ccjNzUVAQABmzpzJv+bw4cPIycnBJ598AhcXF61tPf13cnWV9mIFgMLCQuTm5qJjx44AgCtXrqBbt25Vvr60x+sHH3ygNf3DDz/E999/j3379qFnz578dC8vr3Jd4m1sbDBo0CBs2rQJX3/9NTiOg1qtxubNmzF48GBYWlo+cz+aN2+uFauTkxOaNGmC6OhoftrWrVvRrVs32NnZabVFnz598M033+DkyZN89/eKWFtbVzpv6tSpWs/3798PExMTrfYDSvLy77//IiQkBDNmzNCKoWHDhvxzPz8/WFtba8VPyqMCXo+9zLAXRAAGXsAvXryYhh0UmDHlfPfu3fzPw4YNQ+Ljro8AoCpz/Z/YXeiNKeeGgnIuPMq58Go659euXcOJEydqbP01KTU1FZmZmVi7di3Wrl1b4TIpKSn8z2ZmZli3bh3atWsHuVyO9evXaxXm9+7dAwD4+voiMTERHh4eLx1jeno6Fi1ahH/++UcrFgDIysp65uvv378PiUQCb29vrekuLi6wtbXF/fv3taZ7eXlVuJ6xY8di8+bNOHXqFLp3744jR44gOTkZb731VrX2o379+uWm2dnZISMjg39+9+5d3Lhxg+/6/7Sn97+6801NTVGvXj2taffv30fdunVhZWWlNb1Zs2b8/OeNn5RHBTwhL8rAC3j6Y094xpTz0rMP7u7u8PPzQ1KZMd7VZQp4sc/AG1PODQXlXHiUc+HVdM716abEzxtL6TXTY8aMwbhx4ypcpvRa9FIHDx4EUHI2/O7du5UWvLoo3gFgxIgROHv2LObMmQN/f38oFApoNBr069ev0mu+K1LdHgBlz/iX1bdvX9SpUwd//fUXunfvjr/++gsuLi7o06dPtdZb2c1hy35hrtFo8Morr+D//u//Kly2cePGACrfF1dX1wqny2QySCQvdz/06sRPyqMC3gA9ePAA0dHRyMjIqPANXnqjDlLDDLyADwwMxJ49e8QOo1Yxlpzn5eXxPYRef/11cBwHiZkZP7+yAv55/ijSFWPJuSGhnAuPci68ms7583RZ1zdOTk6wsrKCWq2uViF648YNfPHFF5gwYQKuXbuGSZMm4ebNm7CxsQEAvot1WFgYGGPlLiWtTGUFaUZGBo4ePYpFixZhwYIF/PS7d+9Wex0eHh7QaDS4e/cuf3YZKLl5X2ZmZrW/aDAxMcGbb76J4OBgfPvtt9i5cyfeeecdnY7a0rBhQ+Tm5j6zLezs7ACU3LG+rDNnzlR7Wx4eHjhy5AhycnK0zsLfvn2bn09eHg0jZ0AePHiAPn36wMvLC71798awYcMQFBSk9Rg+fLjYYdYeBl7A0x97wjOWnIeGhvKF+euvvw4AkJQ5DlR6VMAbS84NCeVceJRz4VHOK2diYoJhw4Zh27ZtCAsLKzc/NTWV/7m4uBjjx49H3bp1sWLFCgQHByM5ORmzZ8/ml3n11VdhZWWFr7/+Gu7u7lrrqupMrYWFBYDyBWlpcfz0ayv60qT0OvSn11H6u+/p15TeSb9///6VxvW0t956CxkZGZgyZQpyc3MxZsyYar+2OkaMGIFz587xvRzKyszMhOrx0K8eHh4wMTHByZMntZYpe8ncs7z++utQq9VYtWqV1vRly5aB4zi89tprL7AH5Gl0Bt6AjBs3DufOncMnn3yCDh068N9MEpEYeAH/7rvvUrdLgRlLzku7z5uZmaFXr14AoLdn4I0l54aEci48yrnwKOdV++abbxAaGooOHTrgnXfeQfPmzZGeno4rV67gyJEjSE9PBwB8+eWXuHbtGo4ePQorKyv4+flhwYIF+PTTTxEUFITXX38d1tbWWLZsGSZNmgR/f3+MGzcOdnZ2uH79OvLz87Fhw4YKYzA3N0fz5s2xefNmNG7cGPb29vD19YWvry+6d++O7777DsXFxXBzc8OhQ4cQExNTbh1t2rQBAMyfPx+jRo2CVCpFYGAgWrZsiXHjxmHt2rXIzMxEQEAALl68iA0bNmDw4MFaN7B7llatWsHX1xdbt25Fs2bN0Lp16xfIeOXmzJmD3bt3Y8CAAfwQc3l5ebh58yb+/fdfxMbGwtHRETY2Nhg+fDhWrlwJjuPQsGFD7N27Fw8fPqz2tgIDA9GzZ0/Mnz8fsbGxaNmyJQ4dOoRdu3Zh1qxZWjesIy9BtPvfk+cml8vZggULxA5Dpwx6mIf27UuGzerbV+xIXsjDhw/FDqHWMYacazQafuiaV155hZ9+/JNP+GHkov/+m5++dOlSfhi5v/76S/B4jSHnhoZyLjzKufB0kXNjHkaOMcaSk5PZ9OnTmbu7O5NKpczFxYX17t2brV27ljHG2OXLl5mpqSl77733tF6nUqlYu3btWN26dVlGRgY/fffu3axTp07M3NycWVtbs/bt27NNmzbx858eRo4xxs6ePcvatGnDzMzMtIaUe/jwIRsyZAiztbVlNjY2bPjw4SwhIaHCYecWL17MD+OMMkPKFRcXs0WLFjEvLy8mlUqZu7s7mzt3LissLNR6vYeHB+vfv3+Vufruu+8YALZkyZJnZPXZ6w0ICGABAQFa03JyctjcuXOZt7c3MzMzY46Ojqxz587s+++/Z0qlkl8uNTWVDRs2jFlYWDA7Ozs2ZcoUdvXq1QqHkbO0tKwwrpycHDZ79mxWt25dJpVKWaNGjdjSpUu1hvxjrGQYuenTp1e4X+PGjaty32v7MHJUwBsQb29vtmzZMrHD0CmDPsBatSopWAYMEDuSF0LjBgvPGHIeERHBADAA7Mcff+Snn1ywgC/g75b5Jf/VV1/xBfz//vc/weM1hpwbGsq58CjnwqNx4MWRnJwsdgg1Yvny5YzjuHLj3OsDfcx5bS/g6Rp4A/LRRx/hjz/+QH5+vtihEMDgu9BTNybhGUPOjx49yv9cdkxbk7Jd6B93m2eMaQ0jJ0YXemPIuaGhnAuPci48yrk4ZDKZ2CHoHGMMf/zxBwICAiocVk1sxphzQ0fXwBuQKVOmQK1Wo1GjRggKCkK9evXK3aWS4zitG3+QGmTgBXxlQ5qQmmMMOQ8NDQUA1KlTR+vOuxVdA5+Xl6f1WjEKeGPIuaGhnAuPci48yrk4XnbYMn2Sl5eH3bt3IzQ0FDdv3sSuXbvEDqlCxpRzY0EFvAEJCwvDd999h8TERKxcubLCZaiAF5CBF/AXL15EQECA2GHUKoaec41Gww8f17NnT63hdSo6A5+SkqL1ejHGgTf0nBsiyrnwKOfCo5yLIy8vT2t4MkOWmpqKN998E7a2tpg3bx4GDhwodkgVMqacGwsq4A3I5MmTkZWVhTVr1tBd6PWBgRfwEydOFDuEWsfQc37z5k3+zsFP32HXpEwXO83jAr7sUEGAOGfgDT3nhohyLjzKufAo5+JwdHQUOwSd8fT0rHIYPH1hTDk3FtQnwoBcu3YN8+bNwzvvvAM/Pz94eHhU+CACMfACnnpqCM/Qc37s2DH+56cL+LLjwGseHxtPn4EXo4A39JwbIsq58CjnwqOciyMuLk7sEGodyrn+oQLegHh5eYkdAinLwAv4ysZNJTXH0HNeev17vXr14O3trTWv7Bn40mvg9eEMvKHn3BBRzoVHOReernJuCGdg9Qn9LSw8fcx5bT9uqIA3IIsWLcLPP/9M34TpCwMv4AMDA8UOodYx5Jyr1WqcPHkSQPnr3wHAVC7nf9aoVGCMlSvgxbgG3pBzbqgo58KjnAtPFznnOE6ULzYN2d27d8UOodbRx5xrNJpyf4fUJnQNvAE5efIkbG1t0aRJE/Tp0wfu7u4V3oV+xYoVIkVYyxh4Ab9nzx6xQ6h1DDnnYWFhyMrKAgD06NGj3PyyN7HTKJUoLCxEYWGh1jJi/KFqyDk3VJRz4VHOhaeLnEulUhQWFkKlUsHUlP4kr45GjRqJHUKto285V6lUUKlUtXokCDoDb0BWrVqFGzduoLCwEHv37sXq1auxatWqcg8iEAMv4On6PeEZcs7Pnj3L/9ylS5dy88t2oWdKJTIyMvjn8sdn5+ka+NqBci48yrnwdJFza2trACX3C6ntXYKri3qhCk+fcs4Y4++vU3r81Eb0dZ8BoW5WeoQxQKUq+dlAC/jp06eLHUKtY8g5Ly3g7e3t0bhx43LzTcvehb64WKuAd3BwQHx8vChd6A0554aKci48yrnwdJFzKysrWFhYICsrC7m5uTAxManV3YKrQ61WIzo6WuwwahV9yTljDGq1Gmq1GhYWFrV6aDs6A0/Iiygt3gGDLeBLr2cmwjHknJcW8J07d67wD0yTZxTwgDhfQhpyzg0V5Vx4lHPh6SLnHMfBzc0Njo6OkEqlVLxXw4MHD8QOodbRl5xzHAepVApHR0e4ubnV6uOFzsAboPPnzyM0NBQpKSmYNm0aGjVqhPz8fNy+fRuNGzeGQqEQO0TjV9p9HjDYAt7Ozk7sEGodQ815UlIS/+17p06dKlym7Bl4VlyMzMcFvIWFhahd6A0154aMci48yrnwdJVzU1NTODk5wcnJSSfrM3bXr19HgwYNxA6jVqGc6x86A29AlEolhg4dii5dumD+/Pn46aef+OtSJBIJXn31VbqBnVCMoIB3c3MTO4Rax1Bzfu7cOf7nzp07V7iM1l3oy1wDb2dnx99sU4wC3lBzbsgo58KjnAuPci4OyrvwKOf6hwp4A/LZZ5/xN6+7c+eO1g1P5HI5hg8fjl27dokYYS1iBAX8wYMHxQ6h1jHUnJcW8CYmJmjXrl2Fy2idgVep+ALe1tYWEknJrxoxroE31JwbMsq58CjnwqOci4PyLjzKuf6hLvQGZNOmTZg6dSomT56MtLS0cvObNWuGrVu3ihBZLWQEBfyHH34odgi1Tk3mXKVSoaCgAAUFBSgsLOR/ftnnhYWFCA8PBwD4+/vD0tKywu2XPQPPiouRnZ0NALCxseELeDHOwNP7XHiUc+FRzoVHORcH5V14lHP9QwW8AUlJSUGLFi0qnW9iYoL8/HwBI6rFjKCAHz9+PLZs2SJ2GLUGYwxjxozBmjVrkJeXV+6Rm5tb4fRnzcvLy0NBQYEgZ7e7detW6TxpmQJeVVTEF+vW1tYoKCjg52k0Gr6gFwK9z4VHORce5Vx4lHNxUN6FRznXP1TAGxB3d3fcvn270vlnzpyBt7e3gBHVYkZQwNOHcfWo1Wrk5OQgOzv7hR5lX6vRaLBjxw6xd6kcMzMzmJubQy6Xw9zcXOshl8shl8tRt25dfPLJJ5WuQ2puzv+sKizkf7aysoJSqeSfC13A0/tceJRz4VHOhUc5FwflXXiUc/1DBbwBefPNN/Hjjz9i2LBh/DjMpUMo/Pbbb9iyZQu++eYbMUOsPYyggA8MDMSePXvEDkMQhYWFyMjIeO5HVlYW8vLyRIlZIpHA0tISlpaWUCgU/M9lHwqFAhYWFlrF9tPF97Oey+Vy/iZzLxVvmeNAVVTE/2xtba01pJzQ3ehr0/tcX1DOhUc5Fx7lXByUd+FRzvUPFfAGZP78+Th//jy6d++OZs2ageM4zJ49G+np6Xj48CFef/11zJ49W+wwawcjKOAN8cOYMYbc3Fw8evQIqampePToUaU/ly3EC8ucEa4pCoUC1tbWlT6srKygUCgqLcafLtRlMplhjXFa5ksAdZkC3srKSuuMu9AFvCG+zw0d5Vx4lHPhUc7FQXkXHuVc/1ABb0DMzMxw4MABbNy4Ef/++y/UajWKiorg5+eHL7/8Em+99ZZh/cFvyIyggJ83bx6WLFkidhgoKipCcnIykpKStB6VFehFZYpDXbGysoKdnV25h62tLWxsbKoszK2trWFpaVmts9jz5s2rshu6QZNIoAZgAkBdpsu8QqHQKuCFvhO9vrzPaxPKufAo58KjnIuD8i48yrkeYoSIaOfOnQwAu+jjw1hAQPkFRo4smf7119rTr14tmR4QUPJzWV9/XTJ95Mjy6yt9zfr12tNDQp7MS0zUnvf++yXT33//ybS1axkDSh4tWpS8vqz165+sT0/3KadtW+19YqxkudLXvMQ+aTQalpKSwiK3bGFpfn4ssWlTFjxrFvvggw/Ym2++yXr27Ml+cHJip0xN2SaA4alH6OPHuKem9y0zr85T81ZwHDsjlbI/HRxYjx492NChQ9nEiRPZoqlTWayXF3vYqBEL/fhjduDAAXbhwgUWGRnJsn/6iWm6dxesnXLatn359x5jOmsnXexT2fde0eNj4oSrK4vx8GAPGjRgLDGRXbp0iS1cuJAtXLiQFU2dKug+5bRtK85nRA3uk2ife9Xcp5y2bY1un/S9nVJHjza6fdL3dnqweLHR7ZMhtNONGzeMbp+06OE+aeXcQPbp0IIFDADbuXNn+W0aAToDT/SCxeNhqso5fx64fx/w9NSenpkJnDjx5Oeybt8umefhUX59pa/p0UN7elLSk3lPd7e+du3JPMaA334D3n33yfybN0teX1Zs7JPX6Ok+Kf77D3h6SLDCwievGT9ee16ZfUpOTsbDhw8RFxeHhw8fYnRICOyys3Hg9m3M+P13PHz4EEVFRQgAcPzxy9ffvo2yGRkLoCuA2PJ7hNI9uWFnhztNmsDR0RFOTk7om5SEHiEhAIC/fvsNCl9fODo6wtHRETaDB4M7cQKdfX0xJjRUO+7VqwEAbk2bAn37Ppm3cSNw8mQFEaBG2klRGk9Z1X3vlVXNdiqnht97KgBmAGRFRfBMTORjLXsGXnLjBnDmjGD7pHjJfeIZUTvxamifFOVfZfD7VCE92id1s2ba041gn8rRs33KdHCAe9npRrBPhtBONxMSnozIZCT7pEUP9+nmzZtPcm4g+2Ti51d+vhGhAt7AnD59GuvWrUN0dDQyMjLAGNOaz3Ecrl+/LlJ0Ly7fxwdwdCw/o2PHkg+Jpk21p9vaAgEBT34uq2nTknkuLuXXV/qapz94XFyezCszHBYAwN+/5H9fX2DiRGD9+pLnEknJh1H9+uW35en5ZH16uk/JKSmoU7pvpeRyqLt1Q2FhISLi4nDpl18QGxuLuLg4tLh8Gb1kMhQplejxVByOAFwAHE9Oxr3kZH56Jp4U8JkA5HI5XF1d4eLiApOsLERmZkJpb481773HT3dxcYFm9GhIJBLMHD8eM8v+YjlwAHg8VGKfAQO081G6LxXsE58HkdspOSUFdV7kvafH+8RvE4CG4wDGUAAg1sMDFhYWcJbLtQp4la8vTE1NBdun5JQU1BHqM8JA2olXQ/uUnJKCOk/HYOD7VCE92qcMc3PtnBvBPul7O+U+/TeLEeyTQbRTQsKTecayT2XRPj2J6SX2SW1nV3H8RoJjT1eARG/9+OOPmDNnDuRyOZo0aQIbG5sKlwste/ZRz+3atQuDBw/Gzp07MWjQILHDqVxKCjBgAHDpUslzFxdg61aga1dx43oBSqUSDx48wLFjx8BxHGJiYhAbG8v/n/R0b4JqMDU1hZubG+rVq8c/3Nzc4ObmxhflLi4usLKyqtX3adD6FtsIZUkksGEM/zg74860aWjdujUCAwNx48YNfvi86dOnw7GiL+tqiLHnXB9RzoVHORce5VwclHfhGWLODaa+eEF0Bt6ALF26FF26dMGePXsqLd5JDYiOLul2HRVV8rxbN2DzZsDVVdy4qqBUKhEdHY3IyEjcvXsXd+/eRWRkJKKiovDw4cNyPTeqIpVKtQpzd3d3ref16tWDs7OzToYiM3abNm0yuF+Cz0P9+Aw8Ht+ozvLxJRpl3xtC34Xe2HOujyjnwqOcC49yLg7Ku/Ao5/qHCngDkp+fj9GjR1PxLqTr10uK99Ju4ePGlVwDrwd3nler1bh//z4iIyPLFer379+vdqFkYmICd3d3eHp6wsvLS+t/T09P1K1bl4pzHTH2u7iqH/eukDx+75UW8GIOI2fsOddHlHPhUc6FRzkXB+VdeJRz/UMFvAHp2bMnbt68KXYYtUdYGNC7N5CWVvL8k0+AJUsAgbuAq9VqREdHIzw8HBEREYiIiEB4eDhu375d7fHNbW1t0ahRIzRq1AgNGzaEl5cX1q5di02bNsHNzQ1SPfhCojYIDAw06vFUNY+PDe5xDw8LCwsA4hbwxp5zfUQ5Fx7lXHiUc3FQ3oVHOdc/VMAbkJUrV+LVV1/F999/j7fffhv29vZih2S87tzRLt5/+AH44IMa3aRGo0F0dDRu3LihVajfuXOnWmOfW1paolGjRmjcuDFfrJc+d3BwKHft+YQJE2pqV0gljP0XoKYaZ+CFHgfe2HOujyjnwqOcC49yLg7Ku/Ao5/qHCngD4u7ujilTpuCjjz7Cxx9/DLlcXq5rM8dxyMrKEilCIxETU1K8p6SUPF+6VOfFe35+PsLCwnDt2jVcv34d165dw40bN5Cbm/vM17q5uaF58+b8o0mTJmjcuDFcXFye6wZxI0aMwJYtW15mN8hzMvacax4X6pLHZ+D14Rp4Y8+5PqKcC49yLjzKuTgo78KjnOsfKuANyIIFC/DVV1/Bzc0Nbdu2pWvha0JWFtC/PxAfX/L8iy+Ajz6qdPGkwiLcyy+ocpXZ2Tm4ffs27kTewd27dxEVFYW4uDiwpwsZd+3xMZ2d68DTy5O/Jt3L0wsenh6wUpQfZTkaQHTG831xM2X5SpxJz3yu15CXY+w5d5NKgaIimOjRNfDBwcGCbo9QzsVAORce5VwclHfhUc71DxXwBuTXX39F//79sXPnTq0/iImOqFTAiBHArVslzz/8EPj000oXv5ObD/9Tl1BYrYLEFGjoU/KoppTHj4ulE3KUwM271X49IUKLsLUHcnP5M/D6cA38Dz/8gM8++0zQbdZ2lHPhUc6FRzkXB+VdeJRz/UMFvAFRKpXo378/Fe81ZdYs4NChkp8HDwa++67cDeuUSiVyc3ORnZ2NJfcTq1m8E1I7qB53leekUpibm/OfVWJeA9+3b19Bt0co52KgnAuPci4OyrvwKOf6hwp4AzJgwACcOnUKU6ZMETsUnZu4bRdm3rpX8uTx2bsnI5WzspOfTNWaUJ1lnl73k3kjr1zG8l3bAAA3XFzxundz5MxbCLVaDZVKBbVaDbVard3tvWsAYGsHRN4G/vdHuX2yVChQr54b3NzcUM+tHuq61eW7FOuDiPAINPdpLnYYtYox5zwdHF/Aq9zcsbyI4X8//1byXFWMdE3Jr5vftu6CiURS7vgGqnH8VrBs6TIl/7Ny6ygsLIRs/5EX3KvnUbph7qnn1Xjl40U5TvvnsvN0gT1JWsl/j/+tPO/an6tl26N82zyhKi6G6fa9WtPK3Z3jBUfzqM59Pp69SM1t+2ViqNbaK1mxUlkEs72HHi/y4iOllH/py6xLF21VcRwVvqwG31MVKSgogMXh49XZQo3FIBYxw83PL4DF0ZPiBVAh/Wi/mooiPz8fFkdP1dDaa0ZeRJjYIdQoKuANyOeff46RI0di2rRpmDhxIurXr1/h+Nz6enf6lJQUpKamak178OABACCtvhfSWrQSIyw0exCLJQdK/thMsrXD698sR7yjU/VXcDgEslthqFu3Ltzc3Pj/ra2tn/xSzs4AsjMg7LnHquVduQJ1wbNvmkd0x5hzbg1A8/jsuomlAomt2yNR3JAIIaRGZYgdQC2VJnYARP/l5YsdQY2iAt6ANGnSBABw7do1rFmzptLlhO6iWl2//PILFi1aVPHM/PySG8iB8aehOI4DK/N/ua98+UWfWhYl30KW/o/SnzkOTKN5sqxEAnlhIbYs+RwWRUXQcBxGT5+NeDMzSHJzoNFoYGJiAo1aAxMTCTSMQVImBomJCUwf3Mckv+Y4FHMXb7/9NrZt24ZGjRohPDwcDg4OMDU1RVxcHNq3b489e/Zg5MiRWL9+PSZMmIDdu3ejc+fOiImJgbm5OaytrREZGYnu3btjy5YtGDNmDL9sSEgI/P39kZSUBABwcXHBtWvX8Nprr/HL/PXXXxgxYgROnjyJxo0bIzs7GwUFBfDy8sLZs2cxcOBAftnNmzejc+fOuHjxItzd3aFSqZCWlgYfHx8cOXIEw4YN45fdtm0b+vTpYxD7FBgYqNf7FBgYiO3btxvMPo0d/za27D8CO99ukD+6C2tOCVfXytvJJDcHAGBaVARkZz05Dh8fe/wpZo6r4ABFhcd9yf/ay1Z43Fe52pLjnWk0Jf8zVu5MhdZnhEQCpmHgJFwFy3JgeLzN0mUe/1/uVPbj+CQcB42GQSLhoHkc75NlOX6nnrlsmc9GzVPL8p+RFS1bZn2Spz9Py+ZTIoFGo4GkNFfc41w9WZTPkUQigVqjgUmZ12jK5IoBj+MrvywnkWjtP2OP46toWU6Csr0bGNNeRs3H+1ScFSyrqWyfHi/7zP1nDBwngebxerWXffI+5Z5etsz/jJVZFmXfy08vW0U7PbNNK36PaC37JNBKl630vVe6TBXLlnsvax1PpZ8MVR9PVR97ZY5T7vH0sscySn/Pc+WO+/KfEY/bn28fCb++p47SCpbV/puDX7aKv0+096iiz7IKlq30c+95li2z48+5bJVxVuvz+fmWrervvaf/Riy/bPW2/Ty/cypb9nl+l1W0bPX3X9w4q79smd9DFf6v9YbS3bJPxQmOA/LzYMw4VlU/OKJXFi5ciOp0s/r8888FiOb5VXQG/tixY5g5cyZ27tyJQYMG1ch2GWO4G34SJw+uQU5mMj+9bn0fBIYmwmLTvyUTFiwAKvuCwQjNnj0by5YtEzuMWsVQcs4Yw4mIOPx++BpSsp98i+3j7oipfVujcd1Kevl06QKcPQv06QMcPixQtFUzlJwbE8q58CjnwqOci4PyLjxDzPmuXbswePDgF6ovioqKsGDBAvz555/IyMiAn58fvvzyS7zyyis1FO3zowKeiOplDrDqSIq/gxP7f0HCgzBof0cONIhMxaAtNwEAqi6dYXriJFDBJQmE1CZ34tPw66GrCI979NQR88QrLT3xdq+WcLAy154REACcPAn06AGEhgoQLSGEEEKItpepL9544w38+++/mDVrFho1aoTg4GBcunQJoaGh6Nq1aw1F/HzodubEKOVmp+LAtm+w6ddpj4t3oGwpIissRu/9dwAAhTJTbOhghnMnNqJYWShCtOIIDAwUO4RaR59znpqdj+92nsd7fxxGeNwjAJXfhu3w9ViMW7kXf50MQ2Gx6smM0i/A9OgyHn3OubGinAuPci48yrk4KO/Cq005v3jxIv755x98/fXXWLp0KSZPnoxjx47Bw8MD//d//yd2eDy6Bp4YlWJlIS6f2YpLJzdBpSqqdLnuh6OgyFUCAE684o1sCwnOh27Azf/2odurk9DUr3fJdZpGbM+ePWKHUOvoY84Li1XYevY2Np+JgFJV/WERlSo1/nc8DPsu38M7fVqip68HONPHv1JUqqpfLCB9zLmxo5wLj3IuPMq5OCjvwqtNOf/3339hYmKCyZMn89PkcjkmTpyIefPmIS4uDu7u7iJGWIIKeKIXFKGhQHb2S68nM/EeMs9sQaMqlrHMVcL3esn9sWMb2COipSs/Ly/nEQ5s+xZejTtAbmH90vHos3HjxmHDhg1ih1Gr6GPOr0Yn488TLz7cSlpOAb7deR7tG9WFovQMfHIy8OefOorw5axZs8Yoh97UZ5Rz4VHOhUc5FwflXXiGmHPF5csv9LqrV6+icePGsLbWrgHat28PoORG4lTAE/KYy4oVOlmPE4B+1VxWJZfh4bwZ8HOy05pubmlr9MU7AIO7IYkx0Mec+3k6Y0Ab75dah51CDoXcDCg9Ax8dDYwdq4PoXt4UADhzRuwwahXKufAo58KjnIuD8i48Q8y5y+P/Hzx4gPDwcK15Tk5OcHZ2rvB1iYmJcHV1LTe9dFpCQoJO43xRxt1HmJAqqJevQGiCKaxcOiNb7YH7j6zh0XwAtu69DuDJNT/jxo1Deno6li5dihMnTuDAgQP4+eefER8fj3fffVdr2XfffRfx8fH4+eefceDAAZw4cQJLly5Feno6xo0bp7Xs7NmzERUVhXXr1mHHjh24ePEiFi9ejPz8fIwYMUJr2Xnz5uHmzZv4+++/8ffff+PmzZuYN2+e1jIjRoxAfn4+Fi9ejIsXL2LHjh1Yt24doqKiMHv27HL7tHLlSqPbJ31vpz/++EPv9unQ/r3o6KRB1pUQTOrZHKc3fIeZ/dvi8K+LMLN/WySd2Y6e9WVwzIqEY1YketaXIenMdq1l9vz8BfLz87GP48CqMVIGIYQQQkhNmzlzJnx9fbUev/zyS6XLFxQUQCaTlZsul8v5+fqA7kJPRFV6l8i9q1ejv5DDM1hbA05Owm1PD504cQIBAQFih1Gr1Iqcp6QAOTliR8G7cOECOnToIHYYtQrlXHiUc+FRzsVBeReeIeZ83+HDGDB1Kn766Sf06tVLa15VZ+B9fX1Rp04dHD16VGt6REQEfHx88Ouvv+rF5QTUhZ6IKjc3FwBw5sEDqMJe/Dpc8vyuXLmCzMxMscOoVYwh5xqNBpmZmSgqKoJCoYCVlZXgMTDGkJycDI1GA7lcDnt7e6hUKhQWFsLExARyuRzc454AV+7cQZKlpeAx1maUc+FRzoVHORcH5V14hpjzCw8eAADs7e3h4+NT7de5uroiPj6+3PTExJJ7Z9WtW1c3Ab4kKuCJqC5evAgA+Prrr0WOhBACAKamprCzs4NarUZ6ejratm0LPz8/WFlZYfv27XBxcUH//v0BAEeOHMG2bdsEj9HCwgKzZs2CmZkZ1Go13n33XQwePBjNmzcHAISEhCAuLg5jxoyBRqPB+vXrsWvXLnTu3Bl16tRBdnY2zjy+nq9hw4ZQKpWIi4vjvwBgjEGjqf4d+QkhhBCif56+/v1Z/P39ERoaiuzsbK0b2V24cIGfrw+oCz0R1aFDh9C3b1988803aNq0qdjh1BoPHjzAzJkz8dNPP6F+/fpih1Mr6GPOVSoVMjIyoFQqYWNjAzMzM9y+fRsajQYSiQQtWrTA/fv3kZOTA7lcDnd3d0ilUuTl5cHMzAwymYw/0y00tVqN4uJiSCQSmJmZoaioCNnZ2dBoNLCzK7kxZVRUFKKiotCoUSM0a9YMd+/eRV5eHgCgUaNGyM3N5b9Vt7W1hbu7O8LDw6HRaGBmZoYmTZogMzMTGRkZMDU1hbOzM+RyOdLT0wGUfJFgYWEBtVoNlUoFU1NTmJTeib+W0sf3ubGjnAuPci4OyrvwDDXnubm5CA8Px+TJk+Hp6Vnt1124cAEdO3bE0qVL8dFHHwEAioqK4OvrCwcHB5w/f76GIn4+dAaeiMrNzQ0AMGDAgOfq4kJeTuk3kr169aK8C0SMnBcUFCAtLQ3m5uZwcHDAsWPHcOfOHRQUFOCtt97CjRs3EPb40pXGjRsjICAAR48ehZmZGTw8PNCwYUNB4qwp4eHh8PX1RVhYGHx8fMAYg0qlglqthlwuR3FxMaKjo5Gfnw93d3c4ODjAzs4OaWlpkEqlGDBgAM6ePYuzZ88iPz8fXbt2hZOTE9avXw8AsLa2xuzZs/Hrr78iOTkZEokEY8eOhUqlwqFDhyCVStGqVSu0bt0aFy5cQEFBAezs7NCyZUsolUqkpKRALpfD0dFRtC9CdI0+W4RHORce5VwclHfh1bacd+jQAcOHD8fcuXORkpICb29vbNiwAbGxsfjjjz/EDo9HBTwhhBiBjIwMhIWFITMzE23atAFjDOvWrePPSM+cORPx8fEoLi6Gm5sbLCws0LVrV3h7e8PW1hbW1tbgOA79+lV3IEbDw3EcpFIppFIpAEAqlaJJkyZay/Ts2VPrebdu3dCtWzcwxvgie+rUqcjJyeG71/Xq1QuxsbFQq9VwcHBAWloaJBIJsrOzkZGRAZVKhdDQUCiVSgAl3faPHTuGa9eu8dv08fHBhg0bAAD169dHUFAQrly5gri4OCgUCnTq1AmmpqaIjo6GVCpF3bp1YW5uznf1l0hoUBlCCCHkZf3vf//DZ599hj///BMZGRnw8/PD3r170b17d7FD41EBTwghBiA7Oxupqamws7ODnZ0ddu3ahfv376O4uBjvvvsuTp48yReErq6u8PHxQYcOHWBhYYEGDRoAAN56661y6/Xw8BByNwxW2TPkzs7OWnewbdy4MRo3bsw/VygU5e5S+8EHHyA7OxsmJiawsrJC9+7d4ezsDKVSCR8fH/4ShaysLP46/Fu3biEqKgoA4O7ujpycHOzduxcA0KBBA7z55ptYvnw5cnNzYWtri4kTJyIuLg6XL1+Gubk52rdvDzc3N9y4cQOMMdSpUwd169aFSqVCfn4+zM3N+S8zCCGEEFIyZNzSpUuxdOlSsUOpFBXwhBCiJ0rP8iYmJiIiIgI5OTno0qUL0tLSsHnzZgAlZ2fHjh2LtLQ0yGQyeHp6QiaToW/fvmjbti3s7e1hbm4OAHj11VfF3B1Shkwmg1OZoSvt7OzQqVMnrWWGDx+u9fzNN9+EUqmESqWCpaUlVCoVLCwskJ+fDzc3N5iYmKBt27Z8930zMzNkZWUhLi4OSqUSLi4uMDMzw65du/gYPv74Y2zcuBGxsbHgOA5vvPEGzM3NsX//fpiamvJf/Fy9ehXZ2dmwtbVFixYtoFar+S7/9vb2RtPlnxBCCDE0VMATUTk5OeHzzz/X+sOW1DzKu/BKc+7o6IiUlBSkp6fDxcUFlpaW2LJlC+Lj42FiYoKZM2fi2LFjiIqKgkQiQfPmzVG3bl1069YNVlZWaNiwIUxMTDBx4kSt9UulUv6eEqSEob/POY6DTCaDTCYDUDJCQLNmzbSWCQgI0HresWNHdOzYkb8RIVDS5T8rKwuWlpbgOA5dunRBnTp1oFKp4OTkhLy8PKjVamRnZyMlJQUajQaHDx9GQUEBgJJhc65evYpz584BADp37oyOHTsiODgYarUarq6uGDFiBCIiIhAeHo7PP/+c/8IhJiYGJiYmcHFxgYWFBUrvm0tfAOiOob/PDRHlXByUd+FRzvUT3YWeEEJ0jDEGxhgkEgnu3buHO3fuID8/H3369MGdO3dw4MABAICPjw8GDBiAv/76CxKJBO7u7ujTpw8KCwuRm5sLOzs7mJrS96xEeIWFhcjKygIA1KlTB5mZmYiIiEBhYSGaN2/OX8aRmZkJKysrjBw5Etu3b+dveDR48GCYmpri33//BVDyJcCkSZPwyy+/ID09HdbW1hg7diwyMjJw4cIFyGQytG7dGh4eHggPD4darYaTkxPq1q0LjUbDd/mv7Xf5J4QQQqiAJ4SQF6TRaBAfH4+MjAx4enqC4zhs3rwZycnJsLa2xowZM7BmzRokJydDJpNh7NixMDc3x82bN2FjYwNvb29YWlqKvRuE6ARjDAUFBVCpVLCysoJarUZkZCTy8vJQp04d1K9fH6dPn8bDhw8BAIGBgbhz5w5CQkKgUqnQuXNntG/fHsuXLwdQcpZ+7ty52LFjB27dugWO4zBs2DA4OTlh7969kEgkaNSoEbp06YLw8HD+iwFfX18AQGpqKmQyGWxtbemMPyGEEKNBp3YIIaQKKpUKEokEEokEN27cQHR0NIqKihAYGIjTp0/z3Yo7duyITp06geM4eHp6omHDhuA4DuPGjYNSqeTv8g5Ar+5kSoiucBwHCwsL/rmpqSmaN2+utUzXrl21nrdu3RqtW7eGSqXie5tMnToVGRkZkMvlkEqlaNu2LRQKBYqLi+Hk5ATGGN9LpfR+D4cPH+Z7DNjb2yMmJgahoaH8Nl555RUEBwdDqVTCyckJI0aMQHR0NCIjI2FhYYHWrVvDysoK9+/fh0QigZOTE9/ln4p/Qggh+oTOwBNCCAClUom4uDhkZWWhcePGyMvLw5YtW5Ceng53d3dMmDABP/zwA/Ly8mBjY4MJEyZAqVTi7t27sLOzg7e3N93RmxCRFBYWIiMjA4wxuLq6IicnBzdu3EBBQQGaNGmCunXrYvv27UhPT4dMJsOYMWMQEhKCq1evAgD69u0LJycn/PXXXwAABwcHzJgxA+vXr0d8fDysra0xatQoKJVKnD17FmZmZmjRogUaNmyIyMhIFBUVwd7eHm5ubnxPBLlcTsP7EUII0Tkq4AkhtUZBQQHMzMwgkUhw/vx5xMXFgTGGoUOHYteuXfz1u6+++ioaNmyI/fv3w9LSEs2aNYOvry8KCwvBGOPP+hFCDBdjDHl5eSguLoatrS00Gg3u3LmDnJwcODo6omHDhjh37hxiYmKg0WjQv39/PHz4ELt27YJarYa/vz/69u2Lb7/9ll/nnDlzcPToUVy5cgUcxyEwMBBeXl7YtWsX3zune/fuuHv3LlJSUmBlZYXmzZvDxMQEaWlpkEqlsLKyosKfEEJIpagLPSHE6OTl5eH+/fvIzc1FixYtkJiYiG3btiE/Px9NmzbFkCFDEBoaCpVKBRcXFzDG0LVrV3h6esLBwQEeHh6QSCQYP3681nrlcrk4O0QI0TmO46BQKPjnJiYm5br8d+rUSWu4Pzs7O/j6+qK4uBhSqRQcx2Hq1Kl88W1hYQE/Pz8A4LvrazQa5OXlITs7G2q1Gt27d8fRo0eRnJwMoORzJSsrC/v37wcA+Pr6YtCgQfjf//6H/Px82NvbIygoCElJSYiIiIBcLkfLli1ha2vL30/AwcFB6/IFQgghxou+4iWiKCoqwscff4y6devC3NwcHTp0wOHDh8UOy2jk5ubi888/R79+/fgxm4ODgytc9tatW+jXrx8UCgXs7e3x1ltvITU1VdiAn5NGo0FWVhbUajVUKhWOHj2KP//8E1u2bIFGo8HmzZuxdetWhISEIDo6GmZmZnB1dYW/vz/at28PMzMzfPTRR5g3bx4mT54MMzMzuLi4oG3btvDy8nrus1+XLl3CjBkz4OPjA0tLS9SvXx8jRoxAZGRkuWUNMd/6Kjw8HMOHD0eDBg1gYWEBR0dHdO/eHXv27Cm3LOW9Znz11VfgOI6/cVxZZ8+eRdeuXWFhYQEXFxfMnDkTubm5IkSpWxzHwczMjL823tnZGc2aNYO3tzcAwMPDA4GBgRg2bBjq1asHe3t7TJs2DZ988gkmTJgAABg/fjwmTZqECRMmwNvbG82aNUOvXr3QsWNHtGzZEhKJhD8Tn5iYCBsbG0yePBkXLlzAiRMnMHToUNSrVw/r1q3DunXrsHr1ajDGsHr1anz22WeYNWsWWrRogdmzZ2Pz5s3YvXs3/3kUExOD8PBwJCQkACjpiVBUVATqkFnelStXMHDgQNjb28PCwgK+vr746aeftJYx1ve5GMaPHw+O4yp9xMfH88tS3nXj7t27GDVqFOrVqwcLCws0bdoUX3zxBfLz87WWo3zrF+pCT0Txxhtv4N9//8WsWbPQqFEjBAcH49KlSwgNDS13kyPy/GJjY+Hl5YX69eujQYMGOH78ONavX1/ujPLDhw/RqlUr2NjY8B/G33//PerXr4+LFy/CzMxMnB0oIyMjA/fv30d+fj7atWuHiIgI7N27FyqVCm3btkXXrl3x008/QSKRwNPTE2+++SYSEhLw6NEjODk5wdXVtcZvQhUUFIQzZ85g+PDh8PPzQ1JSElatWoXc3FycP3+eL24MId+GZP/+/fjpp5/QqVMn1K1bF/n5+di2bRtOnTqFNWvWYPLkyQAo7zXl4cOHaNKkCd81PCwsjJ937do1dOrUCc2aNcPkyZPx8OFDfP/99+jZsydCQkJEjNrwHD9+HD179sTMmTPRqlUraDQa/n4bjRo1AmMMtra2KCoqwvTp0+Hv7w83Nzfk5+dj586dGDZsGCQSCZo0aYLhw4fj66+/hlqtBgC89957uHLlCs6cOQOO49C3b1+0aNECO3bsAGMMbm5u6NmzJ+7fv4+EhAQoFAo0bdoUpqamyMzMhKmpKSwtLY2yy/+hQ4cQGBiIVq1aYeTIkVAoFLh37x40Gg2+++47APQ+17Vz587h3r17WtMYY3j33Xfh6enJX+ZGedeNuLg4+Pn5wcbGBu+++y7s7e1x7tw5BAcHY+DAgdi1axcAyrdeYoQI7MKFCwwAW7p0KT+toKCANWzYkHXq1EnEyIxHYWEhS0xMZIwxdunSJQaArV+/vtxyU6dOZebm5uz+/fv8tMOHDzMAbM2aNYLEqlQqWWpqKlOpVCw/P5/t2bOH/f7772zHjh2MMcaWLVvGFi5cyBYuXMgePHjAoqKi2KZNm1hISAhLSkpijDFWXFzMNBqNIPFW5MyZM6yoqEhrWmRkJJPJZGz06NH8NH3It7FTqVSsZcuWrEmTJvw0ynvNGDlyJOvVqxcLCAhgPj4+WvNee+015urqyrKysvhpv/32GwPADh48KHSoBi00NJQBYFu3bq1yucpyznEc27dvH1Or1YwxxpKTk1lYWBgLDw9nGo2GxcXFsZ07d7LNmzeze/fusaysLPbzzz+zr776iq1atYppNBq2bt06/nP4+vXr7MaNG/zzv//+m2k0GvbXX3+xX375hW3cuJHl5+ezhIQEdujQIXbixAmWlpbGGGMsISGBPXz4kOXl5dVcwnQgKyuL1alThw0ZMoTPW0XofV7zTp06xQCwr776ip9GedeNr776igFgYWFhWtPHjh3LALD09HTGGOVbH1EBTwQ3Z84cZmJiovVBwBhjS5YsYQDYgwcPRIrMOFVVwDs7O7Phw4eXm964cWPWu3dvnceSkJDAzp8/z06dOsXUajU7efIk/0fg8ePHWUJCAvviiy/Y0qVL2Z49exhjjD148IDdunWL/wPQkLRu3Zq1bt2afy50vmurAQMGsDp16vDPKe+6d+LECWZiYsJu3LhRroDPyspipqambM6cOVqvKSoqYgqFgk2cOFHocA1a2QI+OzubFRcXl1umpnNeWFjIHjx4wO7du8eKi4tZXl4eO3HiBNu3bx//RcC2bdvYypUr2apVq1hWVhY7duwY//m+f/9+lpaWxj9fsmQJU6lUbNeuXeybb75hK1euZLGxsSwjI4Pt3LmT7dmzh926dYsxxtjDhw9ZREQEi4+P57+orekvbVevXs0AsIiICMYYY7m5ueUKeXqfC2Pq1KmM4zgWExPDGKO869LHH3/MALDU1NRy0yUSCcvNzaV86ym6iR0R3NWrV9G4cWNYW1trTW/fvj2Akq467u7uYoRWq8THxyMlJQVt27YtN699+/b8DZWqiz0eOik7OxtOTk7IycnBkSNHkJqaCk9PT/Tt2xd//PEH1Go1JBIJfH194eTkBF9fX9jZ2cHf3x82NjaYP3++VndMQ30vMMaQnJwMHx8fALrPN3kiLy8PBQUFyMrKwu7duxESEoKRI0cCoLzXBLVajffeew+TJk1CixYtys2/efMmf4lLWWZmZvD39+eHbiPPZ8KECcjNzYWJiQm6deuGpUuX8jmu6ZzLZDKtz2JTU1N0795da5mhQ4dqPe/Rowdat26NgoICODo6wsTEBEFBQcjIyIBCoYCJiQnq1auHzMxMFBcXQyKRICMjAzdv3oRarUZqaiqaNGmCjRs3oqCgAADwzjvvIDY2FocPH4aJiQl69OiB9u3bY+fOnVCr1XByckLv3r2RlJSEBw8ewMLCAk2aNIGZmRmys7NhYmICc3PzZ3b5P3LkCKytrREfH4/BgwcjMjISlpaWeOutt7Bs2TLI5XJ6nwuguLgYW7ZsQefOneHp6QmAPl90qUePHvj2228xceJELFq0CA4ODjh79ixWr16NmTNnwtLSEmfOnKF86yEq4IngEhMT4erqWm566bTSG+uQmpWYmAgAlbZFeno6ioqKIJPJys1njCEmJgbx8fGQSCTo3Lkz9uzZw3+QBwYGwtraGnfu3IGVlRUUCgUkEgnGjh0LlUoFZ2dnKBQK2NraomnTplrrNpZrKTdu3Ij4+Hh88cUXAF4u36RqH374IdasWQOg5P0zdOhQrFq1CgDlvSb8+uuvuH//Po4cOVLh/Gfl/NSpUzUan7ExMzPDsGHD8Prrr8PR0RERERH4/vvv0a1bN5w9exatWrXSy5xzHAcbGxvY2Njw00q/0CzVunVrtG7dWmvavHnzUFhYCJlMBo7jMH78eCQlJQEAXFxcwHEcWrZsicLCQjg4OPDFfkZGBhITE9GjRw8cP36cv2nfa6+9Bnt7e2zcuBFAyU0Gx48fj+3btyM1NRXW1tYYMGAAlEolrl+/DjMzMyQmJkKlUmHChAkICgrC4sWLcfr0aaxcuRKZmZnYtGmTXubc2Bw8eBBpaWkYPXo0P43yrjv9+vXD4sWLsWTJEuzevZufPn/+fHz55ZcAKN/6igp4IriCgoIK/1guHaKr9Jt2UrNK81xZW9ja2iImJgaNGzdGcnIyjh49irS0NPj5+aF9+/b4888/+de3a9cOXl5eAABHR0c0a9YM5ubmmDdvntYN5OrXry/Anonv9u3bmD59Ojp16oRx48YBeHa+S5ehQvL5zZo1C0FBQUhISMCWLVugVquhVCoBUN51LS0tDQsWLMBnn30GJyenCpd5Vs7pM/75dO7cGZ07d+afDxw4EEFBQfDz88PcuXNx4MABo8q5RCLRGhLP2dkZzs7O/HNXV1cMHjxY6zXTp0/n76LPcRyGDh2KxMREFBcXw8PDA2q1Gj169EBubi5fiJiYmKCoqAgpKSkoKipCZGQkX4w0bNgQ165dw6RJkwCU3Kl76dKl/JcKy5Ytg4WFBSwtLXH37l3k5OTA09MTzZs3R3JyMuzt7WFlZQXGGDiOg0ajMZovp4X0999/QyqVYsSIEfw0Y3qv6wNPT090794dw4YNg4ODA/bt24clS5bAxcUFM2bMoHzrKSrgieDMzc1RVFRUbnphYSE/n9S80jwXFhYiPDwciYmJUCgU6NixI4CSomjz5s144403UFRUhPj4eNja2sLe3h6WlpaYMGECTExM4OjoCDMzM7Ro0aJcd9qavvu7PkpKSkL//v1hY2ODf//9FyYmJgCe5Jve+7rXtGlTvifH2LFj8eqrryIwMBAXLlygvOvYp59+Cnt7e7z33nuVLvOsnFO+X563tzcGDRqE7du3Q61WU86h/ftGJpPxXa5LBQQEaD0fNGiQ1nMHBwc0a9YMBQUFeP3115Gfnw8fHx84OztDLpfDzMwM7dq1Q0hICOzs7GBrawtbW1vEx8cjLi4OsbGxaN68OTZv3gxXV1eMHj0aMTEx/KU9UqkUHTt2REBAAPbs2cP3IOjduzfS09MRExMDCwsLeHt7QyaTIT8/HxzHQS6X18rfpbm5udi1axf69u0LBwcHfjq913Xnn3/+weTJkxEZGYl69eoBKLkURqPR4OOPP8Ybb7xB+dZTVMATwbm6umqN5VmqtJtO3bp1hQ7JqKnVatSpUweFhYVgjOHevXs4ceIEHj16hI4dOyIhIQExMTEAAHt7e3To0AGPHj1CQkICFixYgAYNGsDU1LRccV5bzqY/j6ysLLz22mvIzMzEqVOntN7LpWd9St/nZSUmJsLe3p7OAutIUFAQpkyZgsjISMq7Dt29exdr167F8uXLtS51KiwsRHFxMWJjY2Ftbf3MnNNnvG64u7tDqVQiLy+Pcq4DHMfBzs4OdnZ2/Bn/Fi1aoEmTJvwyfn5+GDlyJJYvX47GjRsjPj4ejRo1Qv/+/fkePaNGjcKMGTNQXFyMefPmQaFQwM/PD/n5+bC3t4dGo0F8fDzS0tIgk8nQtWtXnDx5Ejdv3gQA9OzZEw0bNsTvv/8OoOR3x+TJkxESEoKHDx9CoVDgtddeA8dxuHbtGqRSKby9veHs7IzMzEwUFRXB2tra4AurnTt3Ij8/X6v7PPDs36X0Xq++X375Ba1ateKL91IDBw5EcHAwrl69SvnWU1TAE8H5+/sjNDQU2dnZWjeyu3DhAj+fvJji4mJcv34dKSkpcHZ2Rps2bXDy5ElMnToVycnJSEpKQnp6OrKysuDs7AylUokrV67ghx9+gFwuh729PTiOw9GjR1GvXr1y1yaSyhUWFiIwMBCRkZE4cuQImjdvrjXfzc0NTk5O+O+//8q99uLFi/S+16HSLn1ZWVlo0qQJ5V1H4uPjodFoMHPmTMycObPcfC8vL7z//vtYtGgRTE1N8d9//2l1fVUqlbh27ZrWNPLioqOjIZfLoVAo4OvrSznXoTZt2uDw4cOIj4/XKuBLv7gqvQGrqakprly5glGjRvHL2NraIiQkBCNGjIBUKoWzszOGDBmitf7SLv+MMUgkEgwYMAD+/v5QKpXw9PQEx3EICAhATk4OHB0dAQAajQZ5eXnIzs5GXl4ekpKScPz4cQDA/fv3ERQUhJUrV0Kj0cDExATvv/8+bty4gQsXLkAul6NXr17w8vJCaGgogJLfSS1atEB6ejrS0tKgUCj4ewyUdv0X08aNG6FQKDBw4ECt6fRe153k5GTY2dmVm15cXAwAUKlUlG99Jdr970mtdf78+XLjwBcWFjJvb2/WoUMHESPTfwUFBez+/fv8cCpXr15lP//8M1uyZAm7du0ai4yM5Ifp+d///scYY2zr1q2sZ8+e7Oeffy437M67777LzM3NtYbuO3LkCAPAVq9eLdh+GTqVSsUGDhzITE1N2b59+ypdjvKtW8nJyeWmKZVK1rp1a2Zubs5ycnIYY5R3XUlNTWU7duwo9/Dx8WH169dnO3bsYDdu3GCMMdavXz/m6urKsrOz+df//vvvDAALCQkRaxcMUkpKSrlp165dY1KplA0cOJCfRjnXnStXrjAA7M0339Sa/sYbbzBTU1MWHx/PGBM35xqNhqWlpbEHDx6w/Px8xhhj4eHh7Pjx4/xQrWFhYez3339nv/zyC7t58yZLTk5mX375JVu4cCH7/vvvmUajYWvWrOH/bggPD2cRERHsiy++YEuWLGEHDhxgGo2G7du3j23evJkdOnSIFRcXs4yMDHblyhUWERHBCgoKGGMlf58UFhbqZHi/lJQUZmpqyt56660K59N7XTcGDBjAzMzM2J07d7SmDx48mEkkEr14n5OKcYw9vusHIQIaMWIEduzYgdmzZ8Pb2xsbNmzAxYsXcfTo0XJD09Q27PE33wUFBbh8+TIePXoET09P+Pj44IcffuCvQ/rwww9x+fJl3LhxAw4ODujZsyfq1KmDpKQkKBQKbNiwAVlZWUhISMDq1asxdOhQtGrVCgDw3nvvwcbGBnFxcWjVqhVsbW3x/vvvIzc3F0uXLkW9evVw6dIl6lpcTbNmzcKKFSsQGBhY4bfRY8aMAQDKt44NGTIE2dnZ6N69O9zc3JCUlISNGzfi9u3b+OGHH/DBBx8AoLzXtB49euDRo0cICwvjp125cgWdO3dG8+bNMXnyZDx8+BA//PADunfvjoMHD4oYreHp1asXzM3N0blzZzg7OyMiIgJr166FVCrFuXPn0KxZMwCUc12bOHEi1q1bhxEjRiAgIADHjx/H1q1bMXfuXCxZsgSAYea8uLgY+fn5kMlkkMvlSE1NRVxcHNRqNVq0aIHc3FycOHEC+fn5aNSoEdq3b4+1a9ciOTkZpqammDFjBk6fPs33aurYsSPatm2Ln3/+GYwxODg4YPr06Th+/Diio6NhaWmJPn36wNzcHFevXoWpqSk8PT3h4uKCnJwcFBYWwsrKir8EAQBWrVqF9957DwcOHEDfvn3L7YMh5l0fnTx5Er169YKDgwNmzJgBBwcH7N27FyEhIZg0aRJ+++03AJRvvSTu9wektiooKGAfffQRc3FxYTKZjLVr144dOHBA7LAElZ2dze7evcufTT9x4gRbtmwZW7x4MYuMjGRXrlzhvxXfvXs302g07OzZs+z06dP8a6ri4eHBAFT4KPv6sLAw9uqrrzILCwtma2vLRo8ezZKSkmpmp41UQEBApbl++mOW8q07mzZtYn369GF16tRhpqamzM7OjvXp04ft2rWr3LKU95oTEBDAfHx8yk0/deoU69y5M5PL5czJyYlNnz5d6wwOqZ4VK1aw9u3bM3t7e2ZqaspcXV3ZmDFj2N27d8stSznXHaVSyRYuXMg8PDyYVCpl3t7ebNmyZeWWqy05V6vVTKVSMcYYKyoqYnfv3mVhYWEsJyeHKZVKFhoaynbu3MmOHTvGGGPs4MGD7IcffmDffPMNi4qKYjdv3uT/plm3bh3TaDTs66+/ZgsXLmRffPEFS01NZf/99x9btmwZ++CDD1jnzp1ZYWEhO3z4MDt48CC7fv06Y4yxrKwsFhUVxfbv318r8l7TLly4wF577TXm4uLCpFIpa9y4Mfvqq69YcXGx1nK15X1uKOgMPCE1SK1Ww8TEBJmZmfjvv/+QkZGB5s2bw83NTetatblz5+LIkSOIjY2Fk5MTevXqBWtrazx69AjW1tZa30wTQgghhBiatLQ05Obm8sPs3bp1C4mJieA4Dt26dcO9e/dw6tQpFBYWomPHjvD29sbPP/8MlUoFqVSKjz/+GBs3buRvvDtw4EDY2tpi06ZNMDExgY+PDwYMGIBjx44hIyMD1tbW6N69O4qLi3Hv3j1+dAK5XM5f5y2VSsVMCSEvhAp4QnQgLS0NycnJUCgUqF+/Pvbs2YNbt26hsLAQEydOxL179xAaGgqO49CzZ0906dIFFy5cgFQqhbu7O+rUqSP2LhBCCCGE6JXSkRbMzMxgaWmJR48eITY2FsXFxfDz80NxcTGOHj2K3Nxc1K9fHz169MDvv/+OhIQESCQSTJkyBWFhYTh16hSAkhsl9+7dG8uXL4darYatrS2mT5+O//77D7du3YKFhQV69OgBW1tbXL16FRKJBO7u7nB1dUVBQQHy8/NhaWlJJ1aIqF64gF+4cCEWLVrEPzc1NYWlpSVcXV3RsmVLjB8/Hv369dNZoISISaPRQK1WQyqVIikpCVeuXEFmZibatWsHc3Nz/PHHHwAAa2trzJ49G7t370ZaWhqcnZ3Rq1cvyGQyZGVlwdramh8XnBBCCCGE6J5arYZGo4FUKuWHuSwoKICHhwesrKxw8uRJZGRkwNzcHH379sXx48dx+fJlKJVKDBo0CDKZDBs3bgRQMurAtGnTsHz5cmRlZUEikWDixInIyMjAsWPHIJPJ0L59e7Rs2RKnTp2CUqmEo6MjWrZsiYKCAqSkpMDc3BzOzs6i392fGAedDSOnUqmQlZWFrKws3L59G5s3b0ZgYCA2btwIKysrXW2GkBrFGENCQgJSUlLg5OQENzc3bNy4EbGxsfzwSVeuXMGlS5cglUrh6+sLT09P9OvXD+bm5vzY6E8PewKgwqE6CCGEEEKIbpmYmPAnTKRSKRo1aqQ1v0ePHlrPe/bsiZ49e2pNmz59OnJycmBrawsAeO211xAXFwfGGOzt7VFYWAiZTIaCggLk5uaioKAAp0+fRnFxMTiOQ7NmzbBv3z5EREQAAPr27QsPDw/8+eefkEgk8Pb2xuDBg3H27FkkJyfDysoKXbp0AQDcu3cPZmZmcHd3h7m5OVQqFTiOo5NABICOzsC/9tprmDdvHtLT03HkyBGsWbMGSqUSADBo0CDs3LlTZwET8rKKi4uhVqshl8sRHR2NGzduICsrCz179kRubi62bt0KAKhXrx7efvttbN++HUVFRXBxcUH37t0hkUiQl5cHhUJB36QSQgghhBAAJV3+c3JyIJVKYW1tjfT0dERFRUGpVKJFixaQSCQ4ePAgcnJy4OLigtdeew0bNmxAbGwsAGDChAl4+PAhDh8+DABo1qwZBg0ahGXLlqGoqAg2NjZ49913cfv2bVy/fh0WFhbo0qULnJ2dcfXqVXAch7p166Ju3br85QeWlpYwMzMTMStE13RyBt7Z2Rldu3YFUHLm8dVXX0VgYCAAYNeuXTh69Ch69+6ti00RUm0ajQYxMTF49OgR3N3d4ejoiHXr1vFDoXz00Ue4fPkyIiIioFAooFar0aBBA/Tv3x9WVlZwd3cHx3EYNmxYuXVTrxJCCCGEEFKWmZkZHBwc+Of29vZo37691jJBQUFaz8eNG6d1csnV1RUODg7Iz8+Hu7s7zMzM0LFjR6SlpcHU1BRSqRS5ublISkqCUqlEgwYNoFarsX//fgAlf6N+8MEHWL9+PZKSksBxHMaOHQu1Wo1Dhw5BKpXC398fbdq0wYULF5Cfnw97e3u0bNkSRUVFfJd/R0dHOlGlp3TWhb6sAQMGoE+fPjhy5AgAYNOmTVTAE51jjKGgoAAcx8Hc3Bw3b95EREQE8vLy0L9/f8TExPDjU/r4+GDw4MFwcHCAo6Mj6tWrBzMzMwwbNgwDBw7UGge6bdu2Yu0SIYQQQgipZaRSKX9HfKlUiiZNmmjNf7rLf9euXdG1a1cwxvgie9q0acjOzoa1tTUAoFevXoiJiYFarYajoyPS09MhkUiQk5ODjIwMqFQqHD9+HEVFRQCABg0a4Pjx47h69Sq/zRYtWiA4OBgA4O7ujqCgIFy9ehVxcXGwtLREp06dIJVKce/ePUilUri5ucHc3BwajQYAIJFIaiRftV2NFPAA0KlTJ76Av3btWk1thtQSSqUSUVFRSE9PR+PGjSGTybBu3TpkZ2fDwsKCP5v+4MEDODg4gOM4tGjRAnK5HDY2NqhXrx5MTU0xfPhwrfVyHKdVvBNCCCGEEGIIyp4hd3JygpOTE/+8UaNGWtf+KxQKTJkyRev1s2fPRnZ2NkxMTGBtbY1u3brB2dkZRUVF8PX1hVwuh7u7O78MANy5cweRkZEASor6vLw87NmzBwDg5eWF0aNHY8WKFcjJyYGNjQ0mTpyI+Ph4/Pfff5DL5ejQoQPc3Nxw/fp1MMZQp04duLm5QaVSIT8/H+bm5jS83zPUWAHv6urK/5yVlVVTmyFGQqPRICsrCzKZDBYWFjh37hyioqJQUFCAkSNH4sKFCzh37hwAID8/H926dUO9evUgk8ng5eUFjuMwbtw4flz1Uv7+/iLtESGEEEIIIfpLJpNpFf12dnbo2LGj1jJPn/waNWoUlEolVCoVLC0toVKpYGFhgby8PLi5ucHExARt27ZFcnIyJBIJzMzMkJ2djbi4OCiVSri4uEAmk2H37t0ASi47+OSTT/D3338jJiYGHMdh1KhRsLCwwP79+2FqaormzZujY8eOuHr1KrKysmBraws/Pz+o1WqkpKRALpfD3t6+1nT5r7ECPj4+nv/ZxsampjZDDFxmZia2b9+OK1eu8Hf1HDVqFPbt24ecnBw4Ojrizp07sLW1RcuWLWFtbQ0nJydER0ejefPm/HrCw8NF3AtCCCGEEEJqL7lcjrS0NKSlpcHBwYG/F0BUVBQsLS0xcOBAaDQaSCQSpKam8jePNjc3R0REBJycnFBQUACVSoVHjx6hqKgIDx8+RH5+PvLz86FQKPDXX3+hsLAQADBy5EjcuXOH7+ndsmVLtGrVCtu3b+dvpv7pp58a5ShQNVbAnzlzhv+ZzoKSypw4cQITJ07Umvbll19qPV+wYIGQIRFCCCGEEEL02C+//PLMZbp27YohQ4YIEI2waqSA37lzJ44fP84/HzlyZE1shhgBd3d3ACXvGW9vb5GjqV0++OAD/Pjjj2KHQXSE2tP4UJsal5pqz507dyI+Ph5ubm4YPHiwztdPKkbHp/GhNjUeUVFRGDx4MDw8PMQOpUbopIBPSUnB6dOnkZ6ejsOHD2Pt2rX8vMDAQLzyyiu62AwxQqU3kPP29oaPj89zv37u3Ln45ptvAJTcPTMqKqrWXP/yskrv0E+MA7Wn8aE2NS411Z7Tp0/HiRMnEBAQgPnz59fINkh5dHwaH2pT42OsN6rWyb39Q0JC0K1bNwwaNAirVq3irzvo378/Nm7cqItNEFJOcXEx1q9fzz+Pjo7mRz4gzxYYGCh2CESHqD2ND7WpcaH2NC7UnsaH2pQYCp0NzieRSGBlZYXGjRtj+PDh2LNnD/bs2QMrKytdbYIQLTt37kRycjJ/t0sAWLNmjchRGY7SIT+IcaD2ND7UpsaF2tO4UHsaH2pTYiheuIBfuHAhGGP8Q61WIzs7G3fu3MGWLVswYMAA6spMalTppRq9evXCzJkzAQC7d+9GcnKymGEZjHnz5okdAtEhak/jQ21qXKg9jQu1p/GhNiWGQmdn4AkR0r1793D06FEAwOjRozFkyBCYm5ujuLgY69atEzk6w/DGG2+IHQLRIWpP40NtalyoPY0LtafxoTYlhoIKeGKQ1q5dC8YY5HI5hg4dCoVCwV+79Ntvv4ExJnKE+u/mzZtih0B0iNrT+FCbGhdqT+NC7Wl8qE2JoaixceAJqSnFxcUIDg4GABQWFsLa2lprfkxMDA4dOoS+ffuKEB0hhBBCCCGE1Awq4InB2bFjB1JSUgAAffr0gaWlJT/v5MmTyMjIwNq1a6mAf4YWLVqIHQLRIWpP40NtalyoPY0LtafxoTYlhoK60BODU3qneV9fXxw6dAg7d+7kH3PmzAFQcjO7xMREMcPUe5s2bRI7BKJD1J7Gh9rUuFB7GhdqT+NDbUoMBcfoYmEiovDwcPj6+iIsLAw+Pj5ih0MIIYQYlB49euDEiRMICAjA8ePHxQ6HEEJEZ+z1BZ2BJ6SWKr3pHzEO1J7Gh9rUuFB7GhdqT+NDbUoMBZ2BJ6Iy9m/ICCGEkJoUHByM2NhYeHp6Yvz48WKHQwghojP2+oLOwBNSS40YMULsEIgOUXsaH2pT41JT7Tl+/HgsXLiQineB0fFpfKhNiaGgM/BEVKXfkDVo0AAymUzscGoVxhg4jhM7DKIj1J7Gh9rUuFB7GhdqT+NDbWo8ioqKEB0dbbRn4GkYOaIXdu/e/UIHWExMDJYuXYrDhw8jLi4OMpkMDRo0wJAhQ7BgwYIaiNR4LF68GJ999pnYYTwX6ipaOUNsT1I1alPjQu1pXKg9jQ+1qfEoPUForKgLPTFYx48fR4sWLbB69WqkpqYiMDAQQ4cOBcdxWLZsmdjh6b2+ffuKHcJzCw4OxqJFixAcHCx2KHrHENuTVI3a1LhQexoXak/jQ21KDAWdgScGqaioCGPGjEFeXh48PDxw7tw5uLq68vOvX78uYnSGIT4+XuwQiA5RexofalPjQu1pXKg9jQ+1KTEUdAaeGKQzZ87wH7Rz5szRKt4BoGXLlmKEZVAyMjLEDoHoELWn8aE2NS7UnsaF2tP4UJsSQ0EFPDFISUlJ/M8NGjQQMRLD1b17d7FDIDpE7Wl8qE2NC7WncaH2ND7UpsRQUAFPDJKLiwv/c3R0tIiRGK6ff/5Z7BCIDlF7Gh9qU+NC7WlcqD2ND7UpMRQ0jBwRVeldIp93mIeioiI0aNAACQkJFV4DHxERgebNm9dEyEREPXr0wIkTJxAQEIDjx4+LHQ4hhBBCCNEzL1pfGAo6A08Mkkwmw59//gkLCwvcv38fzZo1w4gRIzBp0iR07twZXbp0ETtEvRcYGCh2CESHqD2ND7WpcaH2NC7UnsaH2pQYCirgicHq1asXbty4gSlTpsDBwQG7du3C1q1bkZ+fj9mzZ4sdnt7bs2eP2CEQHaL2ND7UpsaF2tO4UHsaH2pTYiiogCcGrWHDhvj1119x7949FBUVISsrC9euXcOCBQvEDk3vjRs3TuwQiA5RexofalPjQu1pXKg9jQ+1KTEUVMATUkstW7ZM7BCIDlF7Gh9qU+NC7WlcqD2ND7UpMRRUwBNSS/3xxx9ih0B0iNrT+FCbGhdqT+NC7Wl8qE2JoTAVOwBCiDjat28vdgjPbfz48ejRowc8PT3FDkXvGGJ7kqpRmxoXak/jQu1pfKhNiaGgAp6IqqioCAAQFRUlciS1z+3bt+Ho6Ch2GM+lXbt2aNeuHYCSIULIE4bYnqRq1KbGhdrTuFB7Gh9qU+NRWleU1hnGhgp4Iqq4uDgAwODBg8UNhBBCCCGEEGI0bt68idatW4sdhs5RAU9EFRAQgJ07d8Ld3R0ymUzscGqNqKgoDB48GDt37oS3t7fY4ZCXRO1pfKhNjQu1p3Gh9jQ+1KbGJSIiAiNGjEDjxo3FDqVGUAFPRGVra4tBgwaJHUat5e3tDR8fH7HDIDpC7Wl8qE2NC7WncaH2ND7UpsbF2tpa7BBqBN2FnhBCCCGEEEIIMQBUwBNCCCGEEEIIIQaACnhCCCGEEEIIIcQAUAFPSC3k5OSEzz//HE5OTmKHQnSA2tP4UJsaF2pP40LtaXyoTY2LsbcnxxhjYgdBCCGEEEIIIYSQqtEZeEIIIYQQQgghxABQAU8IIYQQQgghhBgAKuAJIYQQQgghhBADQAU8IYQQQgghhBBiAKiAJ8TAXLp0CTNmzICPjw8sLS1Rv359jBgxApGRkeWW1Wg0WL16Nfz9/WFubg4HBwf06tUL169fr9a2du/ejdatW0Mul6N+/fr4/PPPoVKpdL1LtZ5Qberp6QmO48o93n333ZrYrVqruu1ZUVuUPl555ZVqbYuOUWEI1aZ0jArjeT5zt2zZgo4dO8LW1hYODg4ICAjAvn37qr0tOkaFIVSb0jEqjOdpz1WrVqFZs2aQyWRwc3PDBx98gLy8vGpvyxCPUVOxAyCEPJ9vv/0WZ86cwfDhw+Hn54ekpCSsWrUKrVu3xvnz5+Hr68sv+/bbb2Pjxo0YO3YsZsyYgby8PFy9ehUpKSnP3E5ISAgGDx6MHj16YOXKlbh58ya+/PJLpKSkYPXq1TW5i7WOUG0KAP7+/vjwww+1pjVu3Fin+1PbVbc9//zzz3Kv/e+//7BixQq8+uqrz9wOHaPCEapNATpGhVDd9ly5ciVmzpyJ/v3745tvvkFhYSGCg4MxYMAAbNu2DUOHDq1yO3SMCkeoNgXoGBVCddvz448/xnfffYegoCC8//77iIiIwMqVKxEeHo6DBw8+czsGe4wyQohBOXPmDCsqKtKaFhkZyWQyGRs9ejQ/bfPmzQwA2759+wttp3nz5qxly5asuLiYnzZ//nzGcRy7devWiwVPKiRUm3p4eLD+/fu/VKzk2arbnhWZOHEi4ziOxcXFPXM7dIwKR6g2pWNUGNVtz0aNGrF27doxjUbDT8vKymIKhYINHDjwmduhY1Q4QrUpHaPCqE57JiQkMFNTU/bWW29pLbdy5UoGgO3evfuZ2zHUY5S60BNiYDp37gwzMzOtaY0aNYKPjw9u3brFT/vxxx/Rvn17DBkyBBqN5rm6E0VERCAiIgKTJ0+GqemTjjrTpk0DYwz//vvvy+8I4QnRpmUplcoXfi15tuq259OKioqwbds2BAQEoF69elVug45RYQnRpmXRMVqzqtue2dnZcHZ2Bsdx/DRra2soFAqYm5tXuQ06RoUlRJuWRcdozapOe547dw4qlQqjRo3SWq70+T///FPlNgz5GKUCnhAjwBhDcnIyHB0dAZT8grp48SLatWuHefPmwcbGBgqFAg0aNMCWLVueub6rV68CANq2bas1vW7duqhXrx4/n9QcXbdpqWPHjsHCwgIKhQKenp5YsWJFTe0CKePp9qzI/v37kZmZidGjRz9zfXSMik/XbVqKjlFxVNSePXr0wIEDB7By5UrExsbi9u3bmD59OrKysvD+++9XuT46RsWn6zYtRceoOJ5uz6KiIgAo98WLhYUFAODy5ctVrs+Qj1G6Bp4QI7Bx40bEx8fjiy++AADcu3cPjDH8888/MDU1xXfffQcbGxusWLECo0aNgrW1Nfr161fp+hITEwEArq6u5ea5uroiISGhZnaE8HTdpgDg5+eHrl27okmTJkhLS0NwcDBmzZqFhIQEfPvtt0LsVq31dHtWtoxMJkNQUNAz10fHqPh03aYAHaNiqqg9f/rpJzx69AgzZ87EzJkzAQCOjo44evQoOnXqVOX66BgVn67bFKBjVExPt2eTJk0AAGfOnEHPnj355U6dOgUAiI+Pr3J9Bn2MitJxnxCiM7du3WLW1tasU6dOTKVSMcYYO3nyJAPAALDz58/zy+bk5DBHR0fWpUuXKtf5xRdfMAAsOTm53Lxu3bqxli1b6nQfiLaaaNOKaDQa1rdvX2Zqalqt63PJi6moPZ+WlZXF5HI5GzJkSLXWSceouGqiTStCx6gwKmvPnJwcNm3aNDZu3Di2detWtm7dOtaiRQvm4uLC7t69W+U66RgVV020aUXoGBVGZe3ZoUMHplAo2Lp161hMTAzbv38/8/DwYFKplJmYmFS5TkM+RqkLPSEGLCkpCf3794eNjQ3+/fdfmJiYAHjSncjLywsdOnTgl1coFAgMDMTFixerHCKj9PWl3ZPKKiwsfK7rxMjzqak2rQjHcZg9ezZUKhWOHz+us30gT1TWnk/btm0bCgsLq93Vmo5R8dRUm1aEjtGaV1V7Dh8+HA8ePEBwcDCCgoIwYcIEHD9+HEqlEvPnz69yvXSMiqem2rQidIzWvKrac9u2bWjZsiXefvtteHl5ITAwECNGjECrVq2gUCiqXK8hH6NUwBNioLKysvDaa68hMzMTBw4cQN26dfl5pT/XqVOn3OucnZ1RXFxc5c1XSrsTlXYvKisxMVFrW0R3arJNK+Pu7g4ASE9Pf8GoSWWqas+nbdy4ETY2NhgwYEC11k3HqDhqsk0rQ8dozamqPaOjo3HgwAEMHDhQ6zX29vbo2rUrzpw5U+W66RgVR022aWXoGK05z/rMdXNzw+nTpxEZGYmTJ0/i4cOH+O677xAXF/fMof0M+RilAp4QA1RYWIjAwEBERkZi7969aN68udb8unXrwsXFpcLrfxISEiCXy2FlZVXp+v39/QGUjF/89GsfPnzIzye6U9NtWpno6GgAgJOT04sFTir0rPYsKzExEaGhoRg2bBhkMlm11k/HqPBquk0rQ8dozXhWeyYnJwMA1Gp1udcWFxc/s8cTHaPCq+k2rQwdozXjeT5zGzVqhG7dusHFxQURERFITExEnz59qly/QR+jYvfhJ4Q8H5VKxQYOHMhMTU3Zvn37Kl3u/fffZwDYoUOH+GmpqanM2tqavf766/w0pVLJbt26xRISErRe37RpU9ayZUuta40+/fRTxnEci4iI0OEeESHaNC0trdy1ukqlknXp0oWZmZmxxMREHe5R7Vbd9iz1448/MgDs6NGjFc6nY1R8QrQpHaPCqU57pqSkMIlEwnr06KE1ZnhcXBxTKBSsX79+/DQ6RsUnRJvSMSqc5/3MLaVWq1n//v2ZhYUFu3//Pj/d2I5RjjHGxP0KgRDyPGbNmoUVK1bw1/k8bcyYMQBKvmlu1aoVcnNz8cEHH8DGxga//vor4uLicO7cObRs2RIAEBsbCy8vL4wbNw7BwcH8evbu3YuBAweiZ8+eGDVqFMLCwrBq1SpMnDgRa9euFWRfawsh2jQ4OBhffvklgoKC4OXlhfT0dPz9998ICwvDkiVLMHfuXMH219hVtz1LtW3bFomJiYiLi4NEUr5jHB2j4hOiTekYFU512/Odd97B77//jp49e2Lo0KHIycnBL7/8gsTERBw7dgzdu3cHQMeoPhCiTekYFU512/P9999HYWEh/P39UVxcjL///hsXL17Ehg0b8NZbb/HLG90xKvY3CISQ5xMQEMDfjbyiR1n37t1jQ4YMYdbW1szc3Jz16tWLXbx4UWuZmJgYBoCNGzeu3LZ27NjB/P39mUwmY/Xq1WOffvopUyqVNbl7tZIQbfrff/+xwMBA5ubmxszMzJhCoWBdu3ZlW7ZsEWIXa5Xnac/bt28zAOyDDz6odH10jIpPiDalY1Q41W3P4uJitnLlSubv788UCgVTKBSsZ8+e7NixY1rro2NUfEK0KR2jwqlue65fv561bNmSWVpaMisrK9a7d+9ybcmY8R2jdAaeEEIIIYQQQggxAHQTO0IIIYQQQgghxABQAU8IIYQQQgghhBgAKuAJIYQQQgghhBADQAU8IYQQQgghhBBiAKiAJ4QQQgghhBBCDAAV8IQQQgghhBBCiAGgAp4QQgghhBBCCDEAVMATQgghhBBCCCEGgAp4QgghhBBCCCHEAFABTwghhBBCCCGEGAAq4AkhhBBSLZ6enhg/frzYYZQzbdo0vPLKK4JuMyIiAqampggLCxN0u4QQQmo3KuAJIYQQwjt79iwWLlyIzMxMsUOplpiYGPz++++YN2+eoNtt3rw5+vfvjwULFgi6XUIIIbUbxxhjYgdBCCGEEP3w/fffY86cOYiJiYGnp6fWvKKiIkgkEkilUnGCq8CsWbMQEhKCO3fuCL7tkJAQvP7664iKikLDhg0F3z4hhJDah87AE0IIIaRaZDKZXhXvxcXF2LhxI0aMGCHK9vv06QM7Ozts2LBBlO0TQgipfaiAJ4QQQggAYOHChZgzZw4AwMvLCxzHgeM4xMbGAih/DXxwcDA4jsPp06cxc+ZMODk5wdbWFlOmTIFSqURmZibGjh0LOzs72NnZ4f/+7//wdMc/jUaD5cuXw8fHB3K5HHXq1MGUKVOQkZHxzHhPnz6NR48eoU+fPlrTjx8/Do7jsGXLFixatAhubm6wsrJCUFAQsrKyUFRUhFmzZsHZ2RkKhQITJkxAUVGR1joOHz6Mrl27wtbWFgqFAk2aNCnXTV8qlaJHjx7YtWtXdVNMCCGEvBRTsQMghBBCiH4YOnQoIiMjsWnTJixbtgyOjo4AACcnpypf995778HFxQWLFi3C+fPnsXbtWtja2uLs2bOoX78+lixZgv3792Pp0qXw9fXF2LFj+ddOmTIFwcHBmDBhAmbOnImYmBisWrUKV69exZkzZ6o843/27FlwHIdWrVpVOP/rr7+Gubk5PvnkE0RFRWHlypWQSqWQSCTIyMjAwoULcf78eQQHB8PLy4u/nj08PBwDBgyAn58fvvjiC8hkMkRFReHMmTPlttGmTRvs2rUL2dnZsLa2fmaOCSGEkJdBBTwhhBBCAAB+fn5o3bo1Nm3ahMGDB5e7Br4yderUwf79+8FxHKZNm4aoqCgsXboUU6ZMwerVqwEAkydPhqenJ9atW8cX8KdPn8bvv/+OjRs34s033+TX17NnT/Tr1w9bt27Vmv6027dvw97evtLCWaVS4cSJE/yXAKmpqfjnn3/Qr18/7N+/HwD4eNetW8cX8IcPH4ZSqURISAj/JUZlGjRoAI1Gg9u3b6N9+/bVyhchhBDyoqgLPSGEEEJeysSJE8FxHP+8Q4cOYIxh4sSJ/DQTExO0bdsW0dHR/LStW7fCxsYGr7zyCh49esQ/2rRpA4VCgdDQ0Cq3m5aWBjs7u0rnjx07VusMfmlcb7/9ttZyHTp0QFxcHFQqFQDA1tYWALBr1y5oNJoqYyjd/qNHj6pcjhBCCNEFKuAJIYQQ8lLq16+v9dzGxgYA4O7uXm562Wvb7969i6ysLDg7O8PJyUnrkZubi5SUlGduu6rBdJ4nLo1Gg6ysLADAyJEj0aVLF0yaNAl16tTBqFGjsGXLlgqL+dLtl/0CgxBCCKkp1IWeEEIIIS/FxMSk2tPLFtwach/2zAAAAwRJREFUjQbOzs7YuHFjha9/1rX3Dg4OVd7s7nniKhububk5Tp48idDQUOzbtw8HDhzA5s2b0atXLxw6dEjr9aXbf1ZXe0IIIUQXqIAnhBBCCE/IM8kNGzbEkSNH0KVLF5ibmz/365s2bYqNGzciKyuLP7uuKxKJBL1790bv3r3x448/YsmSJZg/fz5CQ0O17nofExMDiUSCxo0b63T7hBBCSEWoCz0hhBBCeJaWlgCAzMzMGt/WiBEjoFarsXjx4nLzVCrVM2Po1KkTGGO4fPmyTuNKT08vN83f3x8Ayg03d/nyZfj4+Oj8CwRCCCGkInQGnhBCCCG8Nm3aAADmz5+PUaNGQSqVIjAwkC/sdSkgIABTpkzB119/jWvXruHVV1+FVCrF3bt3sXXrVqxYsQJBQUGVvr5r165wcHDAkSNH0KtXL53F9cUXX+DkyZPo378/PDw8kJKSgl9++QX16tVD165d+eWKi4tx4sQJTJs2TWfbJoQQQqpCBTwhhBBCeO3atcPixYvx66+/4sCBA9BoNIiJiamRAh4Afv31V7Rp0wZr1qzBvHnzYGpqCk9PT4wZMwZdunSp8rVmZmYYPXo0tm7diiVLlugspoEDByI2Nhbr1q3Do0eP4OjoiICAACxatEjrTPvRo0eRnp6OcePG6WzbhBBCSFU4VtXtWwkhhBBC9Fh0dDSaNm2KkJAQ9O7dW9BtDx48GBzHYceOHYJulxBCSO1FBTwhhBBCDNrUqVMRFRWFw4cPC7bNW7duoUWLFrh27Rp8fX0F2y4hhJDajQp4QgghhBBCCCHEANBd6AkhhBBCCCGEEANABTwhhBBCCCGEEGIAqIAnhBBCCCGEEEIMABXwhBBCCCGEEEKIAaACnhBCCCGEEEIIMQBUwBNCCCGEEEIIIQaACnhCCCGEEEIIIcQAUAFPCCGEEEIIIYQYACrgCSGEEEIIIYQQA0AFPCGEEEIIIYQQYgCogCeEEEIIIYQQQgwAFfCEEEIIIYQQQogBoAKeEEIIIYQQQggxAP8Pghbmyrphxq0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "