You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Trying to use the NengoDL converter with the built-in EfficientNet TensorFlow networks will cause a failure with this error:
:\xchoo\git\nengo-dl\nengo_dl\converter.py:324: UserWarning: Layer type Rescaling does not have a registered converter. Falling back to TensorNode.
warnings.warn(
d:\xchoo\git\nengo-dl\nengo_dl\converter.py:324: UserWarning: Layer type Normalization does not have a registered converter. Falling back to TensorNode.
warnings.warn(
d:\xchoo\git\nengo-dl\nengo_dl\converter.py:586: UserWarning: Activation type <function swish at 0x0000017DD4D479D0> does not have a native Nengo equivalent; falling back to a TensorNode
warnings.warn(
d:\xchoo\git\nengo-dl\nengo_dl\converter.py:324: UserWarning: Layer type DepthwiseConv2D does not have a registered converter. Falling back to TensorNode.
warnings.warn(
d:\xchoo\git\nengo-dl\nengo_dl\converter.py:324: UserWarning: Layer type Multiply does not have a registered converter. Falling back to TensorNode.
warnings.warn(
Traceback (most recent call last):
File ".\test_efficientnet.py", line 59, in <module>
conv = nengo_dl.Converter(
File "d:\xchoo\git\nengo-dl\nengo_dl\converter.py", line 133, in __init__
self.net = self.get_converter(model).convert(None)
File "d:\xchoo\git\nengo-dl\nengo_dl\converter.py", line 870, in convert
nengo_layer = layer_converter.convert(layer_node_id)
File "d:\xchoo\git\nengo-dl\nengo_dl\converter.py", line 962, in convert
output = self.tensor_layer(
File "d:\xchoo\git\nengo-dl\nengo_dl\tensor_node.py", line 458, in __call__
obj = TensorNode(
File "D:\xchoo\miniconda3\envs\nengo-dl\lib\site-packages\nengo\base.py", line 34, in __call__
inst.__init__(*args, **kwargs)
File "d:\xchoo\git\nengo-dl\nengo_dl\tensor_node.py", line 198, in __init__
self.shape_in = shape_in
File "D:\xchoo\miniconda3\envs\nengo-dl\lib\site-packages\nengo\base.py", line 108, in __setattr__
super().__setattr__(name, val)
File "D:\xchoo\miniconda3\envs\nengo-dl\lib\site-packages\nengo\config.py", line 484, in __setattr__
raise exc_info[1].with_traceback(None) from e
nengo.exceptions.ValidationError: TensorNode.shape_in: Element 0 must be an int (got type 'tuple')
Trying to use the NengoDL converter with the built-in EfficientNet TensorFlow networks will cause a failure with this error:
Minimal code to reproduce error:
I tested some of the other
tf.keras.applications
networks, and the only networks that seem to be affected are the EfficientNet ones.First reported on the Nengo forums here.
The text was updated successfully, but these errors were encountered: