-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcheo.R
269 lines (220 loc) · 10.6 KB
/
cheo.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#https://cran.r-project.org/web/packages/VennDiagram/VennDiagram.pdf
pipeline_comparisons <- function(){
library("VennDiagram")
venn.plot <- draw.pairwise.venn(945+4958,132+4958,4958,
c("BCBIO","Jacek"), fill=c("blue","red"), lty="blank",
cex = 2, cat.cex=2, cat.just = list(c(-1,-1),c(1,1)),
ext.length = 0.3, ext.line.lwd=2,
ext.text = F, main="Sdf"
)
venn.plot <- draw.pairwise.venn(46807953, 54328695, 44991414,
c("Nimblegen.capture", "Agilent"),
fill = c("blue","red"), cex = 2, cat.cex = 2)
venn.plot3 <- draw.triple.venn(54328695, 46807953, 65824553,
39517373, 43777891, 44991414,
37679751,
c("Agilent", "Nimblegen.capture", "Nimblegen.empirical")
)
venn.plot3 <- draw.triple.venn(1, 2, 3, 12, 23, 13, 123,
c("Agilent", "Nimblegen.capture", "Nimblegen.empirical")
)
#example
for (pipeline in c("genap", "bcbio", "jacek", "cpipe")){
for (sample in c("S1", "S2", "S4", "S5", "S6", "S7", "S8")){
agilent <- unlist(read.table(paste0("S1.", pipeline, ".agilent.omim.variants.indels")))
nimblegen <- unlist(read.table(paste0("S1.", pipeline, ".nimblegen.omim.variants.indels")))
#illumina=unlist(read.table(paste0("S1.",pipeline,".illumina.txt")))
x <- list(agilent, nimblegen)
names <- list("Agilent", "Nimblegen")
png(paste0(sample, ".", pipeline, ".png"))
grid.draw(venn.diagram(x, NULL, category.names = names))
dev.off()
}
}
for (platform in c("agilent", "nimblegen")){
for (sample in c("S1", "S2", "S4", "S5", "S6", "S7", "S8")){
#sample="S3"
#platform="illumina"
jacek <- unlist(read.table(paste0(sample, ".jacek.", platform, ".omim.variants.indels")))
cpipe <- unlist(read.table(paste0(sample, ".cpipe.", platform, ".omim.variants.indels")))
bcbio <- unlist(read.table(paste0(sample, ".bcbio.", platform, ".omim.variants.indels")))
genap <- unlist(read.table(paste0(sample, ".genap.", platform, ".omim.variants.indels")))
x <- list(jacek, cpipe, bcbio, genap)
names <- list("jacek", "cpipe", "bcbio", "genap")
png(paste0(sample, ".", platform, ".png"))
grid.draw(venn.diagram(x, NULL, category.names = names))
dev.off()
}
}
}
intersect_bed_files <- function(){
# http://davetang.org/muse/2013/01/02/iranges-and-genomicranges/
source("http://bioconductor.org/biocLite.R")
biocLite("GenomicRanges")
library("GenomicRanges")
setwd("coverage/nimblegen")
capture <- read.table("nimblegen.capture", header = F)
colnames(capture) <- c("chr", "start", "end")
capture.bed <- with(capture, GRanges(chr, IRanges(start+1, end)))
empirical <- read.table("nimblegen.empirical", header = F)
colnames(empirical) <- c("chr", "start", "end")
empirical.bed <- with(capture, GRanges(chr, IRanges(start+1, end)))
omim <- read.table("omim.orphanet.goodnames.v2.bed", header = F)
colnames(empirical) <- c("chr", "start", "end")
omim.bed <- with(capture, GRanges(chr, IRanges(start+1, end)))
bed.intersect <- intersect(omim.bed, capture.bed)
#bed files
setwd("venn_diagrams/bed_intersection/")
omim <- unlist(read.table("omim.orphanet.goodnames.v2.bed.exons"))
agilent <- unlist(read.table("omim_vs_agilent.50percent.wo.exons"))
nimblegen <- unlist(read.table("omim_vs_nimblegen.capture.50percent.wo.exons"))
illumina <- unlist(read.table("omim_vs_illumina.50percent.wo.exons"))
x <- list(omim,agilent,nimblegen,illumina)
names <- list("omim","agilent","nimblegen","illumina")
grid.draw(venn.diagram(x, NULL, category.names = names))
}
variants_parameter <- function(){
type <- "snps"
type <- "indels"
for (platform in c("agilent", "nimblegen")){
for (sample in c("S1", "S2", "S4", "S5", "S6", "S7", "S8")){
sample <- "S1"
platform <- "agilent"
cpipe.hom <- read.table(paste0(sample, ".cpipe.", platform, ".omim.", type, ".hom.AD"))
cpipe.het <- read.table(paste0(sample, ".cpipe.", platform, ".omim.", type, ".het.AD"))
bcbio.hom <- read.table(paste0(sample, ".bcbio.", platform, ".omim.", type, ".hom.AD"))
bcbio.het <- read.table(paste0(sample, ".bcbio.", platform, ".omim.", type, ".het.AD"))
genap.hom <- read.table(paste0(sample, ".genap.", platform, ".omim.", type, ".hom.AD"))
genap.het <- read.table(paste0(sample, ".genap.", platform, ".omim.", type, ".het.AD"))
genap.only <- read.table("S1.genap.only.recode.vcf.AD")
v <- c(genap.hom, genap.het, genap.only)
names <- c("genap.hom", "genap.het", "genap.only")
#indels
v <- c(cpipe.het, bcbio.het, genap.het)
names <- c("cpipe.het", "bcbio.het", "genap.het")
png(paste0(sample,".", platform, ".", type, ".png"), width = 1000)
boxplot(v, names = names)
dev.off()
}
}
setwd("~/cluster/dorin_test")
b1 <- read.table("UNIQUE_to_BCBIO_1496461.vcf.AD")
b2 <- read.table("UNIQUE_to_BCBIO_1496462.vcf.AD")
b3 <- read.table("UNIQUE_to_BCBIO_1496463.vcf.AD")
g1 <- read.table("UNIQUE_to_DNASEQ_1496461.vcf.AD")
g2 <- read.table("UNIQUE_to_DNASEQ_1496462.vcf.AD")
g3 <- read.table("UNIQUE_to_DNASEQ_1496463.vcf.AD")
v <- c(b1, b2, b3, g1, g2, g3)
names <- c("b1", "b2", "b3", "g1", "g2", "g3")
png(paste0(sample, ".", platform, ".", type, ".png"), width = 1000)
boxplot(v, names = names)
}
# title = "cheo.omim_genes.coverage"
# coverage.gene_panel(title)
# plots coverage for every gene for all samples in samples.txt, each sample should have sample.coverage - output of
# bam.coverage.bamstats05.sh
coverage.gene_panel <- function(title){
#test
title <- "test"
setwd("~/Desktop/work")
files <- list.files(".", "\\.coverage$")
#samples = unlist(read.table("samples.txt", stringsAsFactors=F))
coverage <- read.delim(files[1], header = T, stringsAsFactors = F)
coverage <- coverage[,c("gene", "avg")]
colnames(coverage)[2] <- files[1]
for (file in tail(files,-1)){
sample_coverage <- read.delim(file,header=T,stringsAsFactors = F)
sample_coverage <- sample_coverage[,c("gene", "avg")]
colnames(sample_coverage)[2] <- file
coverage <- cbind(coverage,sample_coverage[2])
}
row.names(coverage) <- coverage$gene
coverage$gene <- NULL
n_genes <- nrow(coverage)
for(i in seq(1, ceiling(n_genes/100))){
start_index <- (i-1)*100+1
end_index <- i*100
if (end_index > n_genes) end_index <- n_genes
png(paste0(title, ".part", i, ".png"), res = 300, width = 5000, height = 2000)
boxplot(t(coverage[start_index:end_index,]), las = 2, cex.axis = 0.8,
main = paste0("Coverage in ", length(files), " samples of NextSeq for ",
title, " gene panel,part ", i))
dev.off()
}
}
#when looking at all genes, some samples may have no coverage
# CA0229.coverage 15325
# CA0246.coverage 17268
# CH0317.coverage 15833
# GM15262.coverage 14435
coverage.all_genes <- function (){
title <- "Coverage in project 913 across all protein coding genes,no outliers"
library("matrixStats")
setwd("~/Desktop/work")
samples <- unlist(read.table("samples.txt", stringsAsFactors = F))
#hopefully 1st sample has most genes
coverage <- read.delim(paste0(samples[1], ".coverage"), header = T, stringsAsFactors = F)
coverage <- coverage[,c("gene","mean")]
colnames(coverage)[2] <- samples[1]
row.names(coverage) <- coverage$gene
coverage$gene <- NULL
for (sample in tail(samples,-1)){
sample_coverage <- read.delim(paste0(sample,".coverage"),header=T,stringsAsFactors = F)
sample_coverage <- sample_coverage[,c("gene","mean")]
colnames(sample_coverage)[2] <- sample
coverage <- merge(coverage, sample_coverage, by.x = "row.names", by.y = "gene", all.x = T)
row.names(coverage) <- coverage$Row.names
coverage$Row.names <- NULL
}
coverage[is.na(coverage)] <- 0
coverage$Mean <- rowMeans(coverage)
png("coverage.png", res = 300, width = 5000, height = 2000)
boxplot(coverage, las = 1, cex.axis = 0.6,
main = title, outline = F)
dev.off()
meds <- rbind(colnames(coverage), colMedians(as.matrix(coverage)))
write.table(meds, "medians.txt", col.names = F, quote = F, row.names = F)
}
#%of bases covered more than 10x
coverage.percent_more_than10x <- function(){
setwd("~/Desktop/work")
samples <- unlist(read.table("samples.txt", stringsAsFactors = F))
for (sample in samples){
coverage <- read.delim(paste0(sample, ".coverage"), header = T, stringsAsFactors = F)
total_len <- sum(coverage$length)
coverage_10x <- coverage[coverage$mean > 10,]
len_10x <- sum(coverage_10x$length)
print(paste0(sample, " ", len_10x/total_len))
}
}
omim_table_manipulation <- function(){
setwd("~/Desktop/reference_tables/OMIM_2017-04-13/")
mimTitles.percent <- read.delim2("mimTitles.percent.txt", comment.char="#")
genemap2 <- read.delim("genemap2.txt", comment.char="#")
mimTitles.percent <- merge(mimTitles.percent, genemap2, by.x = "Mim.Number",
by.y = "Mim.Number", all.x = T, all.y = F)
write.csv(mimTitles.percent, "mimTitles.percent.location.csv", row.names = F)
}
read_length_distribution <- function(family){
family_data <- read.delim(paste0(family,".tsv"), stringsAsFactors = F)
samples <- unique(family_data$sample)
for (sample in samples){
tmp <- subset(family_data, sample == sample)
tmp$sample <- NULL
print(paste0(sample, " ", round(sum(tmp$Length*tmp$Count) / sum(tmp$Count))), quote = F)
}
}
read_lengths <- function(){
setwd("~/Desktop/project_cheo/2017-04-12_read_lengths/")
families <- unlist(read.table("projects.txt", stringsAsFactors = F))
for (family in families){
read_length_distribution(family)
}
read_lengths <- read.csv("read_lengths.txt", sep="", stringsAsFactors = F)
read_lengths$id <- NULL
png("read_lengths_all_samples.png", width = 2000)
barplot(read_lengths$average_read_length, names.arg = read_lengths$sample,
main = "Average read lengths for NextSeq samples is 134",
las = 2)
dev.off()
}