diff --git a/docs/articles/benchmark.md b/docs/articles/benchmark.md index 14aa203..d01c7ba 100644 --- a/docs/articles/benchmark.md +++ b/docs/articles/benchmark.md @@ -61,7 +61,6 @@ Define parameter grids: n_values = [1000, 5000] # Number of documents m_values = [500, 1000, 5000, 10000] # Vocabulary size k_values = [10, 50, 100] # Number of topics -learning_rate = 0.01 avg_doc_length = 256 * 256 ``` @@ -72,7 +71,7 @@ benchmark_results = pd.DataFrame() def benchmark(X, k, device): start_time = time.time() - model, losses = fit_model(X, k, learning_rate=learning_rate, device=device) + model, losses = fit_model(X, k, device=device) elapsed_time = time.time() - start_time return elapsed_time diff --git a/docs/articles/benchmark.qmd b/docs/articles/benchmark.qmd index cff9e04..b271c95 100644 --- a/docs/articles/benchmark.qmd +++ b/docs/articles/benchmark.qmd @@ -62,7 +62,6 @@ Define parameter grids: n_values = [1000, 5000] # Number of documents m_values = [500, 1000, 5000, 10000] # Vocabulary size k_values = [10, 50, 100] # Number of topics -learning_rate = 0.01 avg_doc_length = 256 * 256 ``` @@ -73,7 +72,7 @@ benchmark_results = pd.DataFrame() def benchmark(X, k, device): start_time = time.time() - model, losses = fit_model(X, k, learning_rate=learning_rate, device=device) + model, losses = fit_model(X, k, device=device) elapsed_time = time.time() - start_time return elapsed_time diff --git a/docs/articles/get-started.md b/docs/articles/get-started.md index 48a67ab..57bb1d1 100644 --- a/docs/articles/get-started.md +++ b/docs/articles/get-started.md @@ -72,7 +72,7 @@ Fit the topic model and plot the loss curve. There will be a progress bar. ``` python -model, losses = fit_model(X, k, learning_rate=0.01) +model, losses = fit_model(X, k) plot_loss(losses, output_file="loss.png") ``` diff --git a/docs/articles/get-started.qmd b/docs/articles/get-started.qmd index e815dfa..0b4cf40 100644 --- a/docs/articles/get-started.qmd +++ b/docs/articles/get-started.qmd @@ -72,7 +72,7 @@ X, true_L, true_F = generate_synthetic_data(n, m, k, avg_doc_length=256 * 256) Fit the topic model and plot the loss curve. There will be a progress bar. ```{python} -model, losses = fit_model(X, k, learning_rate=0.01) +model, losses = fit_model(X, k) plot_loss(losses, output_file="loss.png") ``` diff --git a/examples/benchmark.py b/examples/benchmark.py index 56256db..2cd2b6e 100644 --- a/examples/benchmark.py +++ b/examples/benchmark.py @@ -12,7 +12,6 @@ n_values = [1000, 5000] # Number of documents m_values = [500, 1000, 5000, 10000] # Vocabulary size k_values = [10, 50, 100] # Number of topics -learning_rate = 0.01 avg_doc_length = 256 * 256 @@ -21,7 +20,7 @@ def benchmark(X, k, device): start_time = time.time() - model, losses = fit_model(X, k, learning_rate=learning_rate, device=device) + model, losses = fit_model(X, k, device=device) elapsed_time = time.time() - start_time return elapsed_time diff --git a/examples/get-started.py b/examples/get-started.py index bc1ec16..51b4cf0 100644 --- a/examples/get-started.py +++ b/examples/get-started.py @@ -15,7 +15,7 @@ X, true_L, true_F = generate_synthetic_data(n, m, k, avg_doc_length=256 * 256) -model, losses = fit_model(X, k, learning_rate=0.01) +model, losses = fit_model(X, k) plot_loss(losses, output_file="loss.png")