forked from ZipCPU/wb2axip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwbm2axisp.v
1147 lines (1019 loc) · 29 KB
/
wbm2axisp.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
////////////////////////////////////////////////////////////////////////////////
//
// Filename: wbm2axisp.v (Wishbone master to AXI slave, pipelined)
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: The B4 Wishbone SPEC allows transactions at a speed as fast as
// one per clock. The AXI bus allows transactions at a speed of
// one read and one write transaction per clock. These capabilities work
// by allowing requests to take place prior to responses, such that the
// requests might go out at once per clock and take several clocks, and
// the responses may start coming back several clocks later. In other
// words, both protocols allow multiple transactions to be "in flight" at
// the same time. Current wishbone to AXI converters, however, handle only
// one transaction at a time: initiating the transaction, and then waiting
// for the transaction to complete before initiating the next.
//
// The purpose of this core is to maintain the speed of both buses, while
// transiting from the Wishbone (as master) to the AXI bus (as slave) and
// back again.
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2016-2021, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
// }}}
module wbm2axisp #(
// {{{
parameter C_AXI_DATA_WIDTH = 128,// Width of the AXI R&W data
parameter C_AXI_ADDR_WIDTH = 28, // AXI Address width (log wordsize)
parameter C_AXI_ID_WIDTH = 1,
parameter DW = 32, // Wishbone data width
parameter AW = 26, // Wishbone address width (log wordsize)
parameter [C_AXI_ID_WIDTH-1:0] AXI_WRITE_ID = 1'b0,
parameter [C_AXI_ID_WIDTH-1:0] AXI_READ_ID = 1'b1,
//
// OPT_LITTLE_ENDIAN controls which word has the greatest address
// when the bus size is adjusted. If OPT_LITTLE_ENDIAN is true,
// the biggest address is in the most significant word(s), otherwise
// the least significant word(s). This parameter is ignored if
// C_AXI_DATA_WIDTH == DW.
parameter [0:0] OPT_LITTLE_ENDIAN = 1'b1,
parameter LGFIFO = 6
// }}}
) (
// {{{
input wire i_clk, // System clock
input wire i_reset,// Reset signal,drives AXI rst
// AXI write address channel signals
output reg o_axi_awvalid, // Write address valid
input wire i_axi_awready, // Slave is ready to accept
output wire [C_AXI_ID_WIDTH-1:0] o_axi_awid, // Write ID
output reg [C_AXI_ADDR_WIDTH-1:0] o_axi_awaddr, // Write address
output wire [7:0] o_axi_awlen, // Write Burst Length
output wire [2:0] o_axi_awsize, // Write Burst size
output wire [1:0] o_axi_awburst, // Write Burst type
output wire [0:0] o_axi_awlock, // Write lock type
output wire [3:0] o_axi_awcache, // Write Cache type
output wire [2:0] o_axi_awprot, // Write Protection type
output wire [3:0] o_axi_awqos, // Write Quality of Svc
// AXI write data channel signals
output reg o_axi_wvalid, // Write valid
input wire i_axi_wready, // Write data ready
output reg [C_AXI_DATA_WIDTH-1:0] o_axi_wdata, // Write data
output reg [C_AXI_DATA_WIDTH/8-1:0] o_axi_wstrb, // Write strobes
output wire o_axi_wlast, // Last write transaction
// AXI write response channel signals
input wire i_axi_bvalid, // Write reponse valid
output wire o_axi_bready, // Response ready
input wire [C_AXI_ID_WIDTH-1:0] i_axi_bid, // Response ID
input wire [1:0] i_axi_bresp, // Write response
// AXI read address channel signals
output reg o_axi_arvalid, // Read address valid
input wire i_axi_arready, // Read address ready
output wire [C_AXI_ID_WIDTH-1:0] o_axi_arid, // Read ID
output reg [C_AXI_ADDR_WIDTH-1:0] o_axi_araddr, // Read address
output wire [7:0] o_axi_arlen, // Read Burst Length
output wire [2:0] o_axi_arsize, // Read Burst size
output wire [1:0] o_axi_arburst, // Read Burst type
output wire [0:0] o_axi_arlock, // Read lock type
output wire [3:0] o_axi_arcache, // Read Cache type
output wire [2:0] o_axi_arprot, // Read Protection type
output wire [3:0] o_axi_arqos, // Read Protection type
// AXI read data channel signals
input wire i_axi_rvalid, // Read reponse valid
output wire o_axi_rready, // Read Response ready
input wire [C_AXI_ID_WIDTH-1:0] i_axi_rid, // Response ID
input wire [C_AXI_DATA_WIDTH-1:0] i_axi_rdata, // Read data
input wire [1:0] i_axi_rresp, // Read response
input wire i_axi_rlast, // Read last
// We'll share the clock and the reset
input wire i_wb_cyc,
input wire i_wb_stb,
input wire i_wb_we,
input wire [(AW-1):0] i_wb_addr,
input wire [(DW-1):0] i_wb_data,
input wire [(DW/8-1):0] i_wb_sel,
output reg o_wb_stall,
output reg o_wb_ack,
output reg [(DW-1):0] o_wb_data,
output reg o_wb_err
// }}}
);
////////////////////////////////////////////////////////////////////////
//
// Localparameter declarations, initial parameter consistency check
// {{{
////////////////////////////////////////////////////////////////////////
//
//
localparam LG_AXI_DW = $clog2(C_AXI_DATA_WIDTH);
localparam LG_WB_DW = $clog2(DW);
// localparam FIFOLN = (1<<LGFIFO);
localparam SUBW = LG_AXI_DW-LG_WB_DW;
// The various address widths must be properly related. We'll insist
// upon that relationship here.
initial begin
// This design can't (currently) handle WB widths wider than
// the AXI width it is driving. It can only handle widths
// mismatches in the other direction
if (C_AXI_DATA_WIDTH < DW)
$stop;
if (DW == 8 && AW != C_AXI_ADDR_WIDTH)
$stop;
// There must be a definitive relationship between the address
// widths of the AXI and WB, and that width is dependent upon
// the WB data width
if (C_AXI_ADDR_WIDTH != AW + $clog2(DW)-3)
$stop;
if ( (C_AXI_DATA_WIDTH / DW !=32)
&&(C_AXI_DATA_WIDTH / DW !=16)
&&(C_AXI_DATA_WIDTH / DW != 8)
&&(C_AXI_DATA_WIDTH / DW != 4)
&&(C_AXI_DATA_WIDTH / DW != 2)
&&(C_AXI_DATA_WIDTH != DW))
$stop;
end
// }}}
////////////////////////////////////////////////////////////////////////
//
// Internal register and wire declarations
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// Things we're not changing ...
localparam DWSIZE = $clog2(DW)-3;
assign o_axi_awid = AXI_WRITE_ID;
assign o_axi_awlen = 8'h0; // Burst length is one
assign o_axi_awsize = DWSIZE[2:0];
assign o_axi_wlast = 1;
assign o_axi_awburst = 2'b01; // Incrementing address (ignored)
assign o_axi_awlock = 1'b0; // Normal signaling
assign o_axi_arlock = 1'b0; // Normal signaling
assign o_axi_awcache = 4'h3; // Normal: no cache, modifiable
//
assign o_axi_arid = AXI_READ_ID;
assign o_axi_arlen = 8'h0; // Burst length is one
assign o_axi_arsize = DWSIZE[2:0];
assign o_axi_arburst = 2'b01; // Incrementing address (ignored)
assign o_axi_arcache = 4'h3; // Normal: no cache, modifiable
assign o_axi_awprot = 3'b010; // Unpriviledged, unsecure, data access
assign o_axi_arprot = 3'b010; // Unpriviledged, unsecure, data access
assign o_axi_awqos = 4'h0; // Lowest quality of service (unused)
assign o_axi_arqos = 4'h0; // Lowest quality of service (unused)
reg direction, full, empty, flushing, nearfull;
reg [LGFIFO:0] npending;
//
wire skid_ready, m_valid, m_we;
reg m_ready;
wire [AW-1:0] m_addr;
wire [DW-1:0] m_data;
wire [DW/8-1:0] m_sel;
// }}}
////////////////////////////////////////////////////////////////////////
//
// Overarching command logic
// {{{
////////////////////////////////////////////////////////////////////////
//
//
initial direction = 0;
always @(posedge i_clk)
if (empty)
direction <= m_we;
initial npending = 0;
initial empty = 1;
initial full = 0;
initial nearfull = 0;
always @(posedge i_clk)
if (i_reset)
begin
npending <= 0;
empty <= 1;
full <= 0;
nearfull <= 0;
end else case ({m_valid && m_ready, i_axi_bvalid||i_axi_rvalid})
2'b10: begin
npending <= npending + 1;
empty <= 0;
nearfull <= &(npending[LGFIFO-1:1]);
full <= &(npending[LGFIFO-1:0]);
end
2'b01: begin
nearfull <= full;
npending <= npending - 1;
empty <= (npending == 1);
full <= 0;
end
default: begin end
endcase
initial flushing = 0;
always @(posedge i_clk)
if (i_reset)
flushing <= 0;
else if ((i_axi_rvalid && i_axi_rresp[1])
||(i_axi_bvalid && i_axi_bresp[1])
||(!i_wb_cyc && !empty))
flushing <= 1'b1;
else if (empty)
flushing <= 1'b0;
// }}}
////////////////////////////////////////////////////////////////////////
//
// Wishbone input skidbuffer
// {{{
////////////////////////////////////////////////////////////////////////
//
//
skidbuffer #(.DW(1+AW+DW+(DW/8)),
.OPT_OUTREG(1'b0))
skid (i_clk, i_reset || !i_wb_cyc,
i_wb_stb, skid_ready,
{ i_wb_we, i_wb_addr, i_wb_data, i_wb_sel },
m_valid, m_ready,
{ m_we, m_addr, m_data, m_sel });
always @(*)
o_wb_stall = !skid_ready;
always @(*)
begin
m_ready = 1;
if (flushing || nearfull || ((m_we != direction)&&(!empty)))
m_ready = 1'b0;
if (o_axi_awvalid && !i_axi_awready)
m_ready = 1'b0;
if (o_axi_wvalid && !i_axi_wready)
m_ready = 1'b0;
if (o_axi_arvalid && !i_axi_arready)
m_ready = 1'b0;
end
// }}}
////////////////////////////////////////////////////////////////////////
//
// AXI Signaling
// {{{
////////////////////////////////////////////////////////////////////////
//
//
//
// Write transactions
//
// awvalid, wvalid
// {{{
// Send write transactions
initial o_axi_awvalid = 0;
initial o_axi_wvalid = 0;
always @(posedge i_clk)
if (i_reset)
begin
o_axi_awvalid <= 0;
o_axi_wvalid <= 0;
end else if (m_valid && m_we && m_ready)
begin
o_axi_awvalid <= 1;
o_axi_wvalid <= 1;
end else begin
if (i_axi_awready)
o_axi_awvalid <= 0;
if (i_axi_wready)
o_axi_wvalid <= 0;
end
// }}}
// wdata
// {{{
always @(posedge i_clk)
if (!o_axi_wvalid || i_axi_wready)
o_axi_wdata <= {(C_AXI_DATA_WIDTH/DW){m_data}};
// }}}
// wstrb
// {{{
generate if (DW == C_AXI_DATA_WIDTH)
begin : NO_WSTRB_ADJUSTMENT
// {{{
always @(posedge i_clk)
if (!o_axi_wvalid || i_axi_wready)
o_axi_wstrb <= m_sel;
// }}}
end else if (OPT_LITTLE_ENDIAN)
begin : LITTLE_ENDIAN_WSTRB
// {{{
always @(posedge i_clk)
if (!o_axi_wvalid || i_axi_wready)
// Verilator lint_off WIDTH
o_axi_wstrb <= m_sel << ((DW/8) * m_addr[SUBW-1:0]);
// Verilator lint_on WIDTH
// }}}
end else begin : BIG_ENDIAN_WSTRB
// {{{
reg [SUBW-1:0] neg_addr;
always @(*)
neg_addr = ~m_addr[SUBW-1:0];
always @(posedge i_clk)
if (!o_axi_wvalid || i_axi_wready)
// Verilator lint_off WIDTH
o_axi_wstrb <= m_sel << ((DW/8)* neg_addr);
// Verilator lint_on WIDTH
// }}}
end endgenerate
// }}}
//
// Read transactions
//
// arvalid
// {{{
initial o_axi_arvalid = 0;
always @(posedge i_clk)
if (i_reset)
o_axi_arvalid <= 0;
else if (m_valid && !m_we && m_ready)
o_axi_arvalid <= 1;
else if (i_axi_arready)
begin
o_axi_arvalid <= 0;
end
// }}}
// awaddr, araddr
// {{{
generate if (OPT_LITTLE_ENDIAN || DW == C_AXI_DATA_WIDTH)
begin
// {{{
always @(posedge i_clk)
if (!o_axi_awvalid || i_axi_awready)
o_axi_awaddr <= { m_addr, {($clog2(DW)-3){1'b0}} };
always @(posedge i_clk)
if (!o_axi_arvalid || i_axi_arready)
o_axi_araddr <= { m_addr, {($clog2(DW)-3){1'b0}} };
// }}}
end else begin : OPT_BIG_ENDIAN
// {{{
reg [SUBW-1:0] neg_addr;
always @(*)
neg_addr = ~m_addr[SUBW-1:0];
always @(posedge i_clk)
if (!o_axi_awvalid || i_axi_awready)
begin
o_axi_awaddr <= 0;
o_axi_awaddr <= m_addr << ($clog2(DW)-3);
o_axi_awaddr[$clog2(DW)-3 +: SUBW] <= neg_addr;
end
always @(posedge i_clk)
if (!o_axi_arvalid || i_axi_arready)
begin
o_axi_araddr <= 0;
o_axi_araddr <= m_addr << ($clog2(DW)-3);
o_axi_araddr[$clog2(DW)-3 +: SUBW] <= neg_addr;
end
// }}}
end endgenerate
// }}}
// rdata, and returned o_wb_data, o_wb_ack, o_wb_err
// {{{
generate if (DW == C_AXI_DATA_WIDTH)
begin : NO_READ_DATA_SELECT_NECESSARY
// {{{
always @(*)
o_wb_data = i_axi_rdata;
always @(*)
o_wb_ack = !flushing&&((i_axi_rvalid && !i_axi_rresp[1])
||(i_axi_bvalid && !i_axi_bresp[1]));
always @(*)
o_wb_err = !flushing&&((i_axi_rvalid && i_axi_rresp[1])
||(i_axi_bvalid && i_axi_bresp[1]));
// }}}
end else begin : READ_FIFO_DATA_SELECT
// {{{
reg [SUBW-1:0] addr_fifo [0:(1<<LGFIFO)-1];
reg [SUBW-1:0] fifo_value;
reg [LGFIFO:0] wr_addr, rd_addr;
wire [C_AXI_DATA_WIDTH-1:0] return_data;
initial o_wb_ack = 0;
always @(posedge i_clk)
if (i_reset || !i_wb_cyc || flushing)
o_wb_ack <= 0;
else
o_wb_ack <= ((i_axi_rvalid && !i_axi_rresp[1])
||(i_axi_bvalid && !i_axi_bresp[1]));
initial o_wb_err = 0;
always @(posedge i_clk)
if (i_reset || !i_wb_cyc || flushing)
o_wb_err <= 0;
else
o_wb_err <= ((i_axi_rvalid && i_axi_rresp[1])
||(i_axi_bvalid && i_axi_bresp[1]));
initial wr_addr = 0;
always @(posedge i_clk)
if (i_reset)
wr_addr <= 0;
else if (m_valid && m_ready)
wr_addr <= wr_addr + 1;
always @(posedge i_clk)
if (m_valid && m_ready)
addr_fifo[wr_addr[LGFIFO-1:0]] <= m_addr[SUBW-1:0];
initial rd_addr = 0;
always @(posedge i_clk)
if (i_reset)
rd_addr <= 0;
else if (i_axi_bvalid || i_axi_rvalid)
rd_addr <= rd_addr + 1;
always @(*)
fifo_value = addr_fifo[rd_addr[LGFIFO-1:0]];
if (OPT_LITTLE_ENDIAN)
begin : LITTLE_ENDIAN_RDATA
assign return_data = i_axi_rdata >> (fifo_value * DW);
end else begin : BIG_ENDIAN_RDATA
reg [SUBW-1:0] neg_fifo_value;
always @(*)
neg_fifo_value = ~fifo_value;
assign return_data = i_axi_rdata
>> (neg_fifo_value * DW);
end
always @(posedge i_clk)
o_wb_data <= return_data[DW-1:0];
// Make Verilator happy here
// verilator lint_off UNUSED
if (C_AXI_DATA_WIDTH > DW)
begin : UNUSED_DATA
wire unused_data;
assign unused_data = &{ 1'b0,
return_data[C_AXI_DATA_WIDTH-1:DW] };
end
// verilator lint_on UNUSED
`ifdef FORMAL
always @(*)
assert(wr_addr - rd_addr == npending);
always @(*)
assert(empty == (wr_addr == rd_addr));
//
// ...
//
`endif
// }}}
end endgenerate
// }}}
// Read data channel / response logic
assign o_axi_rready = 1'b1;
assign o_axi_bready = 1'b1;
// }}}
// Make verilator's -Wall happy
// {{{
// verilator lint_off UNUSED
wire unused;
assign unused = &{ 1'b0, full, i_axi_bid, i_axi_bresp[0], i_axi_rid, i_axi_rresp[0], i_axi_rlast, m_data, m_sel };
generate if (C_AXI_DATA_WIDTH > DW)
begin
wire [C_AXI_DATA_WIDTH-1:DW] unused_data;
assign unused_data = i_axi_rdata[C_AXI_DATA_WIDTH-1:DW];
end endgenerate
// verilator lint_on UNUSED
// }}}
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
//
// Formal methods section
// {{{
// Below are a scattering of the formal properties used. They are not the
// complete set of properties. Those are maintained elsewhere.
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
`ifdef FORMAL
//
// ...
//
// Parameters
initial assert( (C_AXI_DATA_WIDTH / DW ==32)
||(C_AXI_DATA_WIDTH / DW ==16)
||(C_AXI_DATA_WIDTH / DW == 8)
||(C_AXI_DATA_WIDTH / DW == 4)
||(C_AXI_DATA_WIDTH / DW == 2)
||(C_AXI_DATA_WIDTH == DW));
//
initial assert( C_AXI_ADDR_WIDTH == AW + (LG_WB_DW-3));
initial begin
assert(C_AXI_DATA_WIDTH >= DW);
assert((DW == 8) == (AW == C_AXI_ADDR_WIDTH));
assert(C_AXI_ADDR_WIDTH == AW + $clog2(DW)-3);
end
// }}}
////////////////////////////////////////////////////////////////////////
//
// Setup / f_past_valid
// {{{
////////////////////////////////////////////////////////////////////////
//
//
initial f_past_valid = 1'b0;
always @(posedge i_clk)
f_past_valid <= 1'b1;
// }}}
////////////////////////////////////////////////////////////////////////
//
// Assumptions about the WISHBONE inputs
// {{{
////////////////////////////////////////////////////////////////////////
//
//
always @(*)
if (!f_past_valid)
assume(i_reset);
fwb_slave #(.DW(DW),.AW(AW),
.F_MAX_STALL(0),
.F_MAX_ACK_DELAY(0),
.F_LGDEPTH(F_LGDEPTH),
.F_MAX_REQUESTS(0))
f_wb(i_clk, i_reset, i_wb_cyc, i_wb_stb, i_wb_we, i_wb_addr,
i_wb_data, i_wb_sel,
o_wb_ack, o_wb_stall, o_wb_data, o_wb_err,
f_wb_nreqs, f_wb_nacks, f_wb_outstanding);
// }}}
////////////////////////////////////////////////////////////////////////
//
// Assumptions about the AXI inputs
// {{{
////////////////////////////////////////////////////////////////////////
//
//
faxi_master #(
// {{{
.C_AXI_ID_WIDTH(C_AXI_ID_WIDTH),
.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH)
// ...
// }}}
) f_axi(.i_clk(i_clk), .i_axi_reset_n(!i_reset),
// {{{
// Write address channel
.i_axi_awready(i_axi_awready),
.i_axi_awid( o_axi_awid),
.i_axi_awaddr( o_axi_awaddr),
.i_axi_awlen( o_axi_awlen),
.i_axi_awsize( o_axi_awsize),
.i_axi_awburst(o_axi_awburst),
.i_axi_awlock( o_axi_awlock),
.i_axi_awcache(o_axi_awcache),
.i_axi_awprot( o_axi_awprot),
.i_axi_awqos( o_axi_awqos),
.i_axi_awvalid(o_axi_awvalid),
// Write data channel
.i_axi_wready( i_axi_wready),
.i_axi_wdata( o_axi_wdata),
.i_axi_wstrb( o_axi_wstrb),
.i_axi_wlast( o_axi_wlast),
.i_axi_wvalid( o_axi_wvalid),
// Write response channel
.i_axi_bid( i_axi_bid),
.i_axi_bresp( i_axi_bresp),
.i_axi_bvalid( i_axi_bvalid),
.i_axi_bready( o_axi_bready),
// Read address channel
.i_axi_arready(i_axi_arready),
.i_axi_arid( o_axi_arid),
.i_axi_araddr( o_axi_araddr),
.i_axi_arlen( o_axi_arlen),
.i_axi_arsize( o_axi_arsize),
.i_axi_arburst(o_axi_arburst),
.i_axi_arlock( o_axi_arlock),
.i_axi_arcache(o_axi_arcache),
.i_axi_arprot( o_axi_arprot),
.i_axi_arqos( o_axi_arqos),
.i_axi_arvalid(o_axi_arvalid),
// Read data channel
.i_axi_rid( i_axi_rid),
.i_axi_rresp( i_axi_rresp),
.i_axi_rvalid( i_axi_rvalid),
.i_axi_rdata( i_axi_rdata),
.i_axi_rlast( i_axi_rlast),
.i_axi_rready( o_axi_rready),
// Counts
.f_axi_awr_nbursts(f_axi_awr_nbursts),
.f_axi_wr_pending(f_axi_wr_pending),
.f_axi_rd_nbursts(f_axi_rd_nbursts),
.f_axi_rd_outstanding(f_axi_rd_outstanding)
//
// ...
//
// }}}
);
always @(*)
if (!flushing && i_wb_cyc)
assert(f_wb_outstanding == npending + (r_stb ? 1:0)
+ ( ((C_AXI_DATA_WIDTH != DW)
&& (o_wb_ack|o_wb_err))? 1:0));
else if (flushing && i_wb_cyc && !o_wb_err)
assert(f_wb_outstanding == (r_stb ? 1:0));
always @(*)
if (f_axi_awr_nbursts > 0)
begin
assert(direction);
assert(f_axi_rd_nbursts == 0);
assert(f_axi_awr_nbursts + (o_axi_awvalid ? 1:0) == npending);
assert(f_axi_wr_pending == (o_axi_wvalid&&!o_axi_awvalid ? 1:0));
//
// ...
//
end
always @(*)
if (o_axi_awvalid)
assert(o_axi_wvalid);
// Some quick read checks
always @(*)
if (f_axi_rd_nbursts > 0)
begin
assert(!direction);
assert(f_axi_rd_nbursts+(o_axi_arvalid ? 1:0)
== npending);
assert(f_axi_awr_nbursts == 0);
//
// ...
//
end
always @(*)
if (direction)
begin
assert(npending == (o_axi_awvalid ? 1:0) + f_axi_awr_nbursts);
assert(!o_axi_arvalid);
assert(f_axi_rd_nbursts == 0);
assert(!i_axi_rvalid);
end else begin
assert(npending == (o_axi_arvalid ? 1:0) + f_axi_rd_nbursts);
assert(!o_axi_awvalid);
assert(!o_axi_wvalid);
assert(f_axi_awr_nbursts == 0);
end
// }}}
////////////////////////////////////////////////////////////////////////
//
// Pending counter properties
// {{{
////////////////////////////////////////////////////////////////////////
//
//
always @(*)
begin
assert(npending <= { 1'b1, {(LGFIFO){1'b0}} });
assert(empty == (npending == 0));
assert(full == (npending == {1'b1, {(LGFIFO){1'b0}} }));
assert(nearfull == (npending >= {1'b0, {(LGFIFO){1'b1}} }));
if (full)
assert(!m_ready);
end
// }}}
////////////////////////////////////////////////////////////////////////
//
// Assertions about the AXI4 ouputs
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// Write response channel
always @(posedge i_clk)
// We keep bready high, so the other condition doesn't
// need to be checked
assert(o_axi_bready);
// AXI read data channel signals
always @(posedge i_clk)
// We keep o_axi_rready high, so the other condition's
// don't need to be checked here
assert(o_axi_rready);
//
// AXI write address channel
//
//
always @(*)
begin
if (o_axi_awvalid || o_axi_wvalid || f_axi_awr_nbursts>0)
assert(direction);
//
// ...
//
end
//
// AXI read address channel
//
always @(*)
begin
if (o_axi_arvalid || i_axi_rvalid || f_axi_rd_nbursts > 0)
assert(!direction);
//
// ...
//
end
//
// AXI write response channel
//
//
// AXI read data channel signals
//
// }}}
////////////////////////////////////////////////////////////////////////
//
// Formal contract check
// {{{
////////////////////////////////////////////////////////////////////////
//
// Prove that a write to this address will change this value
//
// Some extra register declarations
// {{{
(* anyconst *) reg [C_AXI_ADDR_WIDTH-1:0] f_const_addr;
reg [C_AXI_DATA_WIDTH-1:0] f_data;
// }}}
//
// Assume a basic bus response to the given data and address
//
integer iN;
// f_data
// {{{
initial f_data = 0;
always @(posedge i_clk)
if (o_axi_wvalid && i_axi_wready && o_axi_awaddr == f_const_addr)
begin
for(iN=0; iN<C_AXI_DATA_WIDTH/8; iN=iN+1)
begin
if (o_axi_wstrb[iN])
f_data[8*iN +: 8] <= o_axi_wdata[8*iN +: 8];
end
end
// }}}
// Assume RDATA == f_data if appropriate
// {{{
always @(*)
if (i_axi_rvalid && o_axi_rready && f_axi_rd_ckvalid
&& (f_axi_rd_ckaddr == f_const_addr))
assume(i_axi_rdata == f_data);
// }}}
// f_wb_addr -- A WB address designed to match f_const_addr (AXI addr)
// {{{
always @(*)
begin
f_wb_addr = f_const_addr[C_AXI_ADDR_WIDTH-1:DWSIZE];
if (!OPT_LITTLE_ENDIAN && SUBW > 0)
f_wb_addr[0 +: SUBW] = ~f_wb_addr[0 +: SUBW];
end
// }}}
// Assume the address is Wishbone word aligned
// {{{
generate if (DW > 8)
begin
always @(*)
assume(f_const_addr[$clog2(DW)-4:0] == 0);
end endgenerate
// }}}
// f_axi_data -- Replicate f_wb_data across the whole word
// {{{
always @(*)
f_axi_data = {(C_AXI_DATA_WIDTH/DW){f_wb_data}};
// }}}
//
// ...
//
always @(*)
begin
f_valid_wb_response = 1;
for(iN=0; iN<DW/8; iN=iN+1)
begin
if (f_wb_strb[iN] && (o_wb_data[iN*8 +: 8] != f_wb_data[iN*8 +: 8]))
f_valid_wb_response = 0;
end
end
// }}}
// f_valid_axi_data
// {{{
always @(*)
begin
f_valid_axi_data = 1;
for(iN=0; iN<C_AXI_DATA_WIDTH/8; iN=iN+1)
begin
if (f_axi_strb[iN] && (f_axi_data[iN*8 +: 8] != f_data[iN*8 +: 8]))
f_valid_axi_data = 0;
end
end
// }}}
// f_valid_axi_response
// {{{
always @(*)
begin
f_valid_axi_response = 1;
for(iN=0; iN<C_AXI_DATA_WIDTH/8; iN=iN+1)
begin
if (f_axi_strb[iN] && (i_axi_rdata[iN*8 +: 8] != f_data[iN*8 +: 8]))
f_valid_axi_response = 0;
end
end
// }}}
//
// ...
//
generate if (DW == C_AXI_DATA_WIDTH)
begin
always @(*)
f_axi_strb = f_wb_strb;
end else if (OPT_LITTLE_ENDIAN)
begin
always @(*)
f_axi_strb <= f_wb_strb << ( (DW/8) *
f_wb_addr[SUBW-1:0]);
end else // if (!OPT_LITTLE_ENDIAN)
begin
reg [SUBW-1:0] f_neg_addr;
always @(*)
f_neg_addr = ~f_wb_addr[SUBW-1:0];
always @(*)
f_axi_strb <= f_wb_strb << ( (DW/8) * f_neg_addr );
end endgenerate
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// Ad-hoc assertions
// {{{
////////////////////////////////////////////////////////////////////////
//
//
generate if (DW > 8)
begin
always @(*)
if (o_axi_awvalid)
assert(o_axi_awaddr[$clog2(DW)-4:0] == 0);
always @(*)
if (o_axi_arvalid)
assert(o_axi_araddr[$clog2(DW)-4:0] == 0);
end endgenerate
// }}}
////////////////////////////////////////////////////////////////////////
//
// Cover checks
// {{{
////////////////////////////////////////////////////////////////////////
//
//
reg [F_LGDEPTH-1:0] r_hit_reads, r_hit_writes,
r_check_fault, check_fault,
cvr_nreads, cvr_nwrites;
reg cvr_flushed, cvr_read2write, cvr_write2read;
initial r_hit_reads = 0;
always @(posedge i_clk)
if (i_reset)
r_hit_writes <= 0;
else if (f_axi_awr_nbursts > 3)
r_hit_writes <= 1;
initial r_hit_reads = 0;
always @(posedge i_clk)
if (i_reset)
r_hit_reads <= 0;
else if (f_axi_rd_nbursts > 3)
r_hit_reads <= 1;
always @(*)
begin
check_fault = 0;
if (!i_wb_cyc && o_axi_awvalid)