forked from ZipCPU/wb2axip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaxisgdma.v
1120 lines (1055 loc) · 27.6 KB
/
axisgdma.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
////////////////////////////////////////////////////////////////////////////////
//
// Filename: axisgdma.v
// {{{
// Project: WB2AXIPSP: bus bridges and other odds and ends
//
// Purpose: Scripts an AXI DMA via in-memory tables: reads from the tables,
// commands the DMA.
//
// Registers:
//
// 0. Control
// 8b KEY
// 3'b PROT
// 4'b QOS
// 1b Abort: Either aborting or aborted
// 1b Err: Ended on an error
// 1b Busy
// 1b Interrupt Enable
// 1b Interrupt Set
// 1b Start
// 1. Reserved
// 2-3. First table entry address
// (Current) table entry address on read, if in progress
// (Optional)
// 4-5. Current read address
// 6-7. Current write address
// 1. Remaining amount to be written (this entry)
//
// Table entries (must be 32-bit aligned):
// If (address_width > 30)
// 64b: { 2'bflags, 62'b SOURCE ADDRESS (bytes) }
// 00: Continue after this to next
// 01: Skip this address
// 10: Jump to new address
// 11: Last item in chain
// 64b: { int_en, 1'b0, DESTINATION ADDRESS (bytes) }
// 32b LENGTH (in bytes)
// else
// 32b: { 2'bflags, 30'b SOURCE ADDRESS (bytes) }
// 32b: { int_en, 1'b0, 30'b DESTINATION ADDRESS (bytes) }
// 32b LENGTH (in bytes)
//
//
// Creator: Dan Gisselquist, Ph.D.
// Gisselquist Technology, LLC
//
////////////////////////////////////////////////////////////////////////////////
// }}}
// Copyright (C) 2020-2021, Gisselquist Technology, LLC
// {{{
// This file is part of the WB2AXIP project.
//
// The WB2AXIP project contains free software and gateware, licensed under the
// Apache License, Version 2.0 (the "License"). You may not use this project,
// or this file, except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
//
////////////////////////////////////////////////////////////////////////////////
//
//
`default_nettype none
// `define AXI3
// }}}
module axisgdma #(
// {{{
parameter C_AXI_ID_WIDTH = 1,
parameter C_AXI_ADDR_WIDTH = 32,
parameter C_AXI_DATA_WIDTH = 64,
//
localparam C_AXIL_ADDR_WIDTH = 4,
localparam C_AXIL_DATA_WIDTH = 32,
//
// OPT_UNALIGNED turns on support for unaligned addresses,
// whether source, destination, or length parameters.
parameter [0:0] OPT_UNALIGNED = 1'b1,
//
// OPT_WRAPMEM controls what happens if the transfer runs off
// of the end of memory. If set, the transfer will continue
// again from the beginning of memory. If clear, the transfer
// will be aborted with an error if either read or write
// address ever get this far.
parameter [0:0] OPT_WRAPMEM = 1'b1,
//
// LGMAXBURST controls the size of the maximum burst produced
// by this core. Specifically, its the log (based 2) of that
// maximum size. Hence, for AXI4, this size must be 8
// (i.e. 2^8 or 256 beats) or less. For AXI3, the size must
// be 4 or less. Tests have verified performance for
// LGMAXBURST as low as 2. While I expect it to fail at
// LGMAXBURST=0, I haven't verified at what value this burst
// parameter is too small.
`ifdef AXI3
parameter LGMAXBURST=4, // 16 beats max
`else
parameter LGMAXBURST=8, // 256 beats
`endif
//
// LGFIFO: This is the (log-based-2) size of the internal FIFO.
// Hence if LGFIFO=8, the internal FIFO will have 256 elements
// (words) in it. High throughput transfers are accomplished
// by first storing data into a FIFO, then once a full burst
// size is available bursting that data over the bus. In
// order to be able to keep receiving data while bursting it
// out, the FIFO size must be at least twice the size of the
// maximum burst size. Larger sizes are possible as well.
parameter LGFIFO = LGMAXBURST+1, // 512 element FIFO
//
// LGLEN: specifies the number of bits in the transfer length
// register. If a transfer cannot be specified in LGLEN bits,
// it won't happen. LGLEN must be less than or equal to the
// address width.
parameter LGLEN = C_AXI_ADDR_WIDTH,
//
// AXI uses ID's to transfer information. This core rather
// ignores them. Instead, it uses a constant ID for all
// transfers. The following two parameters control that ID.
parameter [C_AXI_ID_WIDTH-1:0] DMA_READ_ID = 0,
parameter [C_AXI_ID_WIDTH-1:0] DMA_WRITE_ID = 0,
parameter [C_AXI_ID_WIDTH-1:0] PF_READ_ID = DMA_READ_ID+1,
//
// The "ABORT_KEY" is a byte that, if written to the control
// word while the core is running, will cause the data transfer
// to be aborted.
parameter [7:0] ABORT_KEY = 8'h6d,
//
// OPT_LOWPOWER
parameter [0:0] OPT_LOWPOWER = 1'b0
// }}}
) (
// {{{
input wire S_AXI_ACLK,
input wire S_AXI_ARESETN,
//
// The AXI4-lite control interface
input wire S_AXIL_AWVALID,
output wire S_AXIL_AWREADY,
input wire [C_AXIL_ADDR_WIDTH-1:0] S_AXIL_AWADDR,
input wire [2:0] S_AXIL_AWPROT,
//
input wire S_AXIL_WVALID,
output wire S_AXIL_WREADY,
input wire [C_AXIL_DATA_WIDTH-1:0] S_AXIL_WDATA,
input wire [C_AXIL_DATA_WIDTH/8-1:0] S_AXIL_WSTRB,
//
output reg S_AXIL_BVALID,
input wire S_AXIL_BREADY,
output wire [1:0] S_AXIL_BRESP,
//
input wire S_AXIL_ARVALID,
output wire S_AXIL_ARREADY,
input wire [C_AXIL_ADDR_WIDTH-1:0] S_AXIL_ARADDR,
input wire [2:0] S_AXIL_ARPROT,
//
output reg S_AXIL_RVALID,
input wire S_AXIL_RREADY,
output reg [C_AXIL_DATA_WIDTH-1:0] S_AXIL_RDATA,
output wire [1:0] S_AXIL_RRESP,
//
//
// The AXI Master (DMA) interface
output wire M_AXI_AWVALID,
input wire M_AXI_AWREADY,
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_AWID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_AWADDR,
`ifdef AXI3
output wire [3:0] M_AXI_AWLEN,
`else
output wire [7:0] M_AXI_AWLEN,
`endif
output wire [2:0] M_AXI_AWSIZE,
output wire [1:0] M_AXI_AWBURST,
`ifdef AXI3
output wire [1:0] M_AXI_AWLOCK,
`else
output wire M_AXI_AWLOCK,
`endif
output wire [3:0] M_AXI_AWCACHE,
output wire [2:0] M_AXI_AWPROT,
output wire [3:0] M_AXI_AWQOS,
//
//
output wire M_AXI_WVALID,
input wire M_AXI_WREADY,
`ifdef AXI3
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_WID,
`endif
output wire [C_AXI_DATA_WIDTH-1:0] M_AXI_WDATA,
output wire [C_AXI_DATA_WIDTH/8-1:0] M_AXI_WSTRB,
output wire M_AXI_WLAST,
//
//
input wire M_AXI_BVALID,
output reg M_AXI_BREADY,
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_BID,
input wire [1:0] M_AXI_BRESP,
//
//
output wire M_AXI_ARVALID,
input wire M_AXI_ARREADY,
output wire [C_AXI_ID_WIDTH-1:0] M_AXI_ARID,
output wire [C_AXI_ADDR_WIDTH-1:0] M_AXI_ARADDR,
`ifdef AXI3
output wire [3:0] M_AXI_ARLEN,
`else
output wire [7:0] M_AXI_ARLEN,
`endif
output wire [2:0] M_AXI_ARSIZE,
output wire [1:0] M_AXI_ARBURST,
`ifdef AXI3
output wire [1:0] M_AXI_ARLOCK,
`else
output wire M_AXI_ARLOCK,
`endif
output wire [3:0] M_AXI_ARCACHE,
output wire [2:0] M_AXI_ARPROT,
output wire [3:0] M_AXI_ARQOS,
//
input wire M_AXI_RVALID,
output wire M_AXI_RREADY,
input wire [C_AXI_ID_WIDTH-1:0] M_AXI_RID,
input wire [C_AXI_DATA_WIDTH-1:0] M_AXI_RDATA,
input wire M_AXI_RLAST,
input wire [1:0] M_AXI_RRESP,
//
output reg o_int
// }}}
);
// Local parameter definitions
// {{{
// The number of beats in this maximum burst size is
// automatically determined from LGMAXBURST, and so its
// forced to be a power of two this way.
// localparam MAXBURST=(1<<LGMAXBURST);
//
localparam ADDRLSB= $clog2(C_AXI_DATA_WIDTH)-3;
localparam AXILLSB= $clog2(C_AXIL_DATA_WIDTH)-3;
// localparam LGLENW= LGLEN-ADDRLSB;
localparam [1:0] CTRL_ADDR = 2'b00,
// UNUSED_ADDR = 2'b01,
TBLLO_ADDR = 2'b10,
TBLHI_ADDR = 2'b11;
localparam CTRL_START_BIT = 0,
CTRL_BUSY_BIT = 0,
CTRL_INT_BIT = 1,
CTRL_INTEN_BIT = 2,
CTRL_ABORT_BIT = 3,
CTRL_ERR_BIT = 4;
// CTRL_INTERIM_BIT= 5;
localparam [1:0] AXI_INCR = 2'b01, AXI_OKAY = 2'b00;
`ifdef AXI3
localparam LENWIDTH = 4;
`else
localparam LENWIDTH = 8;
`endif
// DMA device internal addresses
// {{{
localparam [4:0] DMA_CONTROL= 5'b00000;
// }}}
// localparam [C_AXI_ADDR_WIDTH-1:0] TBL_SIZE
// = (C_AXI_ADDR_WIDTH < 30) ? (4*5) : (4*7);
// }}}
// Register/net declarations
// {{{
reg axil_write_ready, axil_read_ready;
reg [2*C_AXIL_DATA_WIDTH-1:0] wide_tbl, new_widetbl;
reg [C_AXI_ADDR_WIDTH-1:0] tbl_addr, r_tbl_addr;
reg r_int_enable, r_int, r_err, r_abort;
wire w_int, fsm_err;
reg [3:0] r_qos;
reg [2:0] r_prot;
reg r_start;
wire r_done, r_busy;
wire awskd_valid;
wire [C_AXIL_ADDR_WIDTH-AXILLSB-1:0] awskd_addr;
wire wskd_valid;
wire [C_AXIL_DATA_WIDTH-1:0] wskd_data;
wire [C_AXIL_DATA_WIDTH/8-1:0] wskd_strb;
wire arskd_valid;
wire [C_AXIL_ADDR_WIDTH-AXILLSB-1:0] arskd_addr;
// Prefetch interface registers
// {{{
wire new_pc, pf_ready, pf_clear_cache;
wire [C_AXI_ADDR_WIDTH-1:0] ipc;
wire [31:0] pf_insn;
wire pf_valid, pf_illegal;
wire pf_axi_arvalid;
reg pf_axi_arready;
wire [C_AXI_ADDR_WIDTH-1:0] pf_axi_araddr, pf_pc;
wire pf_axi_rready_ignored;
wire [C_AXI_ID_WIDTH-1:0] pf_axi_arid;
wire [LENWIDTH-1:0] pf_axi_arlen;
wire [2:0] pf_axi_arsize;
wire [1:0] pf_axi_arburst;
wire [3:0] pf_axi_arcache;
wire [2:0] pf_axi_arprot;
wire [3:0] pf_axi_arqos;
// }}}
// DMA control registers/AXI-lite interface
// {{{
wire dmac_awready_ignored;
reg [4:0] dmac_waddr;
//
reg dmac_wvalid;
wire dmac_wready;
reg [31:0] dmac_wdata;
reg [3:0] dmac_wstrb;
//
wire dmac_bvalid;
wire [1:0] dmac_bresp;
//
wire dmac_arready;
wire dmac_rvalid;
wire [31:0] dmac_rdata;
wire [1:0] dmac_rresp;
// }}}
// DMA AXI nets
// {{{
wire sdma_arvalid;
wire [C_AXI_ID_WIDTH-1:0] sdma_arid;
wire [C_AXI_ADDR_WIDTH-1:0] sdma_araddr;
wire [LENWIDTH-1:0] sdma_arlen;
wire [2:0] sdma_arsize;
wire [1:0] sdma_arburst;
wire [0:0] sdma_arlock;
wire [3:0] sdma_arcache;
wire [2:0] sdma_arprot;
wire [3:0] sdma_arqos;
reg sdma_arready;
wire sdma_rready_ignored;
wire dma_complete;
wire unused_dma_lock;
// }}}
// Combined AXI nets
// {{{
reg m_axi_arvalid;
reg [C_AXI_ID_WIDTH-1:0] m_axi_arid;
reg [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr;
reg [LENWIDTH-1:0] m_axi_arlen;
reg [2:0] m_axi_arsize;
reg [1:0] m_axi_arburst;
reg [3:0] m_axi_arcache;
reg [2:0] m_axi_arprot;
reg [3:0] m_axi_arqos;
// }}}
reg pf_wins_arbitration;
wire m_axi_arready;
// }}}
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//
// AXI-Lite control interface
// {{{
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//
//
////////////////////////////////////////////////////////////////////////
//
// Write control logic
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// axil AW skid buffer
// {{{
skidbuffer #(
// {{{
.OPT_OUTREG(0), .DW(C_AXIL_ADDR_WIDTH-AXILLSB)
// }}}
) axilawskid(
// {{{
.i_clk(S_AXI_ACLK), .i_reset(!S_AXI_ARESETN),
.i_valid(S_AXIL_AWVALID), .o_ready(S_AXIL_AWREADY),
.i_data(S_AXIL_AWADDR[C_AXIL_ADDR_WIDTH-1:AXILLSB]),
.o_valid(awskd_valid), .i_ready(axil_write_ready),
.o_data(awskd_addr)
// }}}
);
// }}}
// axil W skid buffer
// {{{
skidbuffer #(
// {{{
.OPT_OUTREG(0), .DW(C_AXIL_DATA_WIDTH+C_AXIL_DATA_WIDTH/8)
// }}}
) axilwskid (
// {{{
.i_clk(S_AXI_ACLK), .i_reset(!S_AXI_ARESETN),
.i_valid(S_AXIL_WVALID), .o_ready(S_AXIL_WREADY),
.i_data({ S_AXIL_WSTRB, S_AXIL_WDATA }),
.o_valid(wskd_valid), .i_ready(axil_write_ready),
.o_data({ wskd_strb, wskd_data })
// }}}
);
// }}}
// axil_write_ready
// {{{
always @(*)
begin
axil_write_ready = !S_AXIL_BVALID || S_AXIL_BREADY;
if (!awskd_valid || !wskd_valid)
axil_write_ready = 0;
end
// }}}
// S_AXIL_BVALID
// {{{
initial S_AXIL_BVALID = 1'b0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
S_AXIL_BVALID <= 1'b0;
else if (!S_AXIL_BVALID || S_AXIL_BREADY)
S_AXIL_BVALID <= axil_write_ready;
// }}}
// S_AXIL_BRESP
// {{{
assign S_AXIL_BRESP = AXI_OKAY;
// }}}
// r_start
// {{{
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
r_start <= 1'b0;
else begin
r_start <= !r_busy && axil_write_ready && wskd_strb[0]
&& wskd_data[CTRL_START_BIT]
&& (awskd_addr == CTRL_ADDR);
if (r_err && !wskd_data[CTRL_ERR_BIT])
r_start <= 0;
if (r_abort && !wskd_data[CTRL_ABORT_BIT])
r_start <= 0;
end
// }}}
// r_err
// {{{
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
r_err <= 1'b0;
else if (!r_busy)
begin
if (axil_write_ready)
r_err <= (r_err) && (!wskd_strb[0]
|| !wskd_data[CTRL_ERR_BIT]);
end else begin
r_err <= r_err || fsm_err;
end
// }}}
// o_int
// {{{
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN || !r_int_enable || !r_busy)
o_int <= 0;
else if (w_int)
o_int <= 1'b1;
// }}}
// r_int
// {{{
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
r_int <= 0;
else if (!r_busy)
begin
if (axil_write_ready && awskd_addr == CTRL_ADDR
&& wskd_strb[0])
begin
if (wskd_data[CTRL_START_BIT])
r_int <= 0;
else if (wskd_data[CTRL_INT_BIT])
r_int <= 0;
end
end else if (w_int)
r_int <= 1'b1;
// }}}
// r_abort
// {{{
initial r_abort = 0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
r_abort <= 1'b0;
else if (!r_busy)
begin
if (axil_write_ready && awskd_addr == CTRL_ADDR && wskd_strb[0])
begin
if(wskd_data[CTRL_START_BIT]
||wskd_data[CTRL_ABORT_BIT]
||wskd_data[CTRL_ERR_BIT])
r_abort <= 0;
end
end else if (!r_abort)
r_abort <= (axil_write_ready && awskd_addr == CTRL_ADDR)
&&(wskd_strb[3] && wskd_data[31:24] == ABORT_KEY);
// }}}
// wide_tbl, new_widetbl
// {{{
always @(*)
begin
wide_tbl = 0;
wide_tbl[C_AXI_ADDR_WIDTH-1:0] = r_tbl_addr;
new_widetbl = wide_tbl;
if (awskd_addr == TBLLO_ADDR)
new_widetbl[31:0] = apply_wstrb(wide_tbl[31:0],
wskd_data, wskd_strb);
if (awskd_addr == TBLHI_ADDR)
new_widetbl[63:32] = apply_wstrb(wide_tbl[63:32],
wskd_data, wskd_strb);
end
// }}}
// r_prot, r_qos, r_int_enable, r_tbl_addr
// {{{
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
begin
r_prot <= 0;
r_qos <= 0;
r_int_enable <= 0;
end else if (!r_busy && axil_write_ready)
begin
case(awskd_addr)
CTRL_ADDR: begin
if (wskd_strb[2])
begin
r_prot <= wskd_data[22:20];
r_qos <= wskd_data[19:16];
end
if (wskd_strb[0])
begin
r_int_enable <= wskd_data[CTRL_INTEN_BIT];
end end
TBLLO_ADDR: begin
r_tbl_addr <= new_widetbl[C_AXI_ADDR_WIDTH-1:0];
end
TBLHI_ADDR: if (C_AXI_ADDR_WIDTH > C_AXIL_DATA_WIDTH) begin
r_tbl_addr <= new_widetbl[C_AXI_ADDR_WIDTH-1:0];
end
default: begin end
endcase
end else if (r_busy)
begin
r_tbl_addr <= tbl_addr;
end
// }}}
// apply_wstrb function
// {{{
function [C_AXIL_DATA_WIDTH-1:0] apply_wstrb;
input [C_AXIL_DATA_WIDTH-1:0] prior_data;
input [C_AXIL_DATA_WIDTH-1:0] new_data;
input [C_AXIL_DATA_WIDTH/8-1:0] wstrb;
integer k;
for(k=0; k<C_AXIL_DATA_WIDTH/8; k=k+1)
begin
apply_wstrb[k*8 +: 8] = wstrb[k] ? new_data[k*8 +: 8]
: prior_data[k*8 +: 8];
end
endfunction
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// AXI-lite control read interface
// {{{
// AXI-lite AR skid buffer
// {{{
skidbuffer #(
// {{{
.OPT_OUTREG(0), .DW(C_AXIL_ADDR_WIDTH-AXILLSB)
// }}}
) axilarskid(
// {{{
.i_clk(S_AXI_ACLK), .i_reset(!S_AXI_ARESETN),
.i_valid(S_AXIL_ARVALID), .o_ready(S_AXIL_ARREADY),
.i_data(S_AXIL_ARADDR[C_AXIL_ADDR_WIDTH-1:AXILLSB]),
.o_valid(arskd_valid), .i_ready(axil_read_ready),
.o_data(arskd_addr)
// }}}
);
// }}}
// axil_read_ready
// {{{
always @(*)
begin
axil_read_ready = !S_AXIL_RVALID || S_AXIL_RREADY;
if (!arskd_valid)
axil_read_ready = 1'b0;
end
// }}}
// S_AXIL_RVALID
// {{{
initial S_AXIL_RVALID = 1'b0;
always @(posedge S_AXI_ACLK)
if (!S_AXI_ARESETN)
S_AXIL_RVALID <= 1'b0;
else if (!S_AXIL_RVALID || S_AXIL_RREADY)
S_AXIL_RVALID <= axil_read_ready;
// }}}
// S_AXIL_RDATA
// {{{
always @(posedge S_AXI_ACLK)
if (OPT_LOWPOWER && !S_AXI_ARESETN)
S_AXIL_RDATA <= 0;
else if (!S_AXIL_RVALID || S_AXIL_RREADY)
begin
S_AXIL_RDATA <= 0;
case(arskd_addr)
CTRL_ADDR: begin
S_AXIL_RDATA[CTRL_ERR_BIT] <= r_err;
S_AXIL_RDATA[CTRL_ABORT_BIT] <= r_abort;
S_AXIL_RDATA[CTRL_INTEN_BIT] <= r_int_enable;
S_AXIL_RDATA[CTRL_INT_BIT] <= r_int;
S_AXIL_RDATA[CTRL_BUSY_BIT] <= r_busy;
end
// Unused:
TBLLO_ADDR:
S_AXIL_RDATA <= wide_tbl[C_AXIL_DATA_WIDTH-1:0];
TBLHI_ADDR:
S_AXIL_RDATA <= wide_tbl[2*C_AXIL_DATA_WIDTH-1:C_AXIL_DATA_WIDTH];
default: begin end
endcase
if (OPT_LOWPOWER && (!axil_read_ready || !arskd_valid))
S_AXIL_RDATA <= 0;
end
// }}}
// S_AXIL_RRESP
// {{{
assign S_AXIL_RRESP = AXI_OKAY;
// }}}
// }}} // AXI-lite read
// }}} // AXI-lite (all)
////////////////////////////////////////////////////////////////////////
//
// DMA wrapper
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// Prefix: dmac for the sub DMA control interface
// Prefix: sdma for the sub DMA master interface
axidma #(
// {{{
.C_AXI_ID_WIDTH(C_AXI_ID_WIDTH),
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.OPT_UNALIGNED(OPT_UNALIGNED),
.OPT_WRAPMEM(OPT_WRAPMEM),
.LGMAXBURST(LGMAXBURST),
.LGFIFO(LGFIFO),
.LGLEN(LGLEN),
.AXI_READ_ID(DMA_READ_ID),
.AXI_WRITE_ID(DMA_WRITE_ID),
.ABORT_KEY(ABORT_KEY)
// }}}
) subdma(
// {{{
.S_AXI_ACLK(S_AXI_ACLK),
.S_AXI_ARESETN(S_AXI_ARESETN),
//
// The AXI4-lite control interface
// {{{
.S_AXIL_AWVALID(dmac_wvalid), // Merge AW & W channels:DMA ok w/
.S_AXIL_AWREADY(dmac_awready_ignored),
.S_AXIL_AWADDR( dmac_waddr),
.S_AXIL_AWPROT( 3'h0), // Internally ignored
//
.S_AXIL_WVALID(dmac_wvalid),
.S_AXIL_WREADY(dmac_wready),
.S_AXIL_WDATA( dmac_wdata),
.S_AXIL_WSTRB( dmac_wstrb),
//
.S_AXIL_BVALID(dmac_bvalid),
.S_AXIL_BREADY(1'b1),
.S_AXIL_BRESP( dmac_bresp),
//
.S_AXIL_ARVALID(!S_AXI_ARESETN),
.S_AXIL_ARREADY(dmac_arready),
.S_AXIL_ARADDR( DMA_CONTROL),
.S_AXIL_ARPROT( 3'h0), // Internally ignored
//
.S_AXIL_RVALID(dmac_rvalid),
.S_AXIL_RREADY(1'b1),
.S_AXIL_RDATA( dmac_rdata),
.S_AXIL_RRESP( dmac_rresp),
// }}}
//
// The AXI Master (DMA) interface
// {{{
.M_AXI_AWVALID(M_AXI_AWVALID),
.M_AXI_AWREADY(M_AXI_AWREADY),
.M_AXI_AWID( M_AXI_AWID),
.M_AXI_AWADDR( M_AXI_AWADDR),
.M_AXI_AWLEN( M_AXI_AWLEN),
.M_AXI_AWSIZE( M_AXI_AWSIZE),
.M_AXI_AWBURST(M_AXI_AWBURST),
.M_AXI_AWLOCK( unused_dma_lock),
.M_AXI_AWCACHE(M_AXI_AWCACHE),
.M_AXI_AWPROT( M_AXI_AWPROT),
.M_AXI_AWQOS( M_AXI_AWQOS),
//
//
.M_AXI_WVALID(M_AXI_WVALID),
.M_AXI_WREADY(M_AXI_WREADY),
`ifdef AXI3
.M_AXI_WID(M_AXI_WID),
`endif
.M_AXI_WDATA(M_AXI_WDATA),
.M_AXI_WSTRB(M_AXI_WSTRB),
.M_AXI_WLAST(M_AXI_WLAST),
//
//
.M_AXI_BVALID(M_AXI_BVALID),
.M_AXI_BREADY(M_AXI_BREADY),
.M_AXI_BID( M_AXI_BID),
.M_AXI_BRESP( M_AXI_BRESP),
// }}}
// AXI master read interface
// {{{
// The read channel needs to be arbitrated
.M_AXI_ARVALID(sdma_arvalid),
.M_AXI_ARREADY(sdma_arready),
.M_AXI_ARID(sdma_arid),
.M_AXI_ARADDR(sdma_araddr),
.M_AXI_ARLEN(sdma_arlen),
.M_AXI_ARSIZE(sdma_arsize),
.M_AXI_ARBURST(sdma_arburst),
.M_AXI_ARLOCK(sdma_arlock),
.M_AXI_ARCACHE(sdma_arcache),
.M_AXI_ARPROT(sdma_arprot),
.M_AXI_ARQOS(sdma_arqos),
//
.M_AXI_RVALID(M_AXI_RVALID && M_AXI_RID == DMA_READ_ID),
.M_AXI_RREADY(sdma_rready_ignored), // Known to be one
.M_AXI_RID( DMA_READ_ID),
.M_AXI_RDATA(M_AXI_RDATA),
.M_AXI_RLAST(M_AXI_RLAST),
.M_AXI_RRESP(M_AXI_RRESP),
// }}}
.o_int(dma_complete)
// }}}
);
assign M_AXI_AWLOCK = 0;
// }}}
////////////////////////////////////////////////////////////////////////
//
// AXI-Lite prefetch
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// The AXI_lite fetch submodule
// {{{
axilfetch #(
// {{{
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.FETCH_LIMIT(4)
// }}}
) pf (
// {{{
.S_AXI_ACLK(S_AXI_ACLK),
.S_AXI_ARESETN(S_AXI_ARESETN),
//
// "CPU" interface
// {{{
.i_cpu_reset(!S_AXI_ARESETN),
.i_new_pc(new_pc),
.i_clear_cache(pf_clear_cache),
.i_ready(pf_ready),
.i_pc(ipc),
.o_insn(pf_insn),
.o_valid(pf_valid),
.o_pc(pf_pc),
.o_illegal(pf_illegal),
// }}}
// AXI-lite interface
// {{{
.M_AXI_ARVALID(pf_axi_arvalid),
.M_AXI_ARREADY(pf_axi_arready),
.M_AXI_ARADDR( pf_axi_araddr),
.M_AXI_ARPROT( pf_axi_arprot),
//
.M_AXI_RVALID( M_AXI_RVALID && M_AXI_RID == PF_READ_ID),
.M_AXI_RREADY( pf_axi_rready_ignored), // Always 1'b1
.M_AXI_RDATA( M_AXI_RDATA),
.M_AXI_RRESP( M_AXI_RRESP)
// }}}
// }}}
);
// }}}
assign pf_axi_arid = PF_READ_ID;
assign pf_axi_arlen = 0; // Only read singletons
assign pf_axi_arsize = ADDRLSB[2:0];
assign pf_axi_arburst = AXI_INCR;
assign pf_axi_arcache = 4'b0011;
// assign pf_axi_arprot = 3'b100;
assign pf_axi_arqos = 4'h0;
assign M_AXI_RREADY = 1'b1;
// }}}
////////////////////////////////////////////////////////////////////////
//
// PF vs DMA arbiter
// {{{
////////////////////////////////////////////////////////////////////////
//
//
// pf_wins_arbitration
// {{{
always @(posedge S_AXI_ACLK)
if (!m_axi_arvalid || m_axi_arready)
begin
if (pf_axi_arvalid && !sdma_arvalid)
pf_wins_arbitration <= 1'b1;
else
pf_wins_arbitration <= 1'b0;
end
// }}}
// m_axi_*
// {{{
always @(*)
begin
if (pf_wins_arbitration)
begin
m_axi_arvalid = pf_axi_arvalid;
m_axi_arid = pf_axi_arid;
m_axi_araddr = pf_axi_araddr;
m_axi_arlen = pf_axi_arlen;
m_axi_arsize = pf_axi_arsize;
m_axi_arburst = pf_axi_arburst;
m_axi_arcache = pf_axi_arcache;
m_axi_arprot = pf_axi_arprot;
m_axi_arqos = pf_axi_arqos;
end else begin
m_axi_arvalid = sdma_arvalid;
m_axi_arid = sdma_arid;
m_axi_araddr = sdma_araddr;
m_axi_arlen = sdma_arlen;
m_axi_arsize = sdma_arsize;
m_axi_arburst = sdma_arburst;
m_axi_arcache = sdma_arcache;
m_axi_arprot = sdma_arprot;
m_axi_arqos = sdma_arqos;
end
end
// }}}
// *_arready
// {{{
always @(*)
begin
sdma_arready = m_axi_arready && !pf_wins_arbitration;
pf_axi_arready = m_axi_arready && pf_wins_arbitration;
end
// }}}
// Outgoing AR skid buffer
// {{{
skidbuffer #(
// {{{
.OPT_LOWPOWER(OPT_LOWPOWER),
.OPT_OUTREG(1'b1),
.DW(C_AXI_ID_WIDTH + C_AXI_ADDR_WIDTH + LENWIDTH
+ 3 + 2 + 4 +3 + 4)
// }}}
) marskd(
// {{{
S_AXI_ACLK, !S_AXI_ARESETN, m_axi_arvalid, m_axi_arready,
{ m_axi_arid, m_axi_araddr, m_axi_arlen, m_axi_arsize,
m_axi_arburst, m_axi_arcache,
m_axi_arprot, m_axi_arqos },
M_AXI_ARVALID, M_AXI_ARREADY,
{ M_AXI_ARID, M_AXI_ARADDR, M_AXI_ARLEN, M_AXI_ARSIZE,
M_AXI_ARBURST, M_AXI_ARCACHE,
M_AXI_ARPROT, M_AXI_ARQOS }
// }}}
);
`ifdef AXI3
assign M_AXI_ARLOCK = 2'b00; // We don't use lock anyway
`else
assign M_AXI_ARLOCK = 1'b0;
`endif
// }}}
// }}}
////////////////////////////////////////////////////////////////////////
//
// FSM Control states
// {{{
////////////////////////////////////////////////////////////////////////
//
//
axisgfsm #(
// {{{
.C_AXI_ADDR_WIDTH(C_AXI_ADDR_WIDTH),
.C_AXI_DATA_WIDTH(C_AXI_DATA_WIDTH),
.ABORT_KEY(ABORT_KEY)
// }}}
) fsm (
// {{{
.S_AXI_ACLK(S_AXI_ACLK),
.S_AXI_ARESETN(S_AXI_ARESETN),
// Control interface
// {{{
.i_start(r_start),
.i_abort(r_abort),
.i_tbl_addr(r_tbl_addr),
.i_qos(r_qos),
.i_prot(r_prot),
.o_done(r_done),
.o_busy(r_busy),
.o_int(w_int),
.o_err(fsm_err),
.o_tbl_addr(tbl_addr),
// }}}
// Prefetch interface
// {{{
.o_new_pc(new_pc),
.o_pf_clear_cache(pf_clear_cache),
.o_pf_ready(pf_ready),
.o_pf_pc(ipc),
.i_pf_valid(pf_valid),
.i_pf_insn(pf_insn),
.i_pf_pc(pf_pc),
.i_pf_illegal(pf_illegal),
// }}}
// DMA AXI-lite control interface
// {{{
.o_dmac_wvalid(dmac_wvalid),
.i_dmac_wready(dmac_wready),
.o_dmac_waddr(dmac_waddr),
.o_dmac_wdata(dmac_wdata),
.o_dmac_wstrb(dmac_wstrb),
.i_dmac_rdata(dmac_rdata),
.i_dma_complete(dma_complete)
// }}}
// }}}
);
// }}}
// Make Verilator happy
// {{{
// Verilator lint_off UNUSED
wire unused;