forked from tensorflow/tfx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
338 lines (296 loc) · 13.5 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Copyright 2019 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Package Setup script for TFX."""
import logging
import os
import shutil
import subprocess
import sys
import setuptools
from setuptools import find_namespace_packages
from setuptools import setup
from setuptools.command import develop
# pylint: disable=g-bad-import-order
# It is recommended to import setuptools prior to importing distutils to avoid
# using legacy behavior from distutils.
# https://setuptools.readthedocs.io/en/latest/history.html#v48-0-0
from distutils.command import build
# pylint: enable=g-bad-import-order
from wheel import bdist_wheel
# Prefer to import `package_config` from the setup.py script's directory. The
# `package_config.py` file is used to configure which package to build (see
# the logic below switching on `package_config.PACKAGE_NAME`) and the overall
# package build README at `package_build/README.md`.
sys.path.insert(0, os.path.dirname(__file__))
# pylint: disable=g-bad-import-order,g-import-not-at-top
from tfx import dependencies
from tfx import version
# pylint: enable=g-bad-import-order,g-import-not-at-top
import tomli
pyproject_toml = tomli.load(open('pyproject.toml', 'rb'))
package_name = pyproject_toml['project']['name']
class _BdistWheelCommand(bdist_wheel.bdist_wheel):
"""Overrided bdist_wheel command.
Inject some custom command line arguments and flags that can be used in the
subcommands. This command class covers:
- pip wheel --build-option="--local-mlmd-repo=${MLMD_OUTPUT_DIR}"
- python setup.py bdist_wheel --local-mlmd-repo="${MLMD_OUTPUT_DIR}"
"""
user_options = bdist_wheel.bdist_wheel.user_options + [
('local-mlmd-repo=', None, 'Path to the local MLMD repository to use '
'instead of the Bazel com_github_google_ml_metadata remote repository.')
]
def initialize_options(self):
# Run super().initialize_options. Command is an old-style class (i.e.
# doesn't inherit object) and super() fails in python 2.
bdist_wheel.bdist_wheel.initialize_options(self)
self.local_mlmd_repo = None
def finalize_options(self):
bdist_wheel.bdist_wheel.finalize_options(self)
gen_proto = self.distribution.get_command_obj('gen_proto')
gen_proto.local_mlmd_repo = self.local_mlmd_repo
class _UnsupportedDevBuildWheelCommand(_BdistWheelCommand):
"""Disables build of 'tfx-dev' wheel files."""
def finalize_options(self):
if not os.environ.get('UNSUPPORTED_BUILD_TFX_DEV_WHEEL'):
logging.info("UNSUPPORTED_BUILD_TFX_DEV_WHEEL is not set, so we're not building a wheel.")
super().finalize_options()
class _BuildCommand(build.build):
"""Build everything that is needed to install.
This overrides the original distutils "build" command to run gen_proto
command before any sub_commands.
build command is also invoked from bdist_wheel and install command, therefore
this implementation covers the following commands:
- pip install . (which invokes bdist_wheel)
- python setup.py install (which invokes install command)
- python setup.py bdist_wheel (which invokes bdist_wheel command)
"""
def _should_generate_proto(self):
"""Predicate method for running GenProto command or not."""
return True
# Add "gen_proto" command as the first sub_command of "build". Each
# sub_command of "build" (e.g. "build_py", "build_ext", etc.) is executed
# sequentially when running a "build" command, if the second item in the tuple
# (predicate method) is evaluated to true.
sub_commands = [
('gen_proto', _should_generate_proto),
] + build.build.sub_commands
class _DevelopCommand(develop.develop):
"""Developmental install.
https://setuptools.readthedocs.io/en/latest/setuptools.html#development-mode
Unlike normal package installation where distribution is copied to the
site-packages folder, developmental install creates a symbolic link to the
source code directory, so that your local code change is immediately visible
in runtime without re-installation.
This is a setuptools-only (i.e. not included in distutils) command that is
also used in pip's editable install (pip install -e). Originally it only
invokes build_py and install_lib command, but we override it to run gen_proto
command in advance.
This implementation covers the following commands:
- pip install -e . (developmental install)
- python setup.py develop (which is invoked from developmental install)
"""
def run(self):
self.run_command('gen_proto')
# Run super().initialize_options. Command is an old-style class (i.e.
# doesn't inherit object) and super() fails in python 2.
develop.develop.run(self)
class _GenProtoCommand(setuptools.Command):
"""Generate proto stub files in python.
Running this command will populate foo_pb2.py file next to your foo.proto
file.
"""
user_options = [
('local-mlmd-repo=', None, 'Path to the local MLMD repository to use '
'instead of the Bazel com_github_google_ml_metadata remote repository.')
]
def initialize_options(self):
self.local_mlmd_repo = None
def finalize_options(self):
self._bazel_cmd = shutil.which('bazel')
if not self._bazel_cmd:
raise RuntimeError(
'Could not find "bazel" binary. Please visit '
'https://docs.bazel.build/versions/master/install.html for '
'installation instruction.')
def run(self):
bazel_args = ['--compilation_mode', 'opt']
if self.local_mlmd_repo:
# If local MLMD repo is given, override com_github_google_ml_metadata
# remote repository with the local path. This is required to use the
# local developmental version of MLMD during tests.
# https://docs.bazel.build/versions/master/command-line-reference.html
bazel_args.append('--override_repository={}={}'.format(
'com_github_google_ml_metadata', self.local_mlmd_repo))
cmd = [self._bazel_cmd, 'run', *bazel_args, '//build:gen_proto']
print('Running Bazel command', cmd, file=sys.stderr)
subprocess.check_call(
cmd,
# Bazel should be invoked in a directory containing bazel WORKSPACE
# file, which is the root directory.
cwd=os.path.dirname(os.path.realpath(__file__)),
env=os.environ)
_TFX_DESCRIPTION = (
'TensorFlow Extended (TFX) is a TensorFlow-based general-purpose machine '
'learning platform implemented at Google.')
_PIPELINES_SDK_DESCRIPTION = (
'A dependency-light distribution of the core pipeline authoring '
'functionality of TensorFlow Extended (TFX).')
# Get the long descriptions from README files.
with open('README.md') as fp:
_TFX_LONG_DESCRIPTION = fp.read()
with open('README.ml-pipelines-sdk.md') as fp:
_PIPELINES_SDK_LONG_DESCRIPTION = fp.read()
tfx_extras_requires = {
# In order to use 'docker-image' or 'all', system libraries specified
# under 'tfx/tools/docker/Dockerfile' are required
'docker-image': dependencies.make_extra_packages_docker_image(),
'airflow': dependencies.make_extra_packages_airflow(),
'flax': dependencies.make_extra_packages_flax(),
'kfp': dependencies.make_extra_packages_kfp(),
'tfjs': dependencies.make_extra_packages_tfjs(),
'tf-ranking': dependencies.make_extra_packages_tf_ranking(),
'tfdf': dependencies.make_extra_packages_tfdf(),
'tflite-support': dependencies.make_extra_packages_tflite_support(),
'examples': dependencies.make_extra_packages_examples(),
'test': dependencies.make_extra_packages_test(),
'docs': dependencies.make_extra_packages_docs(),
'all': dependencies.make_extra_packages_all(),
}
# Packages included the TFX namespace.
TFX_NAMESPACE_PACKAGES = [
'tfx', 'tfx.*', 'tfx.orchestration', 'tfx.orchestration.*'
]
# Packages within the TFX namespace that are to be included in the base
# "ml-pipelines-sdk" pip package (and excluded from the "tfx" pip package,
# which takes "ml-pipelines-sdk" as a dependency).
ML_PIPELINES_SDK_PACKAGES = [
# This adds `tfx.version` which is needed in several places.
'tfx',
# Core DSL subpackage.
'tfx.dsl',
'tfx.dsl.*',
# The "ml-pipelines-sdk" package currently only supports local execution.
# These are the subpackages of `tfx.orchestration` necessary.
'tfx.orchestration',
'tfx.orchestration.config',
'tfx.orchestration.launcher',
'tfx.orchestration.local',
'tfx.orchestration.local.legacy',
'tfx.orchestration.portable',
'tfx.orchestration.portable.*',
# Note that `tfx.proto` contains TFX first-party component-specific
# protobuf definitions, but `tfx.proto.orchestration` contains portable
# execution protobuf definitions which are needed in the base package.
'tfx.proto.orchestration',
# TODO(b/176814928): Consider moving relevant modules under
# `tfx.orchestration.*` to `tfx.dsl.*` as appropriate.
'tfx.proto.orchestration.*',
# TODO(b/176795329): Move `tfx.utils` to a location that emphasizes that
# these are internal utilities.
'tfx.utils',
'tfx.utils.*',
# TODO(b/176795331): Move `Artifact` and `ComponentSpec` classes into
# `tfx.dsl.*`.
'tfx.types',
'tfx.types.*',
]
EXCLUDED_PACKAGES = [
'tfx.benchmarks',
'tfx.benchmarks.*',
]
# Below console_scripts, each line identifies one console script. The first
# part before the equals sign (=) which is 'tfx', is the name of the script
# that should be generated, the second part is the import path followed by a
# colon (:) with the Click command group. After installation, the user can
# invoke the CLI using "tfx <command_group> <sub_command> <flags>"
TFX_ENTRY_POINTS = {
"console_scripts": ["tfx=tfx.tools.cli.cli_main:cli_group"]
}
ML_PIPELINES_SDK_ENTRY_POINTS = None
# This `setup.py` file can be used to build packages in 3 configurations. See
# the discussion in `package_build/README.md` for an overview. The `tfx` and
# `ml-pipelines-sdk` pip packages can be built for distribution using the
# selectable `package_name` specifier. Additionally, for
# development convenience, the `tfx-dev` package containing the union of the
# the `tfx` and `ml-pipelines-sdk` package can be installed as an editable
# package using `pip install -e .`, but should not be built for distribution.
if package_name == 'tfx-dev':
# Monolithic development package with the entirety of `tfx.*` and the full
# set of dependencies. Functionally equivalent to the union of the "tfx" and
# "tfx-pipeline-sdk" packages.
install_requires = dependencies.make_required_install_packages()
extras_require = tfx_extras_requires
description = _TFX_DESCRIPTION
long_description = _TFX_LONG_DESCRIPTION
packages = find_namespace_packages(
include=TFX_NAMESPACE_PACKAGES, exclude=EXCLUDED_PACKAGES)
# Do not support wheel builds for "tfx-dev".
build_wheel_command = _UnsupportedDevBuildWheelCommand # pylint: disable=invalid-name
# Include TFX entrypoints.
entry_points = TFX_ENTRY_POINTS
elif package_name == 'ml-pipelines-sdk':
# Core TFX pipeline authoring SDK, without dependency on component-specific
# packages like "tensorflow" and "apache-beam".
install_requires = dependencies.make_pipeline_sdk_required_install_packages()
extras_require = {}
description = _PIPELINES_SDK_DESCRIPTION
long_description = _PIPELINES_SDK_LONG_DESCRIPTION
packages = find_namespace_packages(
include=ML_PIPELINES_SDK_PACKAGES, exclude=EXCLUDED_PACKAGES)
# Use the default pip wheel building command.
build_wheel_command = bdist_wheel.bdist_wheel # pylint: disable=invalid-name
# Include ML Pipelines SDK entrypoints.
entry_points = ML_PIPELINES_SDK_ENTRY_POINTS
elif package_name == 'tfx':
# Recommended installation package for TFX. This package builds on top of
# the "ml-pipelines-sdk" pipeline authoring SDK package and adds first-party
# TFX components and additional functionality.
install_requires = (['ml-pipelines-sdk==%s' % version.__version__] +
dependencies.make_required_install_packages())
extras_require = tfx_extras_requires
description = _TFX_DESCRIPTION
long_description = _TFX_LONG_DESCRIPTION
packages = find_namespace_packages(
include=TFX_NAMESPACE_PACKAGES,
exclude=ML_PIPELINES_SDK_PACKAGES + EXCLUDED_PACKAGES)
# Use the pip wheel building command that includes proto generation.
build_wheel_command = _BdistWheelCommand # pylint: disable=invalid-name
# Include TFX entrypoints.
entry_points = TFX_ENTRY_POINTS
else:
raise ValueError('Invalid package config: %r.' % package_name)
logging.info('Executing build for package %r.', package_name)
setup(
version=version.__version__,
namespace_packages=[],
install_requires=install_requires,
extras_require=extras_require,
cmdclass={
'bdist_wheel': build_wheel_command,
'build': _BuildCommand,
'develop': _DevelopCommand,
'gen_proto': _GenProtoCommand,
},
packages=packages,
include_package_data=True,
description=description,
long_description=long_description,
long_description_content_type='text/markdown',
keywords='tensorflow tfx',
url='https://www.tensorflow.org/tfx',
download_url='https://github.com/tensorflow/tfx/tags',
requires=[],
entry_points=entry_points,
)