-
Notifications
You must be signed in to change notification settings - Fork 101
/
redka.go
378 lines (336 loc) · 10.7 KB
/
redka.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// Package Redka implements Redis-like database backed by SQLite.
// It provides an API to interact with data structures like keys,
// strings and hashes.
//
// Typically, you open a database with [Open] and use the returned
// [DB] instance methods like [DB.Key] or [DB.Str] to access the
// data structures. You should only use one instance of DB throughout
// your program and close it with [DB.Close] when the program exits.
package redka
import (
"context"
"database/sql"
"io"
"log/slog"
"time"
"github.com/nalgeon/redka/internal/core"
"github.com/nalgeon/redka/internal/rhash"
"github.com/nalgeon/redka/internal/rkey"
"github.com/nalgeon/redka/internal/rlist"
"github.com/nalgeon/redka/internal/rset"
"github.com/nalgeon/redka/internal/rstring"
"github.com/nalgeon/redka/internal/rzset"
"github.com/nalgeon/redka/internal/sqlx"
)
// Common errors returned by data structure methods.
var (
ErrKeyType = core.ErrKeyType // key type mismatch
ErrNotFound = core.ErrNotFound // key or element not found
ErrValueType = core.ErrValueType // invalid value type
)
// Key represents a key data structure.
// Each key uniquely identifies a data structure stored in the
// database (e.g. a string, a list, or a hash). There can be only one
// data structure with a given key, regardless of type. For example,
// you can't have a string and a hash map with the same key.
type Key = core.Key
// Value represents a value stored in a database (a byte slice).
// It can be converted to other scalar types.
type Value = core.Value
// Options is the configuration for the database.
type Options struct {
// SQL driver name.
// If empty, uses "sqlite3".
DriverName string
// SQL pragmas to set on the database connection.
// If nil, uses the default pragmas:
// - journal_mode=wal
// - synchronous=normal
// - temp_store=memory
// - mmap_size=268435456
// - foreign_keys=on
Pragma map[string]string
// Logger for the database. If nil, uses a silent logger.
Logger *slog.Logger
// If true, opens the database in read-only mode.
readonly bool
}
var defaultOptions = Options{
DriverName: "sqlite3",
Pragma: sqlx.DefaultPragma,
Logger: slog.New(slog.NewTextHandler(io.Discard, nil)),
}
// DB is a Redis-like database backed by SQLite.
// Provides access to data structures like keys, strings, and hashes.
//
// DB is safe for concurrent use by multiple goroutines as long as you use
// a single instance of DB throughout your program.
type DB struct {
*sqlx.DB[*Tx]
hashDB *rhash.DB
keyDB *rkey.DB
listDB *rlist.DB
setDB *rset.DB
stringDB *rstring.DB
zsetDB *rzset.DB
bg *time.Ticker
log *slog.Logger
}
// Open opens a new or existing database at the given path.
// Creates the database schema if necessary.
//
// The returned [DB] is safe for concurrent use by multiple goroutines
// as long as you use a single instance throughout your program.
// Typically, you only close the DB when the program exits.
//
// The opts parameter is optional. If nil, uses default options.
func Open(path string, opts *Options) (*DB, error) {
// Apply the default options if necessary.
opts = applyOptions(defaultOptions, opts)
// Open the read-write database handle.
dataSource := sqlx.DataSource(path, true, opts.Pragma)
rw, err := sql.Open(opts.DriverName, dataSource)
if err != nil {
return nil, err
}
// Open the read-only database handle.
dataSource = sqlx.DataSource(path, false, opts.Pragma)
ro, err := sql.Open(opts.DriverName, dataSource)
if err != nil {
return nil, err
}
// Create the database-backed repository.
sdb, err := sqlx.Open(rw, ro, newTx, opts.Pragma)
if err != nil {
return nil, err
}
return new(sdb, opts)
}
// OpenRead opens an existing database at the given path in read-only mode.
func OpenRead(path string, opts *Options) (*DB, error) {
// Apply the default options if necessary.
opts = applyOptions(defaultOptions, opts)
opts.readonly = true
// Open the read-only database handle.
dataSource := sqlx.DataSource(path, false, opts.Pragma)
db, err := sql.Open(opts.DriverName, dataSource)
if err != nil {
return nil, err
}
// Create the database-backed repository.
sdb := sqlx.New(db, db, newTx)
return new(sdb, opts)
}
// OpenDB connects to an existing SQL database.
// Creates the database schema if necessary.
// The opts parameter is optional. If nil, uses default options.
func OpenDB(rw *sql.DB, ro *sql.DB, opts *Options) (*DB, error) {
opts = applyOptions(defaultOptions, opts)
sdb, err := sqlx.Open(rw, ro, newTx, opts.Pragma)
if err != nil {
return nil, err
}
return new(sdb, opts)
}
// OpenReadDB connects to an existing SQL database in read-only mode.
func OpenReadDB(db *sql.DB, opts *Options) (*DB, error) {
opts = applyOptions(defaultOptions, opts)
opts.readonly = true
sdb := sqlx.New(db, db, newTx)
return new(sdb, opts)
}
// new creates a new database.
func new(sdb *sqlx.DB[*Tx], opts *Options) (*DB, error) {
rdb := &DB{
DB: sdb,
hashDB: rhash.New(sdb.RW, sdb.RO),
keyDB: rkey.New(sdb.RW, sdb.RO),
listDB: rlist.New(sdb.RW, sdb.RO),
setDB: rset.New(sdb.RW, sdb.RO),
stringDB: rstring.New(sdb.RW, sdb.RO),
zsetDB: rzset.New(sdb.RW, sdb.RO),
log: opts.Logger,
}
if !opts.readonly {
rdb.bg = rdb.startBgManager()
}
return rdb, nil
}
// Hash returns the hash repository.
// A hash (hashmap) is a field-value map associated with a key.
// Use the hash repository to work with individual hashmaps
// and their fields.
func (db *DB) Hash() *rhash.DB {
return db.hashDB
}
// Key returns the key repository.
// A key is a unique identifier for a data structure
// (string, list, hash, etc.). Use the key repository
// to manage all keys regardless of their type.
func (db *DB) Key() *rkey.DB {
return db.keyDB
}
// List returns the list repository.
// A list is a sequence of strings ordered by insertion order.
// Use the list repository to work with lists and their elements.
func (db *DB) List() *rlist.DB {
return db.listDB
}
// Set returns the set repository.
// A set is an unordered collection of unique strings.
// Use the set repository to work with individual sets
// and their elements, and to perform set operations.
func (db *DB) Set() *rset.DB {
return db.setDB
}
// Str returns the string repository.
// A string is a slice of bytes associated with a key.
// Use the string repository to work with individual strings.
func (db *DB) Str() *rstring.DB {
return db.stringDB
}
// ZSet returns the sorted set repository.
// A sorted set (zset) is a like a set, but each element has a score,
// and elements are ordered by score from low to high.
// Use the sorted set repository to work with individual sets
// and their elements, and to perform set operations.
func (db *DB) ZSet() *rzset.DB {
return db.zsetDB
}
// Update executes a function within a writable transaction.
// See the [tx] example for details.
//
// [tx]: https://github.com/nalgeon/redka/blob/main/example/tx/main.go
func (db *DB) Update(f func(tx *Tx) error) error {
return db.DB.Update(f)
}
// UpdateContext executes a function within a writable transaction.
// See the [tx] example for details.
//
// [tx]: https://github.com/nalgeon/redka/blob/main/example/tx/main.go
func (db *DB) UpdateContext(ctx context.Context, f func(tx *Tx) error) error {
return db.DB.UpdateContext(ctx, f)
}
// View executes a function within a read-only transaction.
// See the [tx] example for details.
//
// [tx]: https://github.com/nalgeon/redka/blob/main/example/tx/main.go
func (db *DB) View(f func(tx *Tx) error) error {
return db.DB.View(f)
}
// ViewContext executes a function within a read-only transaction.
// See the [tx] example for details.
//
// [tx]: https://github.com/nalgeon/redka/blob/main/example/tx/main.go
func (db *DB) ViewContext(ctx context.Context, f func(tx *Tx) error) error {
return db.DB.ViewContext(ctx, f)
}
// Close closes the database.
// It's safe for concurrent use by multiple goroutines.
func (db *DB) Close() error {
if db.bg != nil {
db.bg.Stop()
}
var allErr error
if err := db.RW.Close(); err != nil {
allErr = err
}
if err := db.RO.Close(); allErr == nil {
allErr = err
}
return allErr
}
// startBgManager starts the goroutine than runs
// in the background and deletes expired keys.
// Triggers every 60 seconds, deletes up all expired keys.
func (db *DB) startBgManager() *time.Ticker {
// TODO: needs further investigation. Deleting all keys may be expensive
// and lead to timeouts for concurrent write operations.
// Adaptive limits based on the number of changed keys may be a solution.
// (see https://redis.io/docs/management/config-file/ > SNAPSHOTTING)
// And it doesn't help that SQLite's drivers do not support DELETE LIMIT,
// so we have to use DELETE IN (SELECT ...), which is more expensive.
const interval = 60 * time.Second
const nKeys = 0
ticker := time.NewTicker(interval)
go func() {
for range ticker.C {
count, err := db.keyDB.DeleteExpired(nKeys)
if err != nil {
db.log.Error("bg: delete expired keys", "error", err)
} else {
db.log.Info("bg: delete expired keys", "count", count)
}
}
}()
return ticker
}
// Tx is a Redis-like database transaction.
// Same as [DB], Tx provides access to data structures like keys,
// strings, and hashes. The difference is that you call Tx methods
// within a transaction managed by [DB.Update] or [DB.View].
//
// See the [tx] example for details.
//
// [tx]: https://github.com/nalgeon/redka/blob/main/example/tx/main.go
type Tx struct {
tx sqlx.Tx
hashTx *rhash.Tx
keyTx *rkey.Tx
listTx *rlist.Tx
setTx *rset.Tx
strTx *rstring.Tx
zsetTx *rzset.Tx
}
// newTx creates a new database transaction.
func newTx(tx sqlx.Tx) *Tx {
return &Tx{tx: tx,
hashTx: rhash.NewTx(tx),
keyTx: rkey.NewTx(tx),
listTx: rlist.NewTx(tx),
setTx: rset.NewTx(tx),
strTx: rstring.NewTx(tx),
zsetTx: rzset.NewTx(tx),
}
}
// Hash returns the hash transaction.
func (tx *Tx) Hash() *rhash.Tx {
return tx.hashTx
}
// Keys returns the key transaction.
func (tx *Tx) Key() *rkey.Tx {
return tx.keyTx
}
// List returns the list transaction.
func (tx *Tx) List() *rlist.Tx {
return tx.listTx
}
// Set returns the set transaction.
func (tx *Tx) Set() *rset.Tx {
return tx.setTx
}
// Str returns the string transaction.
func (tx *Tx) Str() *rstring.Tx {
return tx.strTx
}
// ZSet returns the sorted set transaction.
func (tx *Tx) ZSet() *rzset.Tx {
return tx.zsetTx
}
// applyOptions applies custom options to the
// default options and returns the result.
func applyOptions(opts Options, custom *Options) *Options {
if custom == nil {
return &opts
}
if custom.DriverName != "" {
opts.DriverName = custom.DriverName
}
if custom.Pragma != nil {
opts.Pragma = custom.Pragma
}
if custom.Logger != nil {
opts.Logger = custom.Logger
}
return &opts
}