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Admin
• Assignment 1 is due Friday: you should be almost done.
– Make sure you’re set up on Gradescope before Friday!

• Course webpage: https://github.com/UBC-CS/cpsc340-2021w1/
• Waiting list people:
– Almost(?) everyone will get in to section 103 (2pm) soon
– There’s space in section 101 (4pm)

• Auditors: Bring or email audit forms to get signed
• Tutorials:
– Okay to go to one you’re not registered for, but try to be consistent
– New online section starting next week (watch Piazza)

https://github.com/UBC-CS/cpsc340-2021w1/
https://piazza.com/class/ksums2w1qd91se?cid=51


Last Time: Supervised Learning Notation

• Feature matrix ‘X’ has rows as examples, columns as features.
– xij is feature ‘j’ for example ‘i’ (quantity of food ‘j’ on day ‘i’).
– xi is the list of all features for example ‘i’ (all the quantities on day ‘i’).
– xj is column ‘j’ of the matrix (the value of feature ‘j’ across all examples). 

• Label vector ‘y’ contains the labels of the examples.
– yi is the label of example ‘i’ (1 for “sick”, 0 for “not sick”).

Egg Milk Fish Wheat Shellfish Peanuts
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Supervised Learning Application
• We motivated supervised learning by the “food allergy” example.

• But we can use supervised learning for any input-output mapping.
– E-mail spam filtering.
– Optical character recognition on scanners.
– Recognizing faces in pictures.
– Recognizing tumours in medical images.
– Speech recognition on phones.
– Machine translation.
– Your problem in industry/research?



Motivation: Determine Home City
• We are given data from 248 homes.
• For each home/example, we have these features:
– Elevation.
– Year.
– Bathrooms.
– Bedrooms.
– Price.
– Square feet.

• Goal is to build a program that predicts SF or NY.

This example and images of it come from:
http://www.r2d3.us/visual-intro-to-machine-learning-part-1



Plotting Elevation



Simple Decision Stump



Scatterplot Array



Scatterplot Array



Plotting Elevation and Price/SqFt



Simple Decision Tree Classification



Simple Decision Tree Classification



How does the depth affect accuracy?

This is a good start (> 75% accuracy).



How does the depth affect accuracy?

Start splitting the data recursively…



How does the depth affect accuracy?

Accuracy keeps increasing as we add depth.



How does the depth affect accuracy?

Eventually, we can perfectly classify all of our data.



Training vs. Testing Error
• With this decision tree, ‘training accuracy’ is 1.
– It perfectly labels the data we used to make the tree.

• We are now given features for 217 new homes.
• What is the ‘testing accuracy’ on the new data?
– How does it do on data not used to make the tree?

• Overfitting: lower accuracy on new data.
– Our rules got too specific to our exact training dataset.
– Some of the “deep” splits only use a few examples (bad “coupon collecting”).



Supervised Learning Notation
• We are given training data where we know labels:

• But there is also testing data we want to label:

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01
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Egg Milk Fish Wheat Shellfish Peanuts …

0.5 0 1 0.6 2 1
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!𝑋= #𝑦= 



Supervised Learning Notation
• Typical supervised learning steps:

1. Build model based on training data X and y (training phase).
2. Model makes predictions !𝑦 on test data #𝑋 (testing phase).

• Instead of training error, consider test error: 
– Are predictions !𝑦 similar to true unseen labels %𝑦?



Goal of Machine Learning
• In machine learning:
– What we care about is the test error!

• Midterm analogy:
– The training error is the practice midterm.
– The test error is the actual midterm.
– Goal: do well on actual midterm, not the practice one.

• Memorization vs learning:
– Can do well on training data by memorizing it.
– You’ve only learned if you can do well in new situations.



Golden Rule of Machine Learning
• Even though what we care about is test error:
– THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY.

• We’re measuring test error to see how well we do on new data:
– If used during training, doesn’t measure this.
– You can start to overfit if you use it during training.
– Midterm analogy: you are cheating on the test.



Golden Rule of Machine Learning
• Even though what we care about is test error:
– THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY.

http://www.technologyreview.com/view/538111/why-and-how-baidu-cheated-an-artificial-intelligence-test/



Golden Rule of Machine Learning
• Even though what we care about is test error:
– THE TEST DATA CANNOT INFLUENCE THE TRAINING PHASE IN ANY WAY.

• You also shouldn’t change the test set to get the result you want.

– http://blogs.sciencemag.org/pipeline/archives/2015/01/14/the_dukepotti_scandal_from_the_inside

https://www.cbsnews.com/news/deception-at-duke-fraud-in-cancer-care/

http://blogs.sciencemag.org/pipeline/archives/2015/01/14/the_dukepotti_scandal_from_the_inside


Digression: Golden Rule and Hypothesis Testing
• Note the golden rule applies to hypothesis testing in scientific studies.
– Data that you collect can’t influence the hypotheses that you test.

• EXTREMELY COMMON and a MAJOR PROBLEM, coming in many forms:
– Collect more data until you coincidentally get significance level you want.
– Try different ways to measure performance, choose the one that looks best.
– Choose a different type of model/hypothesis after looking at the test data.

• If you want to modify your hypotheses, you need to test on new data.
– Or at least be aware and honest about this issue when reporting results.



Digression: Golden Rule and Hypothesis Testing
• Note the golden rule applies to hypothesis testing in scientific studies.
– Data that you collect can’t influence the hypotheses that you test.

• EXTREMELY COMMON and a MAJOR PROBLEM, coming in many forms:
– “Replication crisis in Science”.
– “Why Most Published Research Findings are False”.
– “False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis 

Allows Presenting Anything as Significant”.
– “HARKing: Hypothesizing After the Results are Known”.
– “Hack Your Way To Scientific Glory”.
– “Psychology’s Replication Crisis Has Made The Field Better” (some solutions)

https://en.wikipedia.org/wiki/Replication_crisis
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182327/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1850704
http://journals.sagepub.com/doi/abs/10.1207/s15327957pspr0203_4
https://fivethirtyeight.com/features/science-isnt-broken/
https://fivethirtyeight.com/features/psychologys-replication-crisis-has-made-the-field-better/


Is Learning Possible?
• Does training error say anything about test error?
– In general, NO: Test data might have nothing to do with training data.
– E.g., “adversary” takes training data and flips all labels.

• In order to learn, we need assumptions:
– The training and test data need to be related in some way.
– Most common assumption: independent and identically distributed (IID).
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IID Assumption
• Training/test data is independent and identically distributed (IID) if:
– All examples come from the same distribution (identically distributed).
– The example are sampled independently (order doesn’t matter).

• Examples in terms of cards:
– Pick a card from the top, put it back on the bottom, re-shuffle, repeat.
– Pick a card from the top, put it back on the bottom, repeat.
– Pick a card from the top, don’t put it back, re-shuffle, repeat.

Age Job? City Rating Income

23 Yes Van A 22,000.00
23 Yes Bur BBB 21,000.00
22 No Van CC 0.00
25 Yes Sur AAA 57,000.00



IID Assumption and Food Allergy Example
• Is the food allergy data IID?
– Do all the examples come from the same distribution? 
– Does the order of the examples matter?

• No! 
– Being sick might depend on what you ate yesterday (not independent).
– Your eating habits might changed over time (not identically distributed).

• What can we do about this?
– Just ignore that data isn’t IID and hope for the best?
– For each day, maybe add the features from the previous day?
– Maybe add time as an extra feature?



IID Assumption and Bad “Medical AI”
• Suppose you want to detect a specific type of cancer.
– You collect measurements from hospital patients having this cancer.
– You collect measurements from healthy UBC students.
– You build a classifier that distinguishes these groups with 100% accuracy.

• Success?

• Classifier might just detect UBC students from hospital patients
and nothing specifically related to the cancer.
– IID assumption violations are a key cause of failure in ML applications.



Learning Theory
• Why does the IID assumption make learning possible?
– Patterns in training examples are likely to be the same in test examples.

• The IID assumption is rarely true:
– But it is often a good approximation.
– There are other possible assumptions.

• Also, we’re assuming IID across examples but not across features.

• Learning theory explores how training error is related to test error.
• We’ll look at a simple example, using this notation:
– Etrain is the error on training data.
– Etest is the error on testing data.



Fundamental Trade-Off
• Start with Etest = Etest, then add and subtract Etrain on the right:

• How does this help?
– If Eapprox is small, then Etrain is a good approximation to Etest.

• What does Eapprox (“amount of overfitting”) depend on?
– It tends to get smaller as ‘n’ gets larger.
– It tends to grow as model get more “complicated”.



Fundamental Trade-Off
• This leads to a fundamental trade-off:

1. Etrain: how small you can make the training error.
vs.

2. Eapprox: how well training error approximates the test error.

• Simple models (like decision stumps):
– Eapprox is low (not overly sensitive to training set).
– But Etrain might be high.

• Complex models (like deep decision trees):
– Etrain can be low.
– But Eapprox might be high (very sensitive to training set).



Fundamental Trade-Off
• Training error vs. test error for choosing depth:
– Training error is high for low depth (underfitting)
– Training error gets better with depth.
– Test error initially goes down, but eventually increases (overfitting).



“Double Descent”
• Suppose you want to detect a specific type of cancer.
– You collect measurements from hospital patients having this cancer.
– You collect measurements from healthy UBC students.
– You build a classifier that distinguishes these groups with 100% accuracy.

• Success?

• Classifier might just detect UBC students from hospital patients
and nothing specifically related to the cancer.
– IID assumption violations are a key cause of failure in ML applications.



Validation Error
• How do we decide decision tree depth?
• We care about test error.
• But we can’t look at test data.
• So what do we do?????

• One answer: Use part of the training data to approximate test error.
• Split training examples into training set and validation set:
– Train model based on the training data.
– Test model based on the validation data.



Validation Error



Validation Error
• IID data: validation error is unbiased approximation of test error.

• Midterm analogy:
– You have 2 practice midterms.
– You hide one midterm, and spend a lot of time working through the other.
– You then do the other practice term, to see how well you’ll do on the test.

• We typically use validation error to choose “hyper-parameters”…



Notation: Parameters and Hyper-Parameters
• The decision tree rule values are called “parameters”.
– Parameters control how well we fit a dataset.
– We “train” a model by trying to find the best parameters on training data.

• The decision tree depth is a called a “hyper-parameter”.
– Hyper-parameters control how complex our model is.
– We can’t “train” a hyper-parameter.

• You can always fit training data better by making the model more complicated.

– We “validate” a hyper-parameter using a validation score.

• (“Hyper-parameter” is sometimes used for parameters “not fit with data”.)



Choosing Hyper-Parameters with Validation Set
• So to choose a good value of depth (“hyper-parameter”), we could:
– Try a depth-1 decision tree, compute validation error.
– Try a depth-2 decision tree, compute validation error.
– Try a depth-3 decision tree, compute validation error.
– …
– Try a depth-20 decision tree, compute validation error.
– Return the depth with the lowest validation error.

• After you choose the hyper-parameter, we usually 
re-train on the full training set with the chosen hyper-parameter.



Digression: Optimization Bias
• Another name for overfitting is “optimization bias”:
– How biased is an “error” that we optimized over many possibilities?

• Optimization bias of parameter learning:
– During learning, we could search over tons of different decision trees.
– So we can get “lucky” and find one with low training error by chance.

• “Overfitting of the training error”.

• Optimization bias of hyper-parameter tuning:
– Here, we might optimize the validation error over 20 values of “depth”.
– One of the 20 trees might have low validation error by chance.

• “Overfitting of the validation error”.



Digression: Example of Optimization Bias
• Consider a multiple-choice (a,b,c,d) “test” with 10 questions:
– If you choose answers randomly, expected grade is 25% (no bias).
– If you fill out two tests randomly and pick the best, expected grade is 33%.

• Optimization bias of ~8%.

– If you take the best among 10 random tests, expected grade is ~47%.
– If you take the best among 100, expected grade is ~62%.
– If you take the best among 1000, expected grade is ~73%.
– If you take the best among 10000, expected grade is ~82%.

• You have so many “chances” that you expect to do well.

• But on new questions the “random choice” accuracy is still 25%.



Factors Affecting Optimization Bias
• If we instead used a 100-question test then:
– Expected grade from best over 1 randomly-filled test is 25%.
– Expected grade from best over 2 randomly-filled test is ~27%.
– Expected grade from best over 10 randomly-filled test is ~32%.
– Expected grade from best over 100 randomly-filled test is ~36%.
– Expected grade from best over 1000 randomly-filled test is ~40%.
– Expected grade from best over 10000 randomly-filled test is ~47%.

• The optimization bias grows with the number of things we try.
– “Complexity” of the set of models we search over.

• But, optimization bias shrinks quickly with the number of examples.
– But it’s still non-zero and growing if you over-use your validation set!



Optimization Bias in Machine Learning Competitions

• It is common to have machine learning “competitions”.
– Some company releases a training set.

• Many people try many different things to try to develop the “best” model.

– At the end of the competition, the methods are compared on unseen test data.
• And a “winner” or “winners” are declared based on the test set performance.

• In some cases, this has led to major new insights on ML methods.
– Including the rise in popularity of “deep learning” methods we’ll see later.

• In most cases, many people submit very-similar methods.
– Expected “best” “test error” from 10000 submissions is biased!

• So the “best” methods might just be the one that got the most lucky.



Summary
• Training error vs. testing error:

– What we care about in machine learning is the testing error.
• Golden rule of machine learning:

– The test data cannot influence training the model in any way.
• Independent and identically distributed (IID):

– One assumption that makes learning possible.
• Fundamental trade-off:

– Trade-off between getting low training error and having training error approximate test error.
• Validation set:

– We can save part of our training data to approximate test error.
• Hyper-parameters:

– Parameters that control model complexity, typically set with a validation set.

• Next time:
– We discuss the “best” machine learning method.



More Discussion of Optimization Bias



“Test Set” vs. “Test Error”
• Formally, the “test error” is the expected error of our model:

– Here I’m using absolute error between predictions and true labels.
• But you could use squared error or other losses.

– The expectation is taken over distribution of test examples.
• Think of this as the “error with infinite data”.

– We assume that our training examples are drawn IID from this distribution.
• Otherwise, “training” might not help to reduce “test error”.

• Unfortunately, we cannot compute the test error.
– We don’t have access to the distribution over all test examples.



“Test Set” vs. “Test Error”
• We often approximate “test error” with the error on a “test set”:

– Here, we are using ‘t’ examples drawn IID from the test distribution.
• Note that “test set error” is not the “test error”.
– The goal is have a low “test error”, not “test set error”.

• The “golden rule” of machine learning:
– A “test set” cannot influence the “training” in any way.
– Otherwise, “test set error” is not an unbiased “test error” approximation.
– We run the risk of “overfitting” to the “test set”.



“test error” vs. “test set error” vs. “validation error”



“test error” vs. “test set error” vs. “validation error”



“A visual Introduction to machine learning”
• The “housing prices” example is taken from this website:
– http://www.r2d3.us/visual-intro-to-machine-learning-part-1

• They also have a “Part 2” here:
– http://www.r2d3.us/visual-intro-to-machine-learning-part-2

• Part 2 covers similar topics to what we covered in this lecture.

http://www.r2d3.us/visual-intro-to-machine-learning-part-1
http://www.r2d3.us/visual-intro-to-machine-learning-part-2


Approximation Error for Selecting Hyper-Parameters

• From the 2019 EasyMarkit AI Hackathon:
– “We ended up selecting the hyperparameters that gave us the lowest 

approximation error (gap between train and validation) as opposed to the 
lowest validation error. This was quite a difficult decision for our team 
since we were only allowed one submission. However, the model with the 
lowest validation error had a very high approximation error, which felt too 
risky, so we went with a model with a slightly higher validation error and 
much lower approximation error. When the results were announced, the 
reported test accuracy was within 0.1% of what our model predicted with 
the validation set.”

• This is the type of reasoning you want to do.
– A high approximation error could indicate low validation error by chance.

https://ubc-mds.github.io/2019-06-21-EasyMarkit/


Typical Supervised Learning Steps (Are Bad?)
• Given data {X,y}, a typical set of supervised learning steps:
– Data splitting:

• Split {X,y} into a train set {Xtrain,ytrain} and a validation set {Xvalid,yvalid}.
• We’re going to use the validation set error as an approximation of test error.

– Tune hyper-parameters (decision tree depth, “regularization”, “number of hidden 
units”, etc.):
• For each candidate value “λ” of the hyper-parameters:

– Fit a model to the train set {Xtrain,ytrain} using the given hyper-parameters “λ”.
– Evaluate the model on the validation set {Xvalid,yvalid}.

– Choose the model with the best performance on the validation set.
• And maybe re-train using hyper-parameter “λ” on the full dataset.

• Can this overfit, even though we used a validation set?
– Yes, we’ve violated the golden rule. But maybe it’s not too bad…



Validation Error, Test Error, and Approximation Error

• We discuss “fundamental trade-off” with respect to train error.
– Simple identity relating training set error to test error.

• We have a similar identity for the validation error.
– If Etest is the test error and Evalid is the error on the validation set, then:

• If Eapprox is small, then Evalid is a good approximation of Etest.
– We can’t measure Etest, so how do we know if Eapprox is small?



Bounding Eapprox
• Let’s consider a simple case:
– Labels yi are binary, and we try 1 hyper-parameter setting.
– IID assumption on validation set implies Evalid is unbiased: E[Evalid] = Etest.

• We can bound probability Eapprox is greater than ε.
– Assumptions: data is IID (so Evalid is unbiased) and loss is in [0,1].
– By using Hoeffding’s inequality:

– Probability that Evalid is far from Etest goes down exponentially with ‘t’.
• This is great: the bigger your validation set, the better approximation you get.

https://en.wikipedia.org/wiki/Hoeffding's_inequality


Bounding Eapprox
• Let’s consider a slightly less-simple case:
– Labels are binary, and we tried ‘k’ hyper-parameter values.
– In this case it’s unbiased for each ‘k’: E[Evalid(λ)] = Etest.
– So for each validation error Evalid(λ) we have:

– But our final validation error is Evalid = min{Evalid(λ}}, which is biased.
• We can’t apply Hoeffding because we chose best among ‘k’ values.

• Fix: bound on probability that all |Etest – Evalid(λ)| values are ≤ ε.
– We show it holds for all values of λ, so it must hold for the best value.



Bounding Eapprox
• The “union bound” for any events {A1, A2, …, Ak} is that:

• Combining with Hoeffding we can get:



Bounding Eapprox
• So if we choose best Evalid(λ) among ‘k’ λ values, we have:

• So optimizing over ‘k’ models is ok if we have a large ‘t’.
– But if ‘k’ is too large or ‘t’ is too small the validation error isn’t useful.

• Examples:
– If k=10 and t=1000, probability that |Eapprox| > .05 is less than 0.14.
– If k=10 and t=10000, probability that |Eapprox| > .05 is less than 10-20.
– If k=10 and t=1000, probability that |Eapprox| > .01 is less than 2.7 (useless).
– If k=100 and t=100000, probability that |Eapprox| > .01 is less than 10-6.



Bounding Eapprox
• Validation error vs. test error for fixed ‘t’.
– Evalid goes down as we increase ‘k’, but Eapprox can go up.

• Overfitting of validation set.



Discussion
• Bound is usually very loose, but data is probably not fully IID.

– Similar bounds are possible for cross-validation.

• Similar arguments apply for the Eapprox of the training error.
– Value ‘k’ is the number of hyper-parameters you are optimizing over (even if don’t try them all).
– So ‘k’ is usually huge: you try out k=O(nd) decision stumps.

• What if we train by optimizing parameters over a continuous space?
– We’re optimizing on continuous space, so k=∞ and the bound is useless.
– In this case, VC-dimension is one way to replace ‘k’ (doesn’t need union bound).

• “Simpler” models like decision stumps and linear models will have lower VC-dimension.

• Learning theory keywords if you want to go deeper into this topic:
– Bias-variance (see bonus slides for details and why this is weird), sample complexity, PAC 

learning, VC dimension, Rademacher complexity.
– A gentle place to start is the Learning from Data book.

https://work.caltech.edu/telecourse.html


Refined Fundamental Trade-Off
• Let Ebest be the irreducible error (lowest possible error for any model).
– For example, irreducible error for predicting coin flips is 0.5.

• Some learning theory results use Ebest to further decompose Etest:

• This is similar to the bias-variance trade-off:
– Eapprox measures how sensitive we are to training data (like “variance”).
– Emodel measures if our model is complicated enough to fit data (like “bias”).
– Ebest measures how low can any model make test error (“irreducible” error).



Refined Fundamental Trade-Off
• Let Ebest be the irreducible error (lowest possible error for any model).
– For example, irreducible error for predicting coin flips is 0.5.

• Some learning theory results use Ebest to further decompose Etest:

• This is similar to the bias-variance trade-off:
– You need to trade between having low Eapprox and having low Emodel.
– Powerful models have low Emodel but can have high Eapprox.
– Ebest does not depend on what model you choose.



Bias-Variance Decomposition
• You may have seen “bias-variance decomposition” in other classes:
– Assumes !𝑦i = #𝑦i + ε, where ε has mean 0 and variance σ2.
– Assumes we have a “learner” that can take ‘n’ training examples and use these to 

make predictions %𝑦i.
• Expected squared test error in this setting is

– Where expectations are taken over possible training sets of ‘n’ examples.
– Bias is expected error due to having wrong model.
– Variance is expected error due to sensitivity to the training set.
– Noise (irreducible error) is the best can hope for given the noise (Ebest).



Refined Fundamental Trade-Off
• Decision tree with high depth:
– Very likely to fit data well, so bias is low.
– But model changes a lot if you change the data, so variance is high.

• Decision tree with low depth:
– Less likely to fit data well, so bias is high.
– But model doesn’t change much you change data, so variance is low.

• And degree does not affect irreducible error.
– Irreducible error comes from the best possible model.



Bias-Variance vs. Fundamental Trade-Off
• Both decompositions serve the same purpose:
– Trying to evaluate how different factors affect test error.

• They both lead to the same 3 conclusions:
1. Simple models can have high Etrain/bias, low Eapprox/variance.
2. Complex models can have low Etrain/bias, high Eapprox/variance.
3. As you increase ‘n’, Eapprox/variance goes down (for fixed complexity).



Bias-Variance vs. Fundamental Trade-Off
• So why focus on fundamental trade-off and not bias-variance?
– Simplest viewpoint that gives these 3 conclusions.
– No assumptions like being restricted to squared error.

– You can measure Etrain but not Eapprox (1 known and 1 unknown).
• If Etrain is low  and you expect Eapprox to be low, then you are happy.

– E.g., you fit a very simple model or you used a huge independent validation set.

– You can’t measure bias, variance, or noise (3 unknowns).
• If Etrain is low, bias-variance decomposition doesn’t say anything about test error.

– You only have your training set, not distribution over possible datasets.
– Doesn’t say if high Etest is due to bias or variance or noise.



Learning Theory
• Bias-variance decomposition is a bit weird:
– Considers expectation over possible training sets.

• Bias-variance says nothing about your training set.
– This is different than Hoeffding bounds:

• Bound the test error based on your actual training set and training/validation error.

• Some keywords if you want to learn about learning theory:
– Bias-variance decomposition, sample complexity, probably approximately correct 

(PAC) learning, Vapnik-Chernovenkis (VC) dimension, Rademacher complexity.

• A gentle place to start is the “Learning from Data” book:
– https://work.caltech.edu/telecourse.html



A Theoretical Answer to “How Much Data?”
• Assume we have a source of IID examples and a fixed class of parametric 

models.
• Like “all depth-5 decision trees”.

• Under some nasty assumptions, with ‘n’ training examples it holds that:
E[test error of best model on training set] – (best test error in class) = O(1/n).

• You rarely know the constant factor, but this gives some guidelines:
– Adding more data helps more on small datasets than on large datasets.

• Going from 10 training examples to 20, difference with best possible error gets cut in half.
– If the best possible error is 15% you might go from 20% to 17.5% (this does not mean 20% to 10%).

• Going from 110 training examples to 120, error only goes down by ~10%.
• Going from 1M training examples to 1M+10, you won’t notice a change.

– Doubling the data size cuts the error in half:
• Going from 1M training to 2M training examples, error gets cut in half.
• If you double the data size and your test error doesn’t improve, more data might not help.



Can you test the IID assumption?
• In general, testing the IID assumption is not easy.
– Usually, you need background knowledge to decide if it’s reasonable.

• Some tests do exist, like shuffling the order of data
and then measuring if some basic statistics agree.
– It’s reasonable to check if summary statistics of train and test data agree.

• If not, your trained model may not be so useful.

• Some discussion here:
– https://stats.stackexchange.com/questions/28715/test-for-iid-sampling

https://stats.stackexchange.com/questions/28715/test-for-iid-sampling


Wrong Decisions under false IID Assumption

https://hdsr.mitpress.mit.edu/pub/wot7mkc1/release/8


