forked from zillow/pipelines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_client.py
1447 lines (1263 loc) · 59.1 KB
/
_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2018 The Kubeflow Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import logging
import json
import os
import re
import tarfile
import tempfile
import warnings
import yaml
import zipfile
import datetime
import copy
from typing import Mapping, Callable, Optional
import kfp_server_api
from kfp import dsl
from kfp.compiler import compiler
from kfp.compiler._k8s_helper import sanitize_k8s_name
from kfp._auth import get_auth_token, get_gcp_access_token
from kfp_server_api import ApiException
# Operators on scalar values. Only applies to one of |int_value|,
# |long_value|, |string_value| or |timestamp_value|.
_FILTER_OPERATIONS = {
"UNKNOWN": 0,
"EQUALS": 1,
"NOT_EQUALS": 2,
"GREATER_THAN": 3,
"GREATER_THAN_EQUALS": 5,
"LESS_THAN": 6,
"LESS_THAN_EQUALS": 7
}
def _add_generated_apis(target_struct, api_module, api_client):
"""Initializes a hierarchical API object based on the generated API module.
PipelineServiceApi.create_pipeline becomes
target_struct.pipelines.create_pipeline
"""
Struct = type('Struct', (), {})
def camel_case_to_snake_case(name):
import re
return re.sub('([a-z0-9])([A-Z])', r'\1_\2', name).lower()
for api_name in dir(api_module):
if not api_name.endswith('ServiceApi'):
continue
short_api_name = camel_case_to_snake_case(
api_name[0:-len('ServiceApi')]) + 's'
api_struct = Struct()
setattr(target_struct, short_api_name, api_struct)
service_api = getattr(api_module.api, api_name)
initialized_service_api = service_api(api_client)
for member_name in dir(initialized_service_api):
if member_name.startswith('_') or member_name.endswith(
'_with_http_info'):
continue
bound_member = getattr(initialized_service_api, member_name)
setattr(api_struct, member_name, bound_member)
models_struct = Struct()
for member_name in dir(api_module.models):
if not member_name[0].islower():
setattr(models_struct, member_name,
getattr(api_module.models, member_name))
target_struct.api_models = models_struct
KF_PIPELINES_ENDPOINT_ENV = 'KF_PIPELINES_ENDPOINT'
KF_PIPELINES_UI_ENDPOINT_ENV = 'KF_PIPELINES_UI_ENDPOINT'
KF_PIPELINES_DEFAULT_EXPERIMENT_NAME = 'KF_PIPELINES_DEFAULT_EXPERIMENT_NAME'
KF_PIPELINES_OVERRIDE_EXPERIMENT_NAME = 'KF_PIPELINES_OVERRIDE_EXPERIMENT_NAME'
KF_PIPELINES_IAP_OAUTH2_CLIENT_ID_ENV = 'KF_PIPELINES_IAP_OAUTH2_CLIENT_ID'
KF_PIPELINES_APP_OAUTH2_CLIENT_ID_ENV = 'KF_PIPELINES_APP_OAUTH2_CLIENT_ID'
KF_PIPELINES_APP_OAUTH2_CLIENT_SECRET_ENV = 'KF_PIPELINES_APP_OAUTH2_CLIENT_SECRET'
class Client(object):
"""API Client for KubeFlow Pipeline.
Args:
host: The host name to use to talk to Kubeflow Pipelines. If not set, the in-cluster
service DNS name will be used, which only works if the current environment is a pod
in the same cluster (such as a Jupyter instance spawned by Kubeflow's
JupyterHub). If you have a different connection to cluster, such as a kubectl
proxy connection, then set it to something like "127.0.0.1:8080/pipeline.
If you connect to an IAP enabled cluster, set it to
https://<your-deployment>.endpoints.<your-project>.cloud.goog/pipeline".
client_id: The client ID used by Identity-Aware Proxy.
namespace: The namespace where the kubeflow pipeline system is run.
other_client_id: The client ID used to obtain the auth codes and refresh tokens.
Reference: https://cloud.google.com/iap/docs/authentication-howto#authenticating_from_a_desktop_app.
other_client_secret: The client secret used to obtain the auth codes and refresh tokens.
existing_token: Pass in token directly, it's used for cases better get token outside of SDK, e.x. GCP Cloud Functions
or caller already has a token
cookies: CookieJar object containing cookies that will be passed to the pipelines API.
proxy: HTTP or HTTPS proxy server
ssl_ca_cert: Cert for proxy
kube_context: String name of context within kubeconfig to use, defaults to the current-context set within kubeconfig.
credentials: A TokenCredentialsBase object which provides the logic to
populate the requests with credentials to authenticate against the API
server.
ui_host: Base url to use to open the Kubeflow Pipelines UI. This is used when running the client from a notebook to generate and
print links.
userid: The ID of the user creating the client.
"""
# in-cluster DNS name of the pipeline service
IN_CLUSTER_DNS_NAME = 'ml-pipeline.{}.svc.cluster.local:8888'
KUBE_PROXY_PATH = 'api/v1/namespaces/{}/services/ml-pipeline:http/proxy/'
# Auto populated path in pods
# https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster/#accessing-the-api-from-a-pod
# https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin/#serviceaccount-admission-controller
NAMESPACE_PATH = '/var/run/secrets/kubernetes.io/serviceaccount/namespace'
LOCAL_KFP_CONTEXT = os.path.expanduser('~/.config/kfp/context.json')
KUBEFLOW_USERID_HEADER = 'kubeflow-userid'
# TODO: Wrap the configurations for different authentication methods.
def __init__(self,
host=None,
client_id=None,
namespace='kubeflow',
other_client_id=None,
other_client_secret=None,
existing_token=None,
cookies=None,
proxy=None,
ssl_ca_cert=None,
kube_context=None,
credentials=None,
ui_host=None,
userid=None):
"""Create a new instance of kfp client."""
host = host or os.environ.get(KF_PIPELINES_ENDPOINT_ENV)
self._uihost = os.environ.get(KF_PIPELINES_UI_ENDPOINT_ENV, ui_host or
host)
client_id = client_id or os.environ.get(
KF_PIPELINES_IAP_OAUTH2_CLIENT_ID_ENV)
other_client_id = other_client_id or os.environ.get(
KF_PIPELINES_APP_OAUTH2_CLIENT_ID_ENV)
other_client_secret = other_client_secret or os.environ.get(
KF_PIPELINES_APP_OAUTH2_CLIENT_SECRET_ENV)
config = self._load_config(host, client_id, namespace, other_client_id,
other_client_secret, existing_token, proxy,
ssl_ca_cert, kube_context, credentials)
# Save the loaded API client configuration, as a reference if update is
# needed.
self._load_context_setting_or_default()
self._existing_config = config
if cookies is None:
cookies = self._context_setting.get('client_authentication_cookie')
api_client = kfp_server_api.api_client.ApiClient(
config,
cookie=cookies,
header_name=self._context_setting.get(
'client_authentication_header_name'),
header_value=self._context_setting.get(
'client_authentication_header_value'))
if userid:
api_client.set_default_header(Client.KUBEFLOW_USERID_HEADER, userid)
_add_generated_apis(self, kfp_server_api, api_client)
self._job_api = kfp_server_api.api.job_service_api.JobServiceApi(
api_client)
self._run_api = kfp_server_api.api.run_service_api.RunServiceApi(
api_client)
self._experiment_api = kfp_server_api.api.experiment_service_api.ExperimentServiceApi(
api_client)
self._pipelines_api = kfp_server_api.api.pipeline_service_api.PipelineServiceApi(
api_client)
self._upload_api = kfp_server_api.api.PipelineUploadServiceApi(
api_client)
self._healthz_api = kfp_server_api.api.healthz_service_api.HealthzServiceApi(
api_client)
if not self._context_setting['namespace'] and self.get_kfp_healthz(
).multi_user is True:
try:
with open(Client.NAMESPACE_PATH, 'r') as f:
current_namespace = f.read()
self.set_user_namespace(current_namespace)
except FileNotFoundError:
logging.info(
'Failed to automatically set namespace.', exc_info=False)
def _load_config(self, host, client_id, namespace, other_client_id,
other_client_secret, existing_token, proxy, ssl_ca_cert,
kube_context, credentials):
config = kfp_server_api.configuration.Configuration()
if proxy:
# https://github.com/kubeflow/pipelines/blob/c6ac5e0b1fd991e19e96419f0f508ec0a4217c29/backend/api/python_http_client/kfp_server_api/rest.py#L100
config.proxy = proxy
if ssl_ca_cert:
config.ssl_ca_cert = ssl_ca_cert
host = host or ''
# Defaults to 'https' if host does not contain 'http' or 'https' protocol.
if host and not host.startswith('http'):
warnings.warn(
'The host %s does not contain the "http" or "https" protocol.'
' Defaults to "https".' % host)
host = 'https://' + host
# Preprocess the host endpoint to prevent some common user mistakes.
if not client_id:
# always preserving the protocol (http://localhost requires it)
host = host.rstrip('/')
if host:
config.host = host
token = None
# "existing_token" is designed to accept token generated outside of SDK. Here is an example.
#
# https://cloud.google.com/functions/docs/securing/function-identity
# https://cloud.google.com/endpoints/docs/grpc/service-account-authentication
#
# import requests
# import kfp
#
# def get_access_token():
# url = 'http://metadata.google.internal/computeMetadata/v1/instance/service-accounts/default/token'
# r = requests.get(url, headers={'Metadata-Flavor': 'Google'})
# r.raise_for_status()
# access_token = r.json()['access_token']
# return access_token
#
# client = kfp.Client(host='<KFPHost>', existing_token=get_access_token())
#
if existing_token:
token = existing_token
self._is_refresh_token = False
elif client_id:
token = get_auth_token(client_id, other_client_id,
other_client_secret)
self._is_refresh_token = True
elif self._is_inverse_proxy_host(host):
token = get_gcp_access_token()
self._is_refresh_token = False
elif credentials:
config.api_key['authorization'] = 'placeholder'
config.api_key_prefix['authorization'] = 'Bearer'
config.refresh_api_key_hook = credentials.refresh_api_key_hook
if token:
config.api_key['authorization'] = token
config.api_key_prefix['authorization'] = 'Bearer'
return config
if host:
# if host is explicitly set with auth token, it's probably a port forward address.
return config
import kubernetes as k8s
in_cluster = True
try:
k8s.config.load_incluster_config()
except:
in_cluster = False
pass
if in_cluster:
config.host = Client.IN_CLUSTER_DNS_NAME.format(namespace)
config = self._get_config_with_default_credentials(config)
return config
try:
k8s.config.load_kube_config(
client_configuration=config, context=kube_context)
except:
print('Failed to load kube config.')
return config
if config.host:
config.host = config.host + '/' + Client.KUBE_PROXY_PATH.format(
namespace)
return config
def _is_inverse_proxy_host(self, host):
if host:
return re.match(r'\S+.googleusercontent.com/{0,1}$', host)
if re.match(r'\w+', host):
warnings.warn(
'The received host is %s, please include the full endpoint address '
'(with ".(pipelines/notebooks).googleusercontent.com")' % host)
return False
def _is_ipython(self):
"""Returns whether we are running in notebook."""
try:
import IPython
ipy = IPython.get_ipython()
if ipy is None:
return False
except ImportError:
return False
return True
def _get_url_prefix(self):
if self._uihost:
# User's own connection.
if self._uihost.startswith('http://') or self._uihost.startswith(
'https://'):
return self._uihost
else:
return 'http://' + self._uihost
# In-cluster pod. We could use relative URL.
return '/pipeline'
def _load_context_setting_or_default(self):
if os.path.exists(Client.LOCAL_KFP_CONTEXT):
with open(Client.LOCAL_KFP_CONTEXT, 'r') as f:
self._context_setting = json.load(f)
else:
self._context_setting = {
'namespace': '',
}
def _refresh_api_client_token(self):
"""Refreshes the existing token associated with the kfp_api_client."""
if getattr(self, '_is_refresh_token', None):
return
new_token = get_gcp_access_token()
self._existing_config.api_key['authorization'] = new_token
def _get_config_with_default_credentials(self, config):
"""Apply default credentials to the configuration object.
This method accepts a Configuration object and extends it with
some default credentials interface.
"""
# XXX: The default credentials are audience-based service account tokens
# projected by the kubelet (ServiceAccountTokenVolumeCredentials). As we
# implement more and more credentials, we can have some heuristic and
# choose from a number of options.
# See https://github.com/kubeflow/pipelines/pull/5287#issuecomment-805654121
from kfp import auth
credentials = auth.ServiceAccountTokenVolumeCredentials()
config_copy = copy.deepcopy(config)
try:
credentials.refresh_api_key_hook(config_copy)
except Exception:
logging.warning("Failed to set up default credentials. Proceeding"
" without credentials...")
return config
config.refresh_api_key_hook = credentials.refresh_api_key_hook
config.api_key_prefix['authorization'] = 'Bearer'
config.refresh_api_key_hook(config)
return config
def set_user_namespace(self, namespace: str):
"""Set user namespace into local context setting file.
This function should only be used when Kubeflow Pipelines is in the multi-user mode.
Args:
namespace: kubernetes namespace the user has access to.
"""
self._context_setting['namespace'] = namespace
if not os.path.exists(os.path.dirname(Client.LOCAL_KFP_CONTEXT)):
os.makedirs(os.path.dirname(Client.LOCAL_KFP_CONTEXT))
with open(Client.LOCAL_KFP_CONTEXT, 'w') as f:
json.dump(self._context_setting, f)
def get_kfp_healthz(self) -> kfp_server_api.ApiGetHealthzResponse:
"""Gets healthz info of KFP deployment.
Returns:
response: json formatted response from the healtz endpoint.
"""
count = 0
response = None
max_attempts = 5
while not response:
count += 1
if count > max_attempts:
raise TimeoutError(
'Failed getting healthz endpoint after {} attempts.'.format(
max_attempts))
try:
response = self._healthz_api.get_healthz()
return response
# ApiException, including network errors, is the only type that may
# recover after retry.
except kfp_server_api.ApiException:
# logging.exception also logs detailed info about the ApiException
logging.exception(
'Failed to get healthz info attempt {} of 5.'.format(count))
time.sleep(5)
def get_user_namespace(self) -> str:
"""Get user namespace in context config.
Returns:
namespace: kubernetes namespace from the local context file or empty if it wasn't set.
"""
return self._context_setting['namespace']
def create_experiment(
self,
name: str,
description: str = None,
namespace: str = None) -> kfp_server_api.ApiExperiment:
"""Create a new experiment.
Args:
name: The name of the experiment.
description: Description of the experiment.
namespace: Kubernetes namespace where the experiment should be created.
For single user deployment, leave it as None;
For multi user, input a namespace where the user is authorized.
Returns:
An Experiment object. Most important field is id.
"""
namespace = namespace or self.get_user_namespace()
experiment = None
try:
experiment = self.get_experiment(
experiment_name=name, namespace=namespace)
except ValueError as error:
# Ignore error if the experiment does not exist.
if not str(error).startswith('No experiment is found with name'):
raise error
if not experiment:
logging.info('Creating experiment {}.'.format(name))
resource_references = []
if namespace:
key = kfp_server_api.models.ApiResourceKey(
id=namespace,
type=kfp_server_api.models.ApiResourceType.NAMESPACE)
reference = kfp_server_api.models.ApiResourceReference(
key=key,
relationship=kfp_server_api.models.ApiRelationship.OWNER)
resource_references.append(reference)
experiment = kfp_server_api.models.ApiExperiment(
name=name,
description=description,
resource_references=resource_references)
experiment = self._experiment_api.create_experiment(body=experiment)
if self._is_ipython():
import IPython
html = \
('<a href="%s/#/experiments/details/%s" target="_blank" >Experiment details</a>.'
% (self._get_url_prefix(), experiment.id))
IPython.display.display(IPython.display.HTML(html))
return experiment
def get_pipeline_id(self, name) -> Optional[str]:
"""Find the id of a pipeline by name.
Args:
name: Pipeline name.
Returns:
Returns the pipeline id if a pipeline with the name exists.
"""
pipeline_filter = json.dumps({
"predicates": [{
"op": _FILTER_OPERATIONS["EQUALS"],
"key": "name",
"stringValue": name,
}]
})
result = self._pipelines_api.list_pipelines(filter=pipeline_filter)
if result.pipelines is None:
return None
if len(result.pipelines) == 1:
return result.pipelines[0].id
elif len(result.pipelines) > 1:
raise ValueError(
"Multiple pipelines with the name: {} found, the name needs to be unique"
.format(name))
return None
def list_experiments(
self,
page_token='',
page_size=10,
sort_by='',
namespace=None,
filter=None) -> kfp_server_api.ApiListExperimentsResponse:
"""List experiments.
Args:
page_token: Token for starting of the page.
page_size: Size of the page.
sort_by: Can be '[field_name]', '[field_name] desc'. For example, 'name desc'.
namespace: Kubernetes namespace where the experiment was created.
For single user deployment, leave it as None;
For multi user, input a namespace where the user is authorized.
filter: A url-encoded, JSON-serialized Filter protocol buffer
(see [filter.proto](https://github.com/kubeflow/pipelines/blob/master/backend/api/filter.proto)).
Returns:
A response object including a list of experiments and next page token.
"""
namespace = namespace or self.get_user_namespace()
response = self._experiment_api.list_experiment(
page_token=page_token,
page_size=page_size,
sort_by=sort_by,
resource_reference_key_type=kfp_server_api.models.api_resource_type
.ApiResourceType.NAMESPACE,
resource_reference_key_id=namespace,
filter=filter)
return response
def get_experiment(self,
experiment_id=None,
experiment_name=None,
namespace=None) -> kfp_server_api.ApiExperiment:
"""Get details of an experiment.
Either experiment_id or experiment_name is required
Args:
experiment_id: Id of the experiment. (Optional)
experiment_name: Name of the experiment. (Optional)
namespace: Kubernetes namespace where the experiment was created.
For single user deployment, leave it as None;
For multi user, input the namespace where the user is authorized.
Returns:
A response object including details of a experiment.
Raises:
kfp_server_api.ApiException: If experiment is not found or None of the arguments is provided
"""
namespace = namespace or self.get_user_namespace()
if experiment_id is None and experiment_name is None:
raise ValueError(
'Either experiment_id or experiment_name is required')
if experiment_id is not None:
return self._experiment_api.get_experiment(id=experiment_id)
experiment_filter = json.dumps({
"predicates": [{
"op": _FILTER_OPERATIONS["EQUALS"],
"key": "name",
"stringValue": experiment_name,
}]
})
if namespace:
result = self._experiment_api.list_experiment(
filter=experiment_filter,
resource_reference_key_type=kfp_server_api.models
.api_resource_type.ApiResourceType.NAMESPACE,
resource_reference_key_id=namespace)
else:
result = self._experiment_api.list_experiment(
filter=experiment_filter)
if not result.experiments:
raise ValueError(
'No experiment is found with name {}.'.format(experiment_name))
if len(result.experiments) > 1:
raise ValueError(
'Multiple experiments is found with name {}.'.format(
experiment_name))
return result.experiments[0]
def archive_experiment(self, experiment_id: str):
"""Archive experiment.
Args:
experiment_id: id of the experiment.
Raises:
kfp_server_api.ApiException: If experiment is not found.
"""
self._experiment_api.archive_experiment(experiment_id)
def delete_experiment(self, experiment_id):
"""Delete experiment.
Args:
experiment_id: id of the experiment.
Returns:
Object. If the method is called asynchronously, returns the request thread.
Raises:
kfp_server_api.ApiException: If experiment is not found.
"""
return self._experiment_api.delete_experiment(id=experiment_id)
def _extract_pipeline_yaml(self, package_file):
def _choose_pipeline_yaml_file(file_list) -> str:
yaml_files = [file for file in file_list if file.endswith('.yaml')]
if len(yaml_files) == 0:
raise ValueError(
'Invalid package. Missing pipeline yaml file in the package.'
)
if 'pipeline.yaml' in yaml_files:
return 'pipeline.yaml'
else:
if len(yaml_files) == 1:
return yaml_files[0]
raise ValueError(
'Invalid package. There is no pipeline.yaml file and there are multiple yaml files.'
)
if package_file.endswith('.tar.gz') or package_file.endswith('.tgz'):
with tarfile.open(package_file, "r:gz") as tar:
file_names = [member.name for member in tar if member.isfile()]
pipeline_yaml_file = _choose_pipeline_yaml_file(file_names)
with tar.extractfile(tar.getmember(pipeline_yaml_file)) as f:
return yaml.safe_load(f)
elif package_file.endswith('.zip'):
with zipfile.ZipFile(package_file, 'r') as zip:
pipeline_yaml_file = _choose_pipeline_yaml_file(zip.namelist())
with zip.open(pipeline_yaml_file) as f:
return yaml.safe_load(f)
elif package_file.endswith('.yaml') or package_file.endswith('.yml'):
with open(package_file, 'r') as f:
return yaml.safe_load(f)
else:
raise ValueError(
'The package_file ' + package_file +
' should end with one of the following formats: [.tar.gz, .tgz, .zip, .yaml, .yml]'
)
def _override_caching_options(self, workflow: dict, enable_caching: bool):
templates = workflow['spec']['templates']
for template in templates:
if 'metadata' in template \
and 'labels' in template['metadata'] \
and 'pipelines.kubeflow.org/enable_caching' in template['metadata']['labels']:
template['metadata']['labels'][
'pipelines.kubeflow.org/enable_caching'] = str(
enable_caching).lower()
def list_pipelines(self,
page_token='',
page_size=10,
sort_by='',
filter=None) -> kfp_server_api.ApiListPipelinesResponse:
"""List pipelines.
Args:
page_token: Token for starting of the page.
page_size: Size of the page.
sort_by: one of 'field_name', 'field_name desc'. For example, 'name desc'.
filter: A url-encoded, JSON-serialized Filter protocol buffer
(see [filter.proto](https://github.com/kubeflow/pipelines/blob/master/backend/api/filter.proto)).
Returns:
A response object including a list of pipelines and next page token.
"""
return self._pipelines_api.list_pipelines(
page_token=page_token,
page_size=page_size,
sort_by=sort_by,
filter=filter)
# TODO: provide default namespace, similar to kubectl default namespaces.
def run_pipeline(
self,
experiment_id: str,
job_name: str,
pipeline_package_path: Optional[str] = None,
params: Optional[dict] = None,
pipeline_id: Optional[str] = None,
version_id: Optional[str] = None,
pipeline_root: Optional[str] = None,
enable_caching: Optional[str] = None,
service_account: Optional[str] = None,
) -> kfp_server_api.ApiRun:
"""Run a specified pipeline.
Args:
experiment_id: The id of an experiment.
job_name: Name of the job.
pipeline_package_path: Local path of the pipeline package(the filename should end with one of the following .tar.gz, .tgz, .zip, .yaml, .yml).
params: A dictionary with key (string) as param name and value (string) as as param value.
pipeline_id: The id of a pipeline.
version_id: The id of a pipeline version.
If both pipeline_id and version_id are specified, version_id will take precendence.
If only pipeline_id is specified, the default version of this pipeline is used to create the run.
pipeline_root: The root path of the pipeline outputs. This argument should
be used only for pipeline compiled with
dsl.PipelineExecutionMode.V2_COMPATIBLE or
dsl.PipelineExecutionMode.V2_ENGINGE mode.
enable_caching: Optional. Whether or not to enable caching for the run.
This setting affects v2 compatible mode and v2 mode only.
If not set, defaults to the compile time settings, which are True for all
tasks by default, while users may specify different caching options for
individual tasks.
If set, the setting applies to all tasks in the pipeline -- overrides
the compile time settings.
service_account: Optional. Specifies which Kubernetes service account this
run uses.
Returns:
A run object. Most important field is id.
"""
if params is None:
params = {}
if pipeline_root is not None:
params[dsl.ROOT_PARAMETER_NAME] = pipeline_root
job_config = self._create_job_config(
experiment_id=experiment_id,
params=params,
pipeline_package_path=pipeline_package_path,
pipeline_id=pipeline_id,
version_id=version_id,
enable_caching=enable_caching,
)
run_body = kfp_server_api.models.ApiRun(
pipeline_spec=job_config.spec,
resource_references=job_config.resource_references,
name=job_name,
service_account=service_account)
response = self._run_api.create_run(body=run_body)
if self._is_ipython():
import IPython
html = (
'<a href="%s/#/runs/details/%s" target="_blank" >Run details</a>.'
% (self._get_url_prefix(), response.run.id))
IPython.display.display(IPython.display.HTML(html))
return response.run
def create_recurring_run(
self,
experiment_id: str,
job_name: str,
description: Optional[str] = None,
start_time: Optional[str] = None,
end_time: Optional[str] = None,
interval_second: Optional[int] = None,
cron_expression: Optional[str] = None,
max_concurrency: Optional[int] = 1,
no_catchup: Optional[bool] = None,
params: Optional[dict] = None,
pipeline_package_path: Optional[str] = None,
pipeline_id: Optional[str] = None,
version_id: Optional[str] = None,
enabled: bool = True,
enable_caching: Optional[bool] = None,
service_account: Optional[str] = None,
) -> kfp_server_api.ApiJob:
"""Create a recurring run.
Args:
experiment_id: The string id of an experiment.
job_name: Name of the job.
description: An optional job description.
start_time: The RFC3339 time string of the time when to start the job.
end_time: The RFC3339 time string of the time when to end the job.
interval_second: Integer indicating the seconds between two recurring runs in for a periodic schedule.
cron_expression: A cron expression representing a set of times, using 6 space-separated fields, e.g. "0 0 9 ? * 2-6".
See `here <https://pkg.go.dev/github.com/robfig/cron#hdr-CRON_Expression_Format>`_ for details of the cron expression format.
max_concurrency: Integer indicating how many jobs can be run in parallel.
no_catchup: Whether the recurring run should catch up if behind schedule.
For example, if the recurring run is paused for a while and re-enabled
afterwards. If no_catchup=False, the scheduler will catch up on (backfill) each
missed interval. Otherwise, it only schedules the latest interval if more than one interval
is ready to be scheduled.
Usually, if your pipeline handles backfill internally, you should turn catchup
off to avoid duplicate backfill. (default: {False})
pipeline_package_path: Local path of the pipeline package(the filename should end with one of the following .tar.gz, .tgz, .zip, .yaml, .yml).
params: A dictionary with key (string) as param name and value (string) as param value.
pipeline_id: The id of a pipeline.
version_id: The id of a pipeline version.
If both pipeline_id and version_id are specified, version_id will take precendence.
If only pipeline_id is specified, the default version of this pipeline is used to create the run.
enabled: A bool indicating whether the recurring run is enabled or disabled.
enable_caching: Optional. Whether or not to enable caching for the run.
This setting affects v2 compatible mode and v2 mode only.
If not set, defaults to the compile time settings, which are True for all
tasks by default, while users may specify different caching options for
individual tasks.
If set, the setting applies to all tasks in the pipeline -- overrides
the compile time settings.
service_account: Optional. Specifies which Kubernetes service account this
recurring run uses.
Returns:
A Job object. Most important field is id.
Raises:
ValueError: If required parameters are not supplied.
"""
job_config = self._create_job_config(
experiment_id=experiment_id,
params=params,
pipeline_package_path=pipeline_package_path,
pipeline_id=pipeline_id,
version_id=version_id,
enable_caching=enable_caching,
)
if all([interval_second, cron_expression
]) or not any([interval_second, cron_expression]):
raise ValueError(
'Either interval_second or cron_expression is required')
if interval_second is not None:
trigger = kfp_server_api.models.ApiTrigger(
periodic_schedule=kfp_server_api.models.ApiPeriodicSchedule(
start_time=start_time,
end_time=end_time,
interval_second=interval_second))
if cron_expression is not None:
trigger = kfp_server_api.models.ApiTrigger(
cron_schedule=kfp_server_api.models.ApiCronSchedule(
start_time=start_time,
end_time=end_time,
cron=cron_expression))
job_body = kfp_server_api.models.ApiJob(
enabled=enabled,
pipeline_spec=job_config.spec,
resource_references=job_config.resource_references,
name=job_name,
description=description,
no_catchup=no_catchup,
trigger=trigger,
max_concurrency=max_concurrency,
service_account=service_account)
return self._job_api.create_job(body=job_body)
def _create_job_config(
self,
experiment_id: str,
params: Optional[dict],
pipeline_package_path: Optional[str],
pipeline_id: Optional[str],
version_id: Optional[str],
enable_caching: Optional[bool],
):
"""Create a JobConfig with spec and resource_references.
Args:
experiment_id: The id of an experiment.
pipeline_package_path: Local path of the pipeline package(the filename should end with one of the following .tar.gz, .tgz, .zip, .yaml, .yml).
params: A dictionary with key (string) as param name and value (string) as param value.
pipeline_id: The id of a pipeline.
version_id: The id of a pipeline version.
If both pipeline_id and version_id are specified, version_id will take precendence.
If only pipeline_id is specified, the default version of this pipeline is used to create the run.
enable_caching: Whether or not to enable caching for the run.
This setting affects v2 compatible mode and v2 mode only.
If not set, defaults to the compile time settings, which are True for all
tasks by default, while users may specify different caching options for
individual tasks.
If set, the setting applies to all tasks in the pipeline -- overrides
the compile time settings.
Returns:
A JobConfig object with attributes spec and resource_reference.
"""
class JobConfig:
def __init__(self, spec, resource_references):
self.spec = spec
self.resource_references = resource_references
params = params or {}
pipeline_json_string = None
if pipeline_package_path:
pipeline_obj = self._extract_pipeline_yaml(pipeline_package_path)
# Caching option set at submission time overrides the compile time settings.
if enable_caching is not None:
self._override_caching_options(pipeline_obj, enable_caching)
pipeline_json_string = json.dumps(pipeline_obj)
api_params = [
kfp_server_api.ApiParameter(
name=sanitize_k8s_name(name=k, allow_capital_underscore=True),
value=str(v) if type(v) not in (list, dict) else json.dumps(v))
for k, v in params.items()
]
resource_references = []
key = kfp_server_api.models.ApiResourceKey(
id=experiment_id,
type=kfp_server_api.models.ApiResourceType.EXPERIMENT)
reference = kfp_server_api.models.ApiResourceReference(
key=key, relationship=kfp_server_api.models.ApiRelationship.OWNER)
resource_references.append(reference)
if version_id:
key = kfp_server_api.models.ApiResourceKey(
id=version_id,
type=kfp_server_api.models.ApiResourceType.PIPELINE_VERSION)
reference = kfp_server_api.models.ApiResourceReference(
key=key,
relationship=kfp_server_api.models.ApiRelationship.CREATOR)
resource_references.append(reference)
spec = kfp_server_api.models.ApiPipelineSpec(
pipeline_id=pipeline_id,
workflow_manifest=pipeline_json_string,
parameters=api_params)
return JobConfig(spec=spec, resource_references=resource_references)
def create_run_from_pipeline_func(
self,
pipeline_func: Callable,
arguments: Mapping[str, str],
run_name: Optional[str] = None,
experiment_name: Optional[str] = None,
pipeline_conf: Optional[dsl.PipelineConf] = None,
namespace: Optional[str] = None,
mode: dsl.PipelineExecutionMode = dsl.PipelineExecutionMode.V1_LEGACY,
launcher_image: Optional[str] = None,
pipeline_root: Optional[str] = None,
enable_caching: Optional[bool] = None,
service_account: Optional[str] = None,
):
"""Runs pipeline on KFP-enabled Kubernetes cluster.
This command compiles the pipeline function, creates or gets an experiment and submits the pipeline for execution.
Args:
pipeline_func: A function that describes a pipeline by calling components and composing them into execution graph.
arguments: Arguments to the pipeline function provided as a dict.
run_name: Optional. Name of the run to be shown in the UI.
experiment_name: Optional. Name of the experiment to add the run to.
pipeline_conf: Optional. Pipeline configuration ops that will be applied
to all the ops in the pipeline func.
namespace: Kubernetes namespace where the pipeline runs are created.
For single user deployment, leave it as None;
For multi user, input a namespace where the user is authorized
mode: The PipelineExecutionMode to use when compiling and running
pipeline_func.
launcher_image: The launcher image to use if the mode is specified as
PipelineExecutionMode.V2_COMPATIBLE. Should only be needed for tests
or custom deployments right now.
pipeline_root: The root path of the pipeline outputs. This argument should
be used only for pipeline compiled with
dsl.PipelineExecutionMode.V2_COMPATIBLE or
dsl.PipelineExecutionMode.V2_ENGINGE mode.
enable_caching: Optional. Whether or not to enable caching for the run.
This setting affects v2 compatible mode and v2 mode only.
If not set, defaults to the compile time settings, which are True for all
tasks by default, while users may specify different caching options for
individual tasks.
If set, the setting applies to all tasks in the pipeline -- overrides
the compile time settings.
service_account: Optional. Specifies which Kubernetes service account this
run uses.
"""
if pipeline_root is not None and mode == dsl.PipelineExecutionMode.V1_LEGACY:
raise ValueError('`pipeline_root` should not be used with '
'dsl.PipelineExecutionMode.V1_LEGACY mode.')
#TODO: Check arguments against the pipeline function
pipeline_name = pipeline_func.__name__
run_name = run_name or pipeline_name + ' ' + datetime.datetime.now(
).strftime('%Y-%m-%d %H-%M-%S')
with tempfile.TemporaryDirectory() as tmpdir:
pipeline_package_path = os.path.join(tmpdir, 'pipeline.yaml')
compiler.Compiler(
mode=mode, launcher_image=launcher_image).compile(
pipeline_func=pipeline_func,
package_path=pipeline_package_path,
pipeline_conf=pipeline_conf)
return self.create_run_from_pipeline_package(