-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmultiple_choice.py
155 lines (125 loc) · 5.82 KB
/
multiple_choice.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# End-to-end script running the Hugging Face Trainer
# for multiple choice. Based on the Tasks documentation
# originally from: https://hf.co/docs/transformers/tasks/multiple_choice
from dataclasses import dataclass
from typing import Optional, Union
import evaluate
import numpy as np
import torch
from accelerate import PartialState
from datasets import load_dataset
from transformers import AutoModelForMultipleChoice, AutoTokenizer, Trainer, TrainingArguments
from transformers.tokenization_utils_base import PaddingStrategy, PreTrainedTokenizerBase
# Constants
model_name = "bert-base-uncased"
dataset_name = "swag"
metric = "accuracy"
# Load dataset
print(f"Downloading dataset ({dataset_name})")
dataset = load_dataset(dataset_name, "regular", split="train[:8%]")
dataset = dataset.train_test_split(test_size=0.2)
# Tokenize the dataset
tokenizer = AutoTokenizer.from_pretrained(model_name)
ending_names = ["ending0", "ending1", "ending2", "ending3"]
def tokenize_function(examples):
first_sentences = [[context] * 4 for context in examples["sent1"]]
question_headers = examples["sent2"]
second_sentences = [
[f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers)
]
first_sentences = sum(first_sentences, [])
second_sentences = sum(second_sentences, [])
tokenized_examples = tokenizer(first_sentences, second_sentences, truncation=True)
return {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()}
print(f"Tokenizing dataset for {model_name}...")
tokenized_dataset = dataset.map(tokenize_function, batched=True)
# Create our own data collator class and use it
@dataclass
class DataCollatorForMultipleChoice:
"""
Data collator that will dynamically pad the inputs for multiple choice received.
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature.pop(label_name) for feature in features]
batch_size = len(features)
num_choices = len(features[0]["input_ids"])
flattened_features = [
[{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features
]
flattened_features = sum(flattened_features, [])
batch = self.tokenizer.pad(
flattened_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()}
batch["labels"] = torch.tensor(labels, dtype=torch.int64)
return batch
data_collator = DataCollatorForMultipleChoice(tokenizer=tokenizer)
# Handle computation of our metrics
print(f"Loading metric ({metric})...")
accuracy = evaluate.load(metric)
def compute_metrics(evaluation_preds):
predictions, labels = evaluation_preds
predictions = np.argmax(predictions, axis=1)
return accuracy.compute(predictions=predictions, references=labels)
print(f"Instantiating model ({model_name})...")
model = AutoModelForMultipleChoice.from_pretrained(model_name)
# Define the hyperparameters in the TrainingArguments
print("Creating training arguments (weights are stored at `results/multiple_choice`)...")
training_args = TrainingArguments(
output_dir="results/multiple_choice", # Where weights are stored
learning_rate=5e-5, # The learning rate during training
per_device_train_batch_size=32, # Number of samples per batch during training
per_device_eval_batch_size=32, # Number of samples per batch during evaluation
num_train_epochs=2, # How many iterations through the dataloaders should be done
weight_decay=0.01, # Regularization penalization
evaluation_strategy="epoch", # How often metrics on the evaluation dataset should be computed
save_strategy="epoch", # When to try and save the best model (such as a step number or every iteration)
fp16=True, # Whether to use 16-bit precision (mixed precision) instead of 32-bit. Generally faster on T4's
)
# Create the `Trainer`, passing in the model and arguments
# the datasets to train on, how the data should be collated,
# and the method for computing our metrics
print("Creating `Trainer`...")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"],
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
# Initiate training
print("Training...")
trainer.train()
# Performing inference
prompt = "France has a bread law, Le Décret Pain, with strict rules on what is allowed in a traditional baguette."
candidate1 = "The law does not apply to croissants and brioche."
candidate2 = "The law applies to baguettes."
# We need to tokenize the inputs and turn them to PyTorch tensors
encoded_input = tokenizer([[prompt, candidate1], [prompt, candidate2]], return_tensors="pt", padding=True)
encoded_input = {k: v.unsqueeze(0) for k, v in encoded_input.items()}
labels = torch.tensor(0).unsqueeze(0)
# To move the batch to the right device automatically, use `PartialState().device`
# which will always work no matter the environment
device = PartialState().device
encoded_input = {k: v.to(device) for k, v in encoded_input.items()}
# Can also be `.to("cuda")`
labels = labels.to(device)
# Then we can perform raw torch inference:
print("Performing inference...")
model.eval()
with torch.inference_mode():
logits = model(**encoded_input, labels=labels).logits
# Finally, decode our outputs
predicted_class = logits.argmax().item()
print(f"Predicted answer number: {predicted_class}")