-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_inventory.py
158 lines (132 loc) · 4.74 KB
/
analyze_inventory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from math import inf, sqrt
from os import makedirs, path
import re
from shutil import rmtree
from typing import List, Tuple
from requests import get
import fitz
type WordBlock = Tuple[int, int, int, int, str]
type ImageWithBBox = Tuple[int, int, int, int, int, str, str, str, str, int]
type Box = Tuple[int, int, int, int]
def download_pdf(url: str, save_path: str) -> None:
response = get(url)
with open(save_path, "wb") as pdf_file:
pdf_file.write(response.content)
def box_distance(a: Box, b: Box) -> int:
(ax0, ay0, ax1, ay1) = a
(bx0, by0, bx1, by1) = b
gapx = bx0 - ax1 if bx0 > ax0 else ax0 - bx1
gapy = by0 - ay1 if by0 > ay0 else ay0 - by1
if gapx < -2 and gapy < -2:
return inf
return max(gapx, gapy)
def get_unique_word_positions(page: fitz.Page, pattern: str, font: str, size: float, color: int) -> List[WordBlock]:
blocks = []
for block in page.get_textpage().extractDICT()['blocks']:
lines = []
for line in block['lines']:
for span in line['spans']:
# print(span['size'], span['font'], span['color'], span['text'])
if span['size'] == size and span['font'] == font and span['color'] == color:
lines.append(span['text'].strip())
if len(lines) > 0 and re.match(pattern, ' '.join(lines)):
blocks.append((*block['bbox'], ' '.join(lines)))
return sorted(blocks, key=lambda block: block[1])
def get_images_with_bbox(page: fitz.Page) -> List[ImageWithBBox]:
return list(
map(
lambda image: (
image[0],
image[1],
image[2],
image[3],
image[4],
image[5],
image[6],
image[7],
image[8],
image[9],
page.get_image_bbox(image[7]),
),
page.get_images(full=True),
),
)
def get_closest_word_block(all_words: List[WordBlock], word_block: WordBlock) -> int:
closest = None
closest_dist = None
for x0, y0, x1, y1, word in all_words:
dist = box_distance(
(word_block[0], word_block[1], word_block[2], word_block[3]),
(x0, y0, x1, y1),
)
if closest_dist == None or dist < closest_dist:
closest = word
closest_dist = dist
return closest
def get_closest_image(all_images: List, word_block: WordBlock) -> Tuple[int, str]:
closest = None
closest_dist = None
for (
xref,
smask,
width,
height,
bpc,
colorspace,
altColorspace,
name,
filter,
referencer,
bbox,
) in all_images:
if width < 24 or height < 24:
continue
dist = box_distance(
(word_block[0], word_block[1], word_block[2], word_block[3]),
(bbox.x0, bbox.y0, bbox.x1, bbox.y1),
)
if closest_dist == None or dist < closest_dist:
closest = (xref, name)
closest_dist = dist
return closest
def extract_images_from_pdf(pdf_path: str, output_folder: str, page_from: int, page_to: int) -> None:
document = fitz.open(pdf_path)
for page_number in range(page_from, page_to):
page = document[page_number]
quantities = get_unique_word_positions(page, "^\\d+x$", 'CeraPro-Regular', 6.0, 1578517)
ids = get_unique_word_positions(page, "^\\d{6,7}$", 'CeraPro-Light', 6.0, 1578517)
images = get_images_with_bbox(page)
print(quantities)
print(ids)
for quantity in quantities:
(
x0,
y0,
x1,
y1,
quantity_text,
) = quantity
(image_xref, image_name) = get_closest_image(images, quantity)
id = get_closest_word_block(ids, quantity)
extracted_image = document.extract_image(image_xref)
with open(
path.join(
output_folder,
f'{page_number}_{image_name}_{id}_{quantity_text}.{extracted_image["ext"]}',
),
"wb",
) as img_file:
img_file.write(extracted_image["image"])
print(id, quantity_text)
def main():
pdf_url = "https://www.lego.com/cdn/product-assets/product.bi.core.pdf/6429333.pdf"
pdf_path = ".cache/10305-lions-knights-castle-2.pdf"
output_folder = "images"
rmtree(output_folder, ignore_errors=True)
makedirs(path.dirname(pdf_path), exist_ok=True)
makedirs(output_folder)
if not path.exists(pdf_path):
download_pdf(pdf_url, pdf_path)
extract_images_from_pdf(pdf_path, output_folder, 281, 286)
if __name__ == "__main__":
main()