-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathhash_map.h
563 lines (510 loc) · 14.3 KB
/
hash_map.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#ifndef RDESTL_HASH_MAP_H
#define RDESTL_HASH_MAP_H
#include <utility>
#include <tuple> // TODO use own tuple?
#include "pair.h"
#include "algorithm.h"
#include "allocator.h"
#include "functional.h"
#include "rhash.h"
#include "iterator.h"
namespace rde
{
// Load factor is 7/8th.
template<typename TKey, typename TValue,
class THashFunc = rde::hash<TKey>,
class TKeyEqualFunc = rde::equal_to<TKey>,
class TAllocator = rde::allocator
>
class hash_map
{
public:
typedef rde::pair<TKey, TValue> value_type;
//private:
struct node
{
static const hash_value_t kUnusedHash = ~hash_value_t(0);
static const hash_value_t kDeletedHash = kUnusedHash - 1;
static const hash_value_t kHashMask = kDeletedHash - 1;
node(): hash(kUnusedHash) {}
RDE_FORCEINLINE bool is_unused() const { return hash == kUnusedHash; }
RDE_FORCEINLINE bool is_deleted() const { return hash == kDeletedHash; }
RDE_FORCEINLINE bool is_occupied() const { return hash < kDeletedHash; }
hash_value_t hash;
value_type data;
};
template<typename TNodePtr, typename TPtr, typename TRef>
class node_iterator
{
friend class hash_map;
public:
typedef forward_iterator_tag iterator_category;
explicit node_iterator(TNodePtr node, const hash_map* map)
: m_node(node),
m_map(map)
{
/**/
}
// const/non-const iterator copy ctor
template<typename UNodePtr, typename UPtr, typename URef>
node_iterator(const node_iterator<UNodePtr, UPtr, URef>& rhs)
: m_node(rhs.node()),
m_map(rhs.get_map())
{
/**/
}
TRef operator*() const { RDE_ASSERT(m_node != 0); return m_node->data; }
TPtr operator->() const { return &m_node->data; }
RDE_FORCEINLINE TNodePtr node() const { return m_node; }
node_iterator& operator++()
{
RDE_ASSERT(m_node != 0);
++m_node;
move_to_next_occupied_node();
return *this;
}
node_iterator operator++(int)
{
node_iterator copy(*this);
++(*this);
return copy;
}
RDE_FORCEINLINE bool operator==(const node_iterator& rhs) const { return rhs.m_node == m_node; }
RDE_FORCEINLINE bool operator!=(const node_iterator& rhs) const { return !(rhs == *this); }
const hash_map* get_map() const { return m_map; }
private:
void move_to_next_occupied_node()
{
// @todo: save nodeEnd in constructor?
TNodePtr nodeEnd = m_map->m_nodes + m_map->bucket_count();
for (; m_node < nodeEnd; ++m_node)
{
if (m_node->is_occupied())
break;
}
}
TNodePtr m_node;
const hash_map* m_map;
};
public:
typedef TKey key_type;
typedef TValue mapped_type;
typedef TAllocator allocator_type;
typedef node_iterator<node*, value_type*, value_type&> iterator;
typedef node_iterator<const node*, const value_type*, const value_type&> const_iterator;
typedef size_t size_type;
static const size_type kNodeSize = sizeof(node);
static const size_type kInitialCapacity = 64;
hash_map()
: m_nodes(&ms_emptyNode),
m_size(0),
m_capacity(0),
m_capacityMask(0),
m_numUsed(0)
{
RDE_ASSERT((kInitialCapacity & (kInitialCapacity - 1)) == 0); // Must be power-of-two
}
explicit hash_map(const allocator_type& allocator)
: m_nodes(&ms_emptyNode),
m_size(0),
m_capacity(0),
m_capacityMask(0),
m_numUsed(0),
m_allocator(allocator)
{
/**/
}
explicit hash_map(size_type initial_bucket_count, const allocator_type& allocator = allocator_type())
: m_nodes(&ms_emptyNode),
m_size(0),
m_capacity(0),
m_capacityMask(0),
m_numUsed(0),
m_allocator(allocator)
{
reserve(initial_bucket_count);
}
hash_map(size_type initial_bucket_count, const THashFunc& hashFunc, const allocator_type& allocator = allocator_type())
: m_nodes(&ms_emptyNode),
m_size(0),
m_capacity(0),
m_capacityMask(0),
m_numUsed(0),
m_hashFunc(hashFunc),
m_allocator(allocator)
{
reserve(initial_bucket_count);
}
hash_map(const hash_map& rhs, const allocator_type& allocator = allocator_type())
: m_nodes(&ms_emptyNode),
m_size(0),
m_capacity(0),
m_capacityMask(0),
m_numUsed(0),
m_allocator(allocator)
{
*this = rhs;
}
explicit hash_map(e_noinitialize)
{
}
~hash_map()
{
delete_nodes();
}
iterator begin()
{
iterator it(m_nodes, this);
it.move_to_next_occupied_node();
return it;
}
const_iterator begin() const
{
const_iterator it(m_nodes, this);
it.move_to_next_occupied_node();
return it;
}
iterator end() { return iterator(m_nodes + m_capacity, this); }
const_iterator end() const { return const_iterator(m_nodes + m_capacity, this); }
// @note: Added for compatiblity sake.
// Personally, I consider it "risky". Use find/insert for more
// explicit operations.
mapped_type& operator[](const key_type& key)
{
hash_value_t hash;
node* n = find_for_insert(key, &hash);
if (n == 0 || !n->is_occupied())
{
return insert_at(value_type(key, TValue()), n, hash).first->second;
}
return n->data.second;
}
// @note: Doesn't copy allocator.
hash_map& operator=(const hash_map& rhs)
{
RDE_ASSERT(invariant());
if (&rhs != this)
{
clear();
if (m_capacity < rhs.bucket_count())
{
delete_nodes();
m_nodes = allocate_nodes(rhs.bucket_count());
m_capacity = rhs.bucket_count();
m_capacityMask = m_capacity - 1;
}
rehash(m_capacity, m_nodes, rhs.m_capacity, rhs.m_nodes, false);
m_size = rhs.size();
m_numUsed = rhs.m_numUsed;
}
RDE_ASSERT(invariant());
return *this;
}
void swap(hash_map& rhs)
{
if (&rhs != this)
{
RDE_ASSERT(invariant());
RDE_ASSERT(m_allocator == rhs.m_allocator);
rde::swap(m_nodes, rhs.m_nodes);
rde::swap(m_size, rhs.m_size);
rde::swap(m_capacity, rhs.m_capacity);
rde::swap(m_capacityMask, rhs.m_capacityMask);
rde::swap(m_numUsed, rhs.m_numUsed);
rde::swap(m_hashFunc, rhs.m_hashFunc);
rde::swap(m_keyEqualFunc, rhs.m_keyEqualFunc);
RDE_ASSERT(invariant());
}
}
rde::pair<iterator, bool> insert(const value_type& v)
{
return emplace(v.first, v.second);
}
template<class K = key_type, class... Args>
rde::pair<iterator, bool> emplace(K&& key, Args&&... args)
{
RDE_ASSERT(invariant());
if (m_numUsed * 8 >= m_capacity * 7)
grow();
hash_value_t hash;
node* n = find_for_insert(key, &hash);
return emplace_at(n, hash, std::forward<K>(key), std::forward<Args>(args)...);
}
size_type erase(const key_type& key)
{
node* n = lookup(key);
if (n != (m_nodes + m_capacity) && n->is_occupied())
{
erase_node(n);
return 1;
}
return 0;
}
void erase(iterator it)
{
RDE_ASSERT(it.get_map() == this);
if (it != end())
{
RDE_ASSERT(!empty());
erase_node(it.node());
}
}
void erase(iterator from, iterator to)
{
for (; from != to; ++from)
{
node* n = from.node();
if (n->is_occupied())
erase_node(n);
}
}
iterator find(const key_type& key)
{
node* n = lookup(key);
return iterator(n, this);
}
const_iterator find(const key_type& key) const
{
const node* n = lookup(key);
return const_iterator(n, this);
}
void clear()
{
node* endNode = m_nodes + m_capacity;
for (node* iter = m_nodes; iter != endNode; ++iter)
{
if (iter)
{
if (iter->is_occupied())
{
rde::destruct(&iter->data);
}
// We can make them unused, because we clear whole hash_map,
// so we can guarantee there'll be no holes.
iter->hash = node::kUnusedHash;
}
}
m_size = 0;
m_numUsed = 0;
}
void reserve(size_type min_size)
{
size_type newCapacity = (m_capacity == 0 ? kInitialCapacity : m_capacity);
while (newCapacity < min_size)
newCapacity *= 2;
if (newCapacity > m_capacity)
grow(newCapacity);
}
size_type bucket_count() const { return m_capacity; }
size_type size() const { return m_size; }
size_type empty() const { return size() == 0; }
size_type nonempty_bucket_count() const { return m_numUsed; }
size_type used_memory() const { return bucket_count() * kNodeSize; }
const allocator_type& get_allocator() const { return m_allocator; }
void set_allocator(const allocator_type& allocator) { m_allocator = allocator; }
private:
void grow()
{
const size_type newCapacity = (m_capacity == 0 ? kInitialCapacity : m_capacity * 2);
grow(newCapacity);
}
void grow(size_t new_capacity)
{
RDE_ASSERT((new_capacity & (new_capacity - 1)) == 0); // Must be power-of-two
node* newNodes = allocate_nodes(new_capacity);
rehash(new_capacity, newNodes, m_capacity, m_nodes, true);
if (m_nodes != &ms_emptyNode)
m_allocator.deallocate(m_nodes, sizeof(node) * m_capacity);
m_capacity = new_capacity;
m_capacityMask = new_capacity - 1;
m_nodes = newNodes;
m_numUsed = m_size;
RDE_ASSERT(m_numUsed < m_capacity);
}
template<class K = key_type, class... Args> RDE_FORCEINLINE
rde::pair<iterator, bool> emplace_at(node* n, hash_value_t hash, K&& key, Args&&... args)
{
typedef rde::pair<iterator, bool> ret_type_t;
if (n->is_occupied())
{
RDE_ASSERT(hash == n->hash && m_keyEqualFunc(key, n->data.first));
return ret_type_t(iterator(n, this), false);
}
if (n->is_unused())
{
++m_numUsed;
}
rde::construct_args(&n->data,
std::forward<K>(key),
std::forward<Args>(args)...);
n->hash = hash;
++m_size;
RDE_ASSERT(invariant());
return ret_type_t(iterator(n, this), true);
}
rde::pair<iterator, bool> insert_at(const value_type& v, node* n, hash_value_t hash)
{
RDE_ASSERT(invariant());
if (n == 0 || m_numUsed * 8 >= m_capacity * 7)
return insert(v);
RDE_ASSERT(!n->is_occupied());
return emplace_at(n, hash, v.first, v.second);
}
node* find_for_insert(const key_type& key, hash_value_t* out_hash)
{
if (m_capacity == 0)
return 0;
const hash_value_t hash = hash_func(key);
*out_hash = hash;
std::uint32_t i = hash & m_capacityMask;
node* n = m_nodes + i;
if (compare_key(n, key, hash))
return n;
node* freeNode(0);
if (n->is_deleted())
freeNode = n;
std::uint32_t numProbes = 1;
// Guarantees loop termination.
RDE_ASSERT(m_numUsed < m_capacity);
while (!n->is_unused())
{
i = (i + numProbes) & m_capacityMask;
n = m_nodes + i;
if (compare_key(n, key, hash))
return n;
if (freeNode == nullptr && n->is_deleted())
freeNode = n;
++numProbes;
}
return freeNode ? freeNode : n;
}
node* lookup(const key_type& key) const
{
const hash_value_t hash = hash_func(key);
std::uint32_t i = hash & m_capacityMask;
node* n = m_nodes + i;
if (compare_key(n, key, hash))
return n;
std::uint32_t numProbes(1);
// Guarantees loop termination.
RDE_ASSERT(m_capacity == 0 || m_numUsed < m_capacity);
while (!n->is_unused())
{
i = (i + numProbes) & m_capacityMask;
n = m_nodes + i;
if (compare_key(n, key, hash))
return n;
++numProbes;
}
return m_nodes + m_capacity;
}
static void rehash(size_t new_capacity, node* new_nodes, size_t capacity, const node* nodes, bool destruct_original)
{
//if (nodes == &ms_emptyNode || new_nodes == &ms_emptyNode)
// return;
node* it = const_cast<node*>(nodes);
const node* itEnd = nodes + capacity;
const std::uint32_t mask = new_capacity - 1;
while (it != itEnd)
{
if (it->is_occupied())
{
const hash_value_t hash = it->hash;
std::uint32_t i = hash & mask;
node* n = new_nodes + i;
std::uint32_t numProbes(0);
while (!n->is_unused())
{
++numProbes;
i = (i + numProbes) & mask;
n = new_nodes + i;
}
// rehash is not inlined, so branch will not be eliminated, even though
// it's known at compile-time. It should be easily predictable though
// as it's always true/false for each iteration.
// an alternative would be to either inline it or make a template argument.
// Both would bloat the code a bit.
if (destruct_original)
{
rde::construct_args(&n->data, std::move(it->data));
rde::destruct(&it->data);
}
else
{
rde::copy_construct(&n->data, it->data);
}
n->hash = hash;
}
++it;
}
}
node* allocate_nodes(size_t n)
{
node* buckets = static_cast<node*>(m_allocator.allocate(n * sizeof(node)));
node* iterBuckets(buckets);
node* end = iterBuckets + n;
for (; iterBuckets != end; ++iterBuckets)
iterBuckets->hash = node::kUnusedHash;
return buckets;
}
void delete_nodes()
{
node* it = m_nodes;
node* itEnd = it + m_capacity;
while (it != itEnd)
{
if (it && it->is_occupied())
rde::destruct(&it->data);
++it;
}
if (m_nodes != &ms_emptyNode)
m_allocator.deallocate(m_nodes, sizeof(node) * m_capacity);
m_capacity = 0;
m_capacityMask = 0;
m_size = 0;
}
void erase_node(node* n)
{
RDE_ASSERT(!empty());
RDE_ASSERT(n->is_occupied());
rde::destruct(&n->data);
n->hash = node::kDeletedHash;
--m_size;
}
RDE_FORCEINLINE hash_value_t hash_func(const key_type& key) const
{
const hash_value_t h = m_hashFunc(key) & node::kHashMask;
//RDE_ASSERT(h < node::kDeletedHash);
return h;
}
bool invariant() const
{
RDE_ASSERT((m_capacity & (m_capacity - 1)) == 0);
RDE_ASSERT(m_numUsed >= m_size);
return true;
}
bool compare_key(const node* n, const key_type& key, hash_value_t hash) const
{
// Tempting to skip the hash comparison, but it's needed for detecting erased nodes.
return hash == n->hash && m_keyEqualFunc(key, n->data.first);
}
node* m_nodes;
size_type m_size;
size_type m_capacity;
std::uint32_t m_capacityMask;
size_type m_numUsed;
THashFunc m_hashFunc;
TKeyEqualFunc m_keyEqualFunc;
TAllocator m_allocator;
static node ms_emptyNode;
};
// Holy ...
template<typename TKey, typename TValue,
class THashFunc,
class TKeyEqualFunc,
class TAllocator
>
typename hash_map<TKey, TValue, THashFunc, TKeyEqualFunc, TAllocator>::node hash_map<TKey, TValue, THashFunc, TKeyEqualFunc, TAllocator>::ms_emptyNode;
} // namespace rde
//-----------------------------------------------------------------------------
#endif // #ifndef RDESTL_HASH_MAP_H