-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnlpbigram.py
130 lines (108 loc) · 4.02 KB
/
nlpbigram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# -*- coding: utf-8 -*-
"""
A Bigram Language model implementation.
@author: Zhang Long
"""
import codecs
import math
from collections import defaultdict
N=1000000
train_file=".\\data\\wiki-en-train.word"
testtrain_file=".\\data\\wiki-en-test.txt"
testtest_file=".\\test\\01-test-input.txt"
def witten_bell(u,c):
return 1-float(u)/float(c+u)
def get_wmap_key(wmap_context_key):
keylist = wmap_context_key.split(" ")
return keylist[0]
def train_bigram(file_name):
wmap={}
wmap_context={}
pmap={}
# to calculate wittenbell smoothing lambda
map_witten_bell_u=defaultdict(set)
map_witten_bell_c=defaultdict(list)
pmap_witten_bell={}
wmap_context['ttitem'] = 0
with codecs.open(file_name,'r', 'utf-8') as lines:
for line in lines:
line=line.strip('\n')
words=line.split(' ')
words.insert(0,'<s>')
words.append('</s>')
if words[0] in wmap_context:
wmap_context[words[0]] += 1
else:
wmap_context[words[0]] = 1
wmap_context['ttitem'] += 1
for i in range(1,len(words)):
if words[i] in wmap_context:
wmap_context[words[i]] +=1
else:
wmap_context[words[i]] = 1
wmap_context['ttitem'] += 1
word2=words[i-1] + ' ' + words[i]
if word2 in wmap:
wmap[word2] += 1
else:
wmap[word2] =1
#prepare for witten-bell
map_witten_bell_u[words[i-1]].add(words[i])
map_witten_bell_c[words[i-1]].append(words[i])
for word in map_witten_bell_u:
pmap_witten_bell[word] = witten_bell(len(map_witten_bell_u[word]), \
len(map_witten_bell_c[word]))
for key_ in wmap:
key_context = get_wmap_key(key_)
pmap[key_] = float(wmap[key_])/float(wmap_context[key_context])
pmap[key_context] = float(wmap_context[key_context])/float(wmap_context['ttitem'])
print(pmap)
return pmap, pmap_witten_bell
# pmap contains both 1-gram and 2-gram
# treat them in different way
def smoothing_pmap_wittenbell(pmap, pmap_witten_bell):
for item in pmap:
words = item.split(" ")
if len(words) > 1:
word = words[0]
lm=pmap_witten_bell[word]
pmap[' '.join(words)] = lm*pmap[' '.join(words)] + (1-lm)*pmap[word]
else:
word = words[0]
lm=pmap_witten_bell[word]
pmap[word]=lm*pmap[word] + (1-lm)*float(1/float(N))
return pmap
#test-bigram
def test_bigram(pmap, file_name):
entropy=0
num_words=0
with codecs.open(file_name, 'r', 'utf-8') as test_file:
for line in test_file:
line = line.strip('\n')
words=line.split(' ')
words.insert(0, '<s>')
words.append('</s>')
for i in range(1, len(words)):
word2=words[i-1] +' '+words[i]
#unknown words sequence
if word2 in pmap:
entropy += -math.log2(pmap[word2])
else:
if words[i-1] in pmap:
entropy+= -math.log2(pmap[words[i-1]])
else:
entropy+= -math.log2(1/float(N))
if words[i] in pmap:
entropy+= -math.log2(pmap[words[i]])
else:
entropy+=-math.log2(1/float(N))
num_words+=1
return entropy/float(num_words)
pmap, pmap_wb = train_bigram(train_file)
pmap = smoothing_pmap_wittenbell(pmap, pmap_wb)
print(test_bigram(pmap, testtrain_file))
def main():
pass
# Any code you like
if __name__ == '__main__':
main()