-
Notifications
You must be signed in to change notification settings - Fork 2
/
morgen.ini
42 lines (34 loc) · 2.54 KB
/
morgen.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
morgen_plots = z_plots # Path to plot folder: **z_plots**
morgen_roms = z_roms # Path to reduced order models folder: **z_roms**
network_dt = 60.0 # Requested solver time-step [s]: **60.0**
network_vmax = 20.0 # Maximum gas velocity [m/s]: **20.0**
network_cfl = 0.5 # Target CFL constant [1]: **0.5**
model_tuning = 1.0 # Tunable efficiency factor scaling the friction term [1]: 1.0
model_reynolds = 100000.0 # Estimated Reynolds number [1]: 100000.0
model_friction = schifrinson # Friction factor model: hofer , nikuradse , altshul , **schifrinson** , pmt1025 , igt
model_compressibility = aga88 # Compressibility factor model: ideal , dvgw , **aga88** , papay
model_compref = steady # Reference for compressibility: **steady** , normal
model_gravity = static # Gravity term: none, **static**, dynamic
steady_maxiter_lin = 20 # Number of least-norm iterations to refine steady-state estimation: **20** (r >= 1)
steady_maxiter_non = 2000 # Number of time-step iterations to refine steady-state estimation: **1000** (r >= 1)
steady_maxerror = 1e-6 # Maximal error of refined steady-state: **1e-6** (=10^-6)
steady_Tc = -82.595 # Critical temperature [C]: -82.595
steady_pc = 45.988 # Critical pressure [bar]: 45.988
steady_pn = 1.01325 # Normal pressure [bar]: 1.01325
solver_relax = 1.0 # IMEX Solver relaxation: **1.0** (0 < r <= 1.0)
solver_rk2type = 11 # Number of 2nd order hyperbolic Runge-Kutta stages: 5, 6, 7, 8, 9, 10, **11**, 12
solver_rk4type = MeaR99a # Type of 4th order hyperbolic Runge-Kutta: **MeaR99a**, MeaR99b, TseS05
T0_min = 0.0 # Minimum ambient temperature [C]: 0
T0_max = 20.0 # Maximum ambient temperature [C]: 20.0
Rs_min = 500.0 # Minimum specific gas constant [J/(kg*K)]: 500.0 (Natural gas: 518.3)
Rs_max = 600.0 # Maximum specific gas constant [J/(kg*K)]: 600.0 (Hydrogen: 4124.2)
mor_excitation = step # Generic training input type: **step** , impulse , random-binary , white-noise
mor_max = 200 # Maximum reduced order: **200** (r > 2)
mor_parametric = true # Parametric model order reduction: **true** , false
mor_pgrid = 1 # Sparse parameter grid level: **1** (1 <= r < 4)
eval_pnorm = 2 # Parameter norm: 1 , **2** , Inf
eval_skip = 3 # Evaluate every n-th reduced order model: **3** (r >= 1)
eval_max = 200 # Maximum reduced order to evaluate: **200** (r >= 2, use Inf for maximum possible)
eval_parametric = true # Parametric reduced order model evaluation: **true**, false
eval_ptest = 5 # Number of test parameters: **5** (r >= 1)
eval_gain = false # Use gain correction: **true**, false