forked from firecracker-microvm/firecracker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
integration_tests.rs
400 lines (351 loc) · 14.5 KB
/
integration_tests.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
// Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
extern crate devices;
extern crate libc;
extern crate polly;
extern crate seccomp;
extern crate snapshot;
extern crate utils;
extern crate vm_memory;
extern crate vmm;
extern crate vmm_sys_util;
mod mock_devices;
mod mock_resources;
mod mock_seccomp;
mod test_utils;
use std::io;
#[cfg(target_arch = "x86_64")]
use std::io::{Seek, SeekFrom};
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;
use polly::event_manager::EventManager;
use seccomp::{BpfProgram, SeccompLevel};
#[cfg(target_arch = "x86_64")]
use snapshot::Snapshot;
#[cfg(target_arch = "x86_64")]
use vmm::builder::build_microvm_from_snapshot;
use vmm::builder::{build_microvm_for_boot, setup_serial_device};
use vmm::default_syscalls::get_seccomp_filter;
#[cfg(target_arch = "x86_64")]
use vmm::persist;
#[cfg(target_arch = "x86_64")]
use vmm::persist::MicrovmState;
use vmm::resources::VmResources;
#[cfg(target_arch = "x86_64")]
use vmm::version_map::VERSION_MAP;
use vmm::vmm_config::boot_source::BootSourceConfig;
#[cfg(target_arch = "x86_64")]
use vmm::vmm_config::snapshot::{CreateSnapshotParams, SnapshotType};
use vmm::Vmm;
use vmm_sys_util::tempfile::TempFile;
use mock_devices::MockSerialInput;
#[cfg(target_arch = "x86_64")]
use mock_resources::NOISY_KERNEL_IMAGE;
use mock_resources::{MockBootSourceConfig, MockVmResources};
use mock_seccomp::MockSeccomp;
use test_utils::{restore_stdin, set_panic_hook};
fn default_vmm(_kernel_image: Option<&str>) -> (Arc<Mutex<Vmm>>, EventManager) {
let mut event_manager = EventManager::new().unwrap();
let empty_seccomp_filter = get_seccomp_filter(SeccompLevel::None).unwrap();
let boot_source_cfg = MockBootSourceConfig::new().with_default_boot_args();
#[cfg(target_arch = "aarch64")]
let boot_source_cfg: BootSourceConfig = boot_source_cfg.into();
#[cfg(target_arch = "x86_64")]
let boot_source_cfg: BootSourceConfig = match _kernel_image {
Some(kernel) => boot_source_cfg.with_kernel(kernel).into(),
None => boot_source_cfg.into(),
};
let resources: VmResources = MockVmResources::new()
.with_boot_source(boot_source_cfg)
.into();
(
build_microvm_for_boot(&resources, &mut event_manager, &empty_seccomp_filter).unwrap(),
event_manager,
)
}
fn wait_vmm_child_process(vmm_pid: i32) {
// Parent process: wait for the vmm to exit.
let mut vmm_status: i32 = -1;
let pid_done = unsafe { libc::waitpid(vmm_pid, &mut vmm_status, 0) };
assert_eq!(pid_done, vmm_pid);
restore_stdin();
// If any panics occurred, its exit status will be != 0.
assert!(unsafe { libc::WIFEXITED(vmm_status) });
assert_eq!(unsafe { libc::WEXITSTATUS(vmm_status) }, 0);
}
#[test]
fn test_setup_serial_device() {
let read_tempfile = TempFile::new().unwrap();
let read_handle = MockSerialInput(read_tempfile.into_file());
let mut event_manager = EventManager::new().unwrap();
assert!(setup_serial_device(
&mut event_manager,
Box::new(read_handle),
Box::new(io::stdout()),
)
.is_ok());
}
#[test]
fn test_build_microvm() {
// Error case: no boot source configured.
{
let resources: VmResources = MockVmResources::new().into();
let mut event_manager = EventManager::new().unwrap();
let empty_seccomp_filter = get_seccomp_filter(SeccompLevel::None).unwrap();
let vmm_ret = build_microvm_for_boot(&resources, &mut event_manager, &empty_seccomp_filter);
assert_eq!(format!("{:?}", vmm_ret.err()), "Some(MissingKernelConfig)");
}
// Success case.
// Child process will run the vmm and exit.
// Parent will wait for child to exit and assert on exit status 0.
let pid = unsafe { libc::fork() };
match pid {
0 => {
// Child process: build and run vmm.
// If the vmm thread panics, the `wait()` in the parent doesn't exit.
// Force the child to exit on panic to unblock the waiting parent.
set_panic_hook();
let (vmm, mut event_manager) = default_vmm(None);
// On x86_64, the vmm should exit once its workload completes and signals the exit event.
// On aarch64, the test kernel doesn't exit, so the vmm is force-stopped.
let _ = event_manager.run_with_timeout(500).unwrap();
#[cfg(target_arch = "x86_64")]
vmm.lock().unwrap().stop(-1); // If we got here, something went wrong.
#[cfg(target_arch = "aarch64")]
vmm.lock().unwrap().stop(0);
}
vmm_pid => {
// Parent process: wait for the vmm to exit.
wait_vmm_child_process(vmm_pid);
}
}
}
#[test]
fn test_vmm_seccomp() {
// Tests the behavior of a customized seccomp filter on the VMM.
let pid = unsafe { libc::fork() };
match pid {
0 => {
// Child process: build vmm and (try to) run it.
let boot_source_cfg: BootSourceConfig =
MockBootSourceConfig::new().with_default_boot_args().into();
let resources: VmResources = MockVmResources::new()
.with_boot_source(boot_source_cfg)
.into();
let mut event_manager = EventManager::new().unwrap();
// The customer "forgot" to whitelist the KVM_RUN ioctl.
let filter: BpfProgram = MockSeccomp::new().without_kvm_run().into();
let vmm = build_microvm_for_boot(&resources, &mut event_manager, &filter).unwrap();
// Give the vCPUs a chance to attempt KVM_RUN.
thread::sleep(Duration::from_millis(200));
// Should never get here.
vmm.lock().unwrap().stop(-1);
}
vmm_pid => {
// Parent process: wait for the vmm to exit.
let mut vmm_status: i32 = -1;
let pid_done = unsafe { libc::waitpid(vmm_pid, &mut vmm_status, 0) };
assert_eq!(pid_done, vmm_pid);
restore_stdin();
// The seccomp fault should have caused death by SIGSYS.
assert!(unsafe { libc::WIFSIGNALED(vmm_status) });
assert_eq!(unsafe { libc::WTERMSIG(vmm_status) }, libc::SIGSYS);
}
}
}
#[test]
fn test_pause_resume_microvm() {
// Tests that pausing and resuming a microVM work as expected.
let pid = unsafe { libc::fork() };
match pid {
0 => {
// Child process: build and run vmm, then attempts to pause and resume it.
set_panic_hook();
let (vmm, mut event_manager) = default_vmm(None);
// There's a race between this thread and the vcpu thread, but this thread
// should be able to pause vcpu thread before it finishes running its test-binary.
assert!(vmm.lock().unwrap().pause_vcpus().is_ok());
// Pausing again the microVM should not fail (microVM remains in the
// `Paused` state).
assert!(vmm.lock().unwrap().pause_vcpus().is_ok());
assert!(vmm.lock().unwrap().resume_vcpus().is_ok());
let _ = event_manager.run_with_timeout(500).unwrap();
#[cfg(target_arch = "x86_64")]
vmm.lock().unwrap().stop(-1); // If we got here, something went wrong.
#[cfg(target_arch = "aarch64")]
vmm.lock().unwrap().stop(0);
}
vmm_pid => {
// Parent process: wait for the vmm to exit.
wait_vmm_child_process(vmm_pid);
}
}
}
#[test]
fn test_dirty_bitmap_error() {
// Error case: dirty tracking disabled.
let pid = unsafe { libc::fork() };
match pid {
0 => {
set_panic_hook();
let (vmm, mut event_manager) = default_vmm(None);
// The vmm will start with dirty page tracking = OFF.
// With dirty tracking disabled, the underlying KVM_GET_DIRTY_LOG ioctl will fail
// with errno 2 (ENOENT) because KVM can't find any guest memory regions with dirty
// page tracking enabled.
assert_eq!(
format!("{:?}", vmm.lock().unwrap().get_dirty_bitmap().err()),
"Some(DirtyBitmap(Error(2)))"
);
let _ = event_manager.run_with_timeout(500).unwrap();
#[cfg(target_arch = "x86_64")]
vmm.lock().unwrap().stop(-1); // If we got here, something went wrong.
#[cfg(target_arch = "aarch64")]
vmm.lock().unwrap().stop(0);
}
vmm_pid => {
// Parent process: wait for the vmm to exit.
wait_vmm_child_process(vmm_pid);
}
}
}
#[test]
#[cfg(target_arch = "x86_64")]
fn test_dirty_bitmap_success() {
// This test is `x86_64`-only until we come up with an `aarch64` kernel that dirties a lot
// of pages.
let pid = unsafe { libc::fork() };
match pid {
0 => {
set_panic_hook();
// The vmm will start with dirty page tracking = OFF.
let (vmm, _) = default_vmm(Some(NOISY_KERNEL_IMAGE));
assert!(vmm.lock().unwrap().set_dirty_page_tracking(true).is_ok());
// Let it churn for a while and dirty some pages...
thread::sleep(Duration::from_millis(100));
let bitmap = vmm.lock().unwrap().get_dirty_bitmap().unwrap();
let num_dirty_pages: u32 = bitmap
.iter()
.map(|(_, bitmap_per_region)| {
// Gently coerce to u32
let num_dirty_pages_per_region: u32 =
bitmap_per_region.iter().map(|n| n.count_ones()).sum();
num_dirty_pages_per_region
})
.sum();
assert!(num_dirty_pages > 0);
vmm.lock().unwrap().stop(0);
}
vmm_pid => {
// Parent process: wait for the vmm to exit.
wait_vmm_child_process(vmm_pid);
}
}
}
#[cfg(target_arch = "x86_64")]
fn verify_create_snapshot(is_diff: bool) -> (TempFile, TempFile) {
let snapshot_file = TempFile::new().unwrap();
let memory_file = TempFile::new().unwrap();
let pid = unsafe { libc::fork() };
match pid {
0 => {
set_panic_hook();
let (vmm, _) = default_vmm(Some(NOISY_KERNEL_IMAGE));
assert!(vmm.lock().unwrap().set_dirty_page_tracking(true).is_ok());
// Be sure that the microVM is running.
thread::sleep(Duration::from_millis(200));
// Pause microVM.
vmm.lock().unwrap().pause_vcpus().unwrap();
// Create snapshot.
let snapshot_type = match is_diff {
true => SnapshotType::Diff,
_ => SnapshotType::Full,
};
let snapshot_params = CreateSnapshotParams {
snapshot_type,
snapshot_path: snapshot_file.as_path().to_path_buf(),
mem_file_path: memory_file.as_path().to_path_buf(),
version: Some(String::from("0.23.0")),
};
{
let mut locked_vmm = vmm.lock().unwrap();
persist::create_snapshot(&mut locked_vmm, snapshot_params, VERSION_MAP.clone())
.unwrap();
}
vmm.lock().unwrap().stop(0);
}
vmm_pid => {
// Parent process: wait for the vmm to exit.
wait_vmm_child_process(vmm_pid);
// Check that we can deserialize the microVM state from `snapshot_file`.
let restored_microvm_state: MicrovmState =
Snapshot::load(&mut snapshot_file.as_file(), VERSION_MAP.clone()).unwrap();
// Check memory file size.
let memory_file_size_mib = memory_file.as_file().metadata().unwrap().len() >> 20;
assert_eq!(
restored_microvm_state.vm_info.mem_size_mib,
memory_file_size_mib
);
// Verify deserialized data.
// The default vmm has no devices and one vCPU.
assert_eq!(restored_microvm_state.device_states.block_devices.len(), 0);
assert_eq!(restored_microvm_state.device_states.net_devices.len(), 0);
assert!(restored_microvm_state.device_states.vsock_device.is_none());
assert_eq!(restored_microvm_state.vcpu_states.len(), 1);
}
}
(snapshot_file, memory_file)
}
#[cfg(target_arch = "x86_64")]
fn verify_load_snapshot(snapshot_file: TempFile, memory_file: TempFile) {
use vm_memory::GuestMemoryMmap;
use vmm::memory_snapshot::SnapshotMemory;
let pid = unsafe { libc::fork() };
match pid {
0 => {
set_panic_hook();
let mut event_manager = EventManager::new().unwrap();
let empty_seccomp_filter = get_seccomp_filter(SeccompLevel::None).unwrap();
// Deserialize microVM state.
snapshot_file.as_file().seek(SeekFrom::Start(0)).unwrap();
let microvm_state: MicrovmState =
Snapshot::load(&mut snapshot_file.as_file(), VERSION_MAP.clone()).unwrap();
let mem = GuestMemoryMmap::restore(memory_file.as_file(), µvm_state.memory_state)
.unwrap();
// Build microVM from state.
let vmm = build_microvm_from_snapshot(
&mut event_manager,
microvm_state,
mem,
false,
&empty_seccomp_filter,
)
.unwrap();
// For now we're happy we got this far, we don't test what the guest is actually doing.
vmm.lock().unwrap().stop(0);
}
vmm_pid => {
// Parent process: wait for the vmm to exit.
wait_vmm_child_process(vmm_pid);
}
}
}
#[cfg(target_arch = "x86_64")]
#[test]
fn test_create_and_load_snapshot() {
// Create diff snapshot.
let (snapshot_file, memory_file) = verify_create_snapshot(true);
// Create a new microVm from snapshot. This only tests code-level logic; it verifies
// that a microVM can be built with no errors from given snapshot.
// It does _not_ verify that the guest is actually restored properly. We're using
// python integration tests for that.
verify_load_snapshot(snapshot_file, memory_file);
// Create full snapshot.
let (snapshot_file, memory_file) = verify_create_snapshot(false);
// Create a new microVm from snapshot. This only tests code-level logic; it verifies
// that a microVM can be built with no errors from given snapshot.
// It does _not_ verify that the guest is actually restored properly. We're using
// python integration tests for that.
verify_load_snapshot(snapshot_file, memory_file);
}