forked from hgbrian/biomodals
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodal_ligandmpnn.py
175 lines (145 loc) · 5.33 KB
/
modal_ligandmpnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
LigandMPNN (superseding ProteinMPNN)
https://github.com/dauparas/LigandMPNN
- By default, calc_score is False, because it's quite slow.
## Example EGFR binder
- Design chain C but include chains A and C
```
modal run modal_ligandmpnn.py --input-pdb in/ligandmpnn/1IVO_edited.pdb --extract-chains AC \
--params-str '--seed 1 --checkpoint_protein_mpnn "/LigandMPNN/model_params/proteinmpnn_v_48_020.pt" \
--chains_to_design "C" --save_stats 1'
```
## Example EGFR binder
- Outputs will have only chain C
- 15 sequences total (3x5)
```
modal run modal_ligandmpnn.py --input-pdb in/ligandmpnn/1IVO_edited.pdb \
--params-str '--seed 1 --checkpoint_protein_mpnn "/LigandMPNN/model_params/proteinmpnn_v_48_020.pt" \
--parse_these_chains_only "C" --save_stats 1 --batch_size 3 --number_of_batches 5'
```
"""
from pathlib import Path
import modal
from modal import App, Image
LOCAL_OUT = "./out/ligandmpnn"
GPU = modal.gpu.A10G()
image = (
Image.micromamba(python_version="3.11")
.apt_install(["git", "wget", "gcc", "g++", "libffi-dev"])
.pip_install(
[
"biopython==1.79",
"filelock==3.13.1",
"fsspec==2024.3.1",
"Jinja2==3.1.3",
"MarkupSafe==2.1.5",
"mpmath==1.3.0",
"networkx==3.2.1",
"numpy==1.23.5",
]
)
.pip_install(
[
"nvidia-cublas-cu12==12.1.3.1",
"nvidia-cuda-cupti-cu12==12.1.105",
"nvidia-cuda-nvrtc-cu12==12.1.105",
"nvidia-cuda-runtime-cu12==12.1.105",
"nvidia-cudnn-cu12==8.9.2.26",
"nvidia-cufft-cu12==11.0.2.54",
"nvidia-curand-cu12==10.3.2.106",
"nvidia-cusolver-cu12==11.4.5.107",
"nvidia-cusparse-cu12==12.1.0.106",
"nvidia-nccl-cu12==2.19.3",
"nvidia-nvjitlink-cu12==12.4.99",
"nvidia-nvtx-cu12==12.1.105",
]
)
.pip_install(
[
"ProDy==2.4.1",
"pyparsing==3.1.1",
"scipy==1.12.0",
"sympy==1.12",
"torch==2.2.1",
"triton==2.2.0",
"typing_extensions==4.10.0",
"ml-collections==0.1.1",
"dm-tree==0.1.8",
]
)
.run_commands(
"git clone https://github.com/dauparas/LigandMPNN.git"
" && cd LigandMPNN"
' && bash get_model_params.sh "./model_params"'
)
)
app = App("LigandMPNN", image=image)
def extract_chains_inplace(pdb_file: str, extract_chains: str):
from prody import parsePDB, writePDB
chains = parsePDB(pdb_file, chain=extract_chains.replace(",", ""))
writePDB(pdb_file, chains)
return pdb_file
@app.function(timeout=60 * 15, gpu=GPU)
def ligandmpnn(
input_pdb_str: str,
input_pdb_name: str,
params_str: str = None,
calc_score: bool = False,
score_params_str: str = None,
extract_chains: str = None,
) -> list[str, str]:
from subprocess import run
out_dir = "./out"
open(input_pdb_name, "w").write(input_pdb_str)
if extract_chains is not None:
input_pdb_name = extract_chains_inplace(input_pdb_name, extract_chains)
# --------------------------------------------------------------------------
# Run LigandMPNN
# By default, use a protein model
#
ckpt = "/LigandMPNN/model_params/proteinmpnn_v_48_020.pt"
if params_str is None:
params_str = (
f'--seed 1 --save_stats 1 --model_type "protein_mpnn" --checkpoint_protein_mpnn {ckpt}'
)
cmd = f'python /LigandMPNN/run.py --pdb_path "{input_pdb_name}" --out_folder "{out_dir}" {params_str}'
print(cmd)
run(cmd, shell=True, capture_output=True, check=True)
# --------------------------------------------------------------------------
# Score the output from LigandMPNN
# Defaults from https://github.com/dauparas/LigandMPNN, not sure what some of these do
#
if calc_score:
if score_params_str is None:
score_params_str = (
f' --seed 111 --model_type "protein_mpnn" --checkpoint_protein_mpnn {ckpt}'
" --single_aa_score 1 --use_sequence 1 --batch_size 1 --number_of_batches 10"
)
for backbone in (Path(out_dir) / "backbones").glob("*.pdb"):
score_params_str_ = score_params_str + f' --pdb_path "{backbone}"'
cmd_score = f'python /LigandMPNN/score.py --out_folder "{out_dir}" {score_params_str_}'
print(cmd_score)
run(cmd_score, shell=True, capture_output=True, check=True)
return [
(out_file.relative_to(out_dir), open(out_file, "rb").read())
for out_file in Path(out_dir).glob("**/*.*")
]
@app.local_entrypoint()
def main(
input_pdb: str,
params_str: str = None,
calc_score: bool = False,
score_params_str: str = None,
extract_chains: str = None,
):
from datetime import datetime
input_pdb_str = open(input_pdb).read()
outputs = ligandmpnn.remote(
input_pdb_str, Path(input_pdb).name, params_str, calc_score, score_params_str, extract_chains
)
today = datetime.today().strftime("%Y%m%d%H%M")[2:]
for out_file, out_content in outputs:
(Path(LOCAL_OUT) / today / Path(out_file)).parent.mkdir(parents=True, exist_ok=True)
if out_content:
with open((Path(LOCAL_OUT) / today / Path(out_file)), "wb") as out:
out.write(out_content)