简体中文 | English
- PaddlePaddle (版本不低于2.3)
- OS 64位操作系统
- Python 3(3.5.1+/3.6/3.7/3.8/3.9),64位版本
- pip/pip3(9.0.1+),64位版本
- CUDA >= 10.1
- cuDNN >= 7.6
请参考快速安装文档或者详细安装文档,安装PaddlePaddle (要求不低于2.3版本,推荐安装最新版本)。
比如Linux、CUDA 10.1,使用pip安装GPU版本,执行如下命令。
python -m pip install paddlepaddle-gpu==2.3.2.post101 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
使用如下命令验证PaddlePaddle是否安装成功,并且查看版本。
# 在Python解释器中顺利执行如下命令
>>> import paddle
>>> paddle.utils.run_check()
# 如果命令行出现以下提示,说明PaddlePaddle安装成功
# PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.
# 查看PaddlePaddle版本
>>> print(paddle.__version__)
如果大家需要基于PaddleSeg进行开发和调试,推荐采用源码安装的方式。如果大家只是调用PaddleSeg,推荐安装发布的PaddleSeg包。
从Github下载PaddleSeg代码。
git clone https://github.com/PaddlePaddle/PaddleSeg
如果连不上Github,可以从Gitee下载PaddleSeg代码,但是Gitee上代码可能不是最新。
git clone https://gitee.com/paddlepaddle/PaddleSeg.git
执行如下命令,从源码编译安装PaddleSeg包。大家对于PaddleSeg/paddleseg
目录下的修改,都会立即生效,无需重新安装。
cd PaddleSeg
pip install -v -e .
执行如下命令,安装发布的PaddleSeg包。
pip install paddleseg
在PaddleSeg目录下执行如下命令,会进行简单的单卡预测。查看执行输出的log,没有报错,则验证安装成功。
sh tests/install/check_predict.sh
Docker是一种开源工具,用于在和系统本身环境相隔离的环境中构建、发布和运行各类应用程序。如果您没有Docker运行环境,请参考Docker 官网进行安装,如果您准备使用GPU版本镜像,还需要提前安装好nvidia-docker。
我们提供了包含最新PaddleSeg代码的docker镜像,并预先安装好了所有的环境和库依赖,您只需要拉取并运行docker镜像,无需其他任何额外操作,即可开始享用PaddleSeg的所有功能。
在Docker Hub中获取这些镜像及相应的使用指南,包括CPU、GPU、ROCm 版本。
如果您对自动化制作docker镜像感兴趣,或有自定义需求,请访问PaddlePaddle/PaddleCloud做进一步了解。